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ABSTRACT

For providers to stay competitive in a context of continued growth in e-retail sales and increasing cus-
tomer expectations, same-day delivery options have become very important. Typically, with same-day
delivery, customers purchase online and expect to receive their ordered goods within a narrow deliv-
ery time span. Providers thus experience substantial operational challenges to run profitable tours and
generate sufficiently high contribution margins to cover overhead costs. We address these challenges by
combining a demand-management approach with an online tour-planning approach for same-day deliv-
ery. More precisely, in order to reserve capacity for high-value customer orders and to guide customer
choices toward efficient delivery operations, we propose a demand-management approach that explicitly
optimizes the combination of delivery spans and prices which are presented to each incoming customer
request. The approach includes an anticipatory sample-scenario based value approximation, which in-
corporates a direct online tour-planning heuristic. It does not require extensive offline learning and is
scalable to realistically sized instances with multiple vehicles. In a comprehensive computational study,
we show that our anticipatory approach can improve the contribution margin by up to 50% compared
to a myopic benchmark approach. We also show that solving an explicit pricing optimization problem is
a beneficial component of our approach. More precisely, it outperforms both a pure availability control
and a simple pricing rule based on opportunity costs. The latter idea is one used in other approaches for

related dynamic pricing problems dealt with in the literature.

© 2022 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

From 2014 to 2019, global retail e-commerce sales nearly
tripled, and they are forecast to nearly double over the next few
years to reach an expected USD 7.4 trillion in sales volume by 2025
(eMarketer, 2022). Many e-retail providers started out by offering
same-day delivery (SDD), meaning that customers could shop on-
line and receive the ordered goods on the very same day, typi-
cally within the next few hours, depending on the provider. For
customers, such fast delivery brings instant gratification similar to
shopping in brick-and-mortar stores, with the added convenience
of online shopping. For this reason, the majority of customers are
willing to pay higher fees for faster delivery (McKinsey & Com-
pany, 2016; PwC, 2018). However, despite high demand and the
customers’ willingness to pay more for faster delivery, many SDD-
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providers went out of service or shifted their service portfolio to-
ward different business segments. This is because with SDD, they
were not able to maintain profitable delivery operations and were
not able to achieve sufficiently high overall contribution margins
to cover their overhead costs. Thus, e-retail providers need to im-
prove the profitability of their delivery operations in order to live
up to increasing customer expectations regarding delivery speed.
Known from related fields of research regarding home delivery,
there is two measures to increase the respective profitability.
Those are (1) optimizing tour planning and (2) optimizing demand
management. With the latter, it is possible to avoid unfavorable
requests without loosing customer goodwill by making informed
decisions on which delivery options and prices to offer each
customer. This additionally holds potential to further improve tour
planning with regard to profitability. Both measures have success-
fully been applied to related fields of research. The most related
of those fields is attended home delivery (AHD), where customers
have to be present when their goods are delivered. However,
from a theoretical point of view, both measures, ie., demand
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Fig. 1. Overview of the interaction of the considered business process, the respective MDP model, and our proposed solution approach.

management as well as tour planning, are substantially more
difficult to optimize for SDD than for the broadly investigated AHD
problems. This is due to the overlap of booking and service peri-
ods in SDD, which is typically not assumed for AHD. This overlap
causes the necessity of closely integrating both previously named
optimization measures with each other, with the additional re-
quirement for the tour-planning optimization to be conducted
online. More precisely, contrary to AHD, with SDD, not only the
decision on which delivery options to offer at which prices must
be made online, but also the decision on which orders to allocate
to which tours and when to start each. Additionally, with SDD,
both decisions have to be made under anticipation of potential
future decisions. However, in the related literature, there only exist
works that tackle the SDD problem in an anticipatory manner
either with regard to optimizing the demand management, or
with regard to optimizing the online tour planning. To the best of
our knowledge, there is no approach that explicitly incorporates
anticipation holistically for both components.

In this paper, we consider an SDD problem setting and
approach increasing its profitability by holistically optimizing
demand management and tour planning in an integrated manner.
We thus refer to the problem under consideration as the SDD
demand-management and tour-planning problem (SDD-DMTP). In
particular, we approach such an SDD-DMTP from the perspective of
some typical middle sized e-retailer offering the delivery of goods
at the same day to a registered pool of customers in an urban area
with a small number of delivery vehicles. We aim to make the
concept of SDD profitable and to improve provider services and
thus customer satisfaction. We do so by exploiting two demand-
management levers, namely reserving more capacity for higher
valued customers and guiding the stochastic customer choice to-
ward efficient delivery options. Simultaneously, we improve online
tour planning. Methodologically, we model the problem holistically
as Markov decision process (MDP) and present a forward approxi-
mate dynamic programming (ADP) optimization approach (Powell,
Simao, & Bouzaiene-Ayari, 2012) for its solution. Within the ADP
approach, we combine ideas of multiple scenario approaches for
online tour planning with the ideas of value approximation via
sampled trajectories, such as those known from rollout algo-
rithms/Monte Carlo methods (see for example Sutton & Barto,
2018). Fig. 1 shows the interaction of our proposed optimization
approach with the SDD booking and service process of an e-
retailer (in the following referred to as provider). The lower stream
shows the actual business process of the provider, and the upper
stream shows the main components of our solution approach and
their temporal correspondence. In the following, we describe the
interaction of our solution approach with the business process.
Thereby, we do not assume that the individual components are
already known and, thus, only provide a high-level overview,
following the numbering within the figure: (1) A customer logs
in to the website with information about their location and de-
livery preferences stored in the profile and chooses a shopping
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basket online while expecting a selection of narrow delivery time
spans to be offered at affordable prices. This initiates a delivery
request in response to which the provider has to make a demand-
management decision. Therefore, simultaneously to the customer’s
login, (2) the provider samples different customer request trajec-
tories and conducts tentative tour-planning optimization, called
multiple scenario approach. From the solution of the multiple sce-
nario approach, a value approximation can be conducted, which is
then the input for an anticipatory demand-management decision
(3). More precisely, based on the approximated value, the provider
derives anticipatory decisions on which delivery time spans to
offer the current customer and at what prices. (4) As a result, the
customer chooses one of the options offered or leaves the website
without purchasing, following their own individual preferences. If
the customer chooses to purchase, the delivery request becomes
a confirmed customer order with a delivery deadline and (5) the
tour planning is updated on the basis of the previously sampled
trajectories. (6) To enable prompt delivery, the execution of de-
liveries might start/continue immediately, even though further
customer requests could arrive. (7) When a new customer request
arrives, the whole process starts over again. Note, as typical in the
related literature, we assume that customers log-in to the website
one-by-one.

The contribution of this paper is threefold and regards MDP
modeling, solution approach, and practical application as described
in the following:

e MDP modeling - We contribute to the literature on modeling
MDPs for SDD applications by being the first to explicitly for-
malize the interaction between two co-dependent types of de-
cisions, i.e., the demand-management and tour-planning deci-
sions, in a specifically adapted Bellman function.

e Solution approach - As the main contribution of our work we
propose a holistic anticipatory solution approach to the inte-
grated demand-management and online tour-planning problem,
which does not require extensive offline learning, and guaran-
tees applicability and scalability to realistically sized problem
instances.
Practical application - In a comprehensive computational study,
we derive substantial contributions regarding the practical ap-
plication of the SDD-DMTP. First, we derive a potential of
increasing the contribution margin by anticipation in deci-
sion making within our approach of up to 50% and elabo-
rate cases in which anticipation is particularly valuable. There-
with, we give a differentiated insight into the problem. Sec-
ond, we benchmark our approach in relation to other demand-
management and pricing approaches, adopting ideas from the
existing literature. We show how explicit price optimization in-
creases the contribution margin compared to the benchmarks,
and discuss how the different approaches affect the solution
structure. Generally, the results give a strong indication that our
new approach can deliver decision support that helps to finally
make SDD applications profitable in practice.
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Table 1

Surveys that feature related problems.
Authors Application  Perspective =~ Concepts  Models  Approaches
Agatz, Campbell, Fleischmann, Van Nunen, & Savelsbergh (2013)  AHD DM N X N
Archetti & Bertazzi (2021) G VRP Vv X V
Boysen, Fedtke, & Schwerdfeger (2021) G VRP v X X
Fleckenstein, Klein, & Steinhardt (2022) G i-DMVRPs Vv Vv v
Klein, Koch, Steinhardt, & Strauss (2020) G DM N 4 N
Snoeck, Merchan, & Winkenbach (2020) AHD VRP Vv X X
Soeffker, Ulmer, & Mattfeld (2021) G VRP Vv Vv Vv
WaRmuth, Kohler, Agatz, & Fleischmann (2022) G i-DMVRPs N X Vv

The remainder of the paper is organized as follows. In Section 2,
we review the literature of related research streams. In Section 3,
we model the problem as MDP with two integrated decisions.
Then, in Section 4, we present our solution approach, which is sub-
sequently evaluated in a numerical study. We discuss the results
in Section 5, and in Section 6 summarize them, also giving the in-
sights that emerged, as well as future research directions.

2. Literature review

In this section, we examine the existing literature related to
SDD-DMTPs. In Section 2.1, we start with a short overview of ex-
isting surveys, that generally address related demand-management
and tour-planning problems. Then, in Section 2.2, existing solution
approaches for operational decision making in SDD-DMTP problem
settings are analyzed. Note that we omit a detailed discussion of
existing solution approaches for related AHD problem settings, be-
cause, as stated earlier, the overlap of the booking and service
horizons in SDD yields substantially different challenges since it
incorporates an online tour-planning component. Nevertheless, in
Appendix B, we provide a list of recent solution approaches of re-
lated AHD literature. We conclude the discussion of the related lit-
erature by summarizing the identified research gaps in Section 2.3.

2.1. Surveys on integrated demand management and tour planning

In this section, we provide a brief overview of the existing
surveys featuring integrated demand management and tour plan-
ning in home-delivery applications in general. We list the respec-
tive works in Table 1 and show whether AHD is considered in
particular, or if general concepts are addressed (G). There is no
survey that specifically addresses SDD literature. Further, Table
1 summarizes whether the authors focus on a specific compo-
nent, i.e., the demand-management component (DM) or the tour-
planning component (VRP), or consider the integrated demand-
management and tour-planning problem (i-DMVRP) holistically.
Additionally, Table 1 gives an overview of whether the respective
survey addresses business concepts, mathematical models, and/or
solution approaches. The reader is referred to Appendix A for a
summary of the key insights of each of the listed surveys.

2.2. Solution approaches for the SDD-DMTP

Here, we describe existing solution approaches for the SDD-
DMTP with a focus to anticipatory approaches. We structure our
elaboration by first discussing research that involves learning-
based anticipation (see Section 2.2.1). Next, we discuss research
that involves non-learning-based anticipation (see Section 2.2.2).
In each of these sections, we start by briefly discussing the
most related research on pure online tour-planning approaches
to show how the discussed integrated approaches evolve from
them. Integrated approaches exceed basic feasibility control by (at
least) allowing feasible customer requests to be rejected if the
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expected contribution to the objective is negative (Fleckenstein,
Klein, & Steinhardt, 2022). Further, our discussion is structured
along groups of publications that follow comparable ideas. For each
group, we first describe the approaches and then highlight what
distinguishes our approach from the presented works.

2.2.1. Learning-based approaches

Pure online tour-planning: Learning-based approaches aim to
learn accurate value function approximations (VFAs) either offline,
by simulation in upstream learning phases, or online. To solve
stochastic dynamic VRPs with unknown requests, VFAs are typi-
cally applied to derive tour-planning/routing decisions. Recent pub-
lications on solving stochastic dynamic VRPs with stochastic cus-
tomer requests as considered in our problem are Ulmer (2017) and
Ulmer (2019). These works present a variety of VFA approaches to
make tour-planning decisions that will match as many customer
requests as possible. In all approaches, the VFA is learned offline by
a large number of simulation runs. The learned VFA can be applied
to assess post-decision values in an online decision period in or-
der to make good tour-planning decisions. Hildebrandt, Thomas, &
Ulmer (2021) summarize solution frameworks for solving stochas-
tic dynamic VRPs that originate from different research streams,
namely computer science and operations research. They propose a
high-level concept on how to combine those frameworks to build
a reinforcement learning-based solution framework.

Integrated approaches: Ulmer, Goodson, Mattfeld, & Hennig
(2019) combine an offline VFA with a simulation-based online roll-
out algorithm to solve a dynamic VRP with stochastic service re-
quests for a single vehicle. They present an offline learned, dy-
namic look-up table which is generated by approximate value iter-
ation using temporal information. When this look-up table is used
for online decision making, it is combined with a simulation-based
online rollout algorithm considering spatial information of poten-
tial post-decision states. In contrast to our approach, their demand-
management decision results from the optimized tour-planning,
but is not actively steered nor anticipated. Additionally, we con-
sider multiple vehicles with multiple tours, and offer multiple de-
livery options to incoming customer requests. This results in very
large state and action spaces, even if a state space aggregation is
applied. Therefore, generally, look-up table based approaches can-
not be implemented efficiently for the setting we consider.

In a different set of publications, researchers consider a
pricing component within their integrated approaches. Ulmer
(2020a) solves a dynamic routing and pricing problem for SDD by
developing an anticipatory pricing and routing policy that is based
on a sophisticated VFA approach and upstream policy learning. He
is the first to present a VFA approach for a fleet of vehicles, which
he does by separating the value function with regard to different
vehicles. He includes the tour-plans of the vehicles in the state
definition. To solve the pricing problem, the author relies on an
opportunity cost estimate for different delivery options from com-
paring approximated state values. If the opportunity costs are low,
the corresponding delivery options are offered for budget prices
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derived from the upstream policy learning. Those prices represent
the typical base prices of the delivery options. Only in cases where
the opportunity cost estimate exceeds the budget price, are the
corresponding delivery options priced differently, setting prices
to equal the opportunity costs. Therefore, this procedure ensures
that only requests with a non-negative contribution to the overall
objective are accepted. The routing aspect of the problem is solved
by a simple, non-anticipatory insertion heuristic.

In the same set of publications, Prokhorchuk, Dauwels, & Jaillet
(2019) introduce a stochastic dynamic pricing and routing prob-
lem for SDD with stochastic travel times. They also base decision
making on the approximation of opportunity costs and amend the
approach of Ulmer (2020a) by stochastic travel times, a different
routing heuristic that accounts for stochastic travel times, and by
using standard VFA procedures.

Our work differs decisively from the above-mentioned two
decision-making approaches. In both, the authors construct a VFA
around the post-decision state that is derived from myopic tour
planning, i.e., from cheapest insertion algorithms. They approx-
imate the corresponding value, and thus the opportunity cost,
by anticipating customer orders that can be accepted. Note that
the proposed learning based approaches rely on the use of base
prices in their anticipation, which is a pre-requisite for this VFA
(cf. Ulmer, 2020a). However, in contrast, we aim to integrate ex-
plicit anticipation in both tour planning and price optimization.
More precisely, our tour-planning approach substantially differs
from theirs, as we apply anticipatory replanning for every new cus-
tomer order. Regarding the price optimization, we solve a choice-
based pricing optimization problem with discrete, predefined price
points and we aim to apply this optimization for anticipation in
learning a state value as well, instead of relying on base prices. We
propose a non-learning-based value approximation approach that
incorporates a number of novel, problem-specific ideas.

2.2.2. Non-learning-based approaches

Here, we discuss non-learning-based solution approaches for
stochastic dynamic VRPs with stochastic requests.

Pure online tour planning: Bent & Van Hentenryck (2004) in-
troduce a multiple scenario approach to take tour-planning deci-
sions in dynamic VRPs with stochastic customer requests. They aim
to maximize the number of accepted customer requests by con-
stantly generating multiple tour plans based on sampled customer
requests. From those tour plans, a distinguished tour plan is cho-
sen, repaired for feasibility, and frequently updated. It serves as in-
put for taking decisions on which customers will be served next
and by which vehicle. In Bent & Van Hentenryck (2007), the au-
thors enhance the previous approach by including waiting and re-
locating strategies. With this approach, not only routing decisions,
e.g., a vehicle’s next destination, but also dispatching decisions, i.e.,
which orders to allocate to one tour, are taken.

Integrated approaches: Among the considered integrated, non-
learning-based approaches, the most relevant group of papers is
based on the idea of the multiple scenario approach by Bent
& Van Hentenryck (2004), as described above. Azi, Gendreau, &
Potvin (2012) introduce an initial demand-management approach
to a dynamic VRP with stochastic requests and non-disjoint book-
ing and service horizons. They consider a profit maximization
problem in determining which requests to accept and which to re-
ject. To solve the routing problem, they apply an adaptive large
neighborhood search to scenarios that, like the ones in Bent &
Van Hentenryck (2004), include already accepted customer orders
and sampled customer requests. What is new about their approach
is that they then compare scenario solutions with and without
the current customer request and define the difference in solution
quality as a scenario-specific opportunity value. If the sum of all
scenario-specific opportunity values is positive, they accept the re-
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quest. This approach delivers an estimate of whether or not the
acceptance of a customer request yields a positive contribution to
the overall objective, taking potential future developments into ac-
count.

Voccia, Campbell, & Thomas (2019) also adapt the ideas from
Bent & Van Hentenryck (2004) and Bent & Van Hentenryck (2007).
They aim to maximize the number of feasibly inserted customer
requests for a stochastic dynamic VRP with time windows and
stochastic requests. The customer requests that are not inserted
in a feasible solution are outsourced to a third party logistics
provider, which comes with a penalty cost per order. Their ap-
proach yields comprehensive tour-planning decisions including the
set of orders allocated, vehicle assignment, as well as a schedule
for each tour. Like Bent & Van Hentenryck (2007), they consider
future, not yet realized customer requests by applying a sample-
scenario approach. Thereby, they solve a multi-trip team orienteer-
ing problem with a standard implementation of a variable neigh-
borhood search. Afterwards, the scenario solutions are used to con-
struct anticipatory tour plans. Compared to Bent & Van Hentenryck
(2007), they apply an enhanced consensus function that chooses
partial plans according to their appearance frequency in the sce-
nario solutions. Also, they include waiting strategies to improve
the anticipatory quality of their solutions. Coté, de Queiroz, Gallesi,
& lori (2021) build on the approach by Voccia et al. (2019) and
amend it by a regret heuristic, a different consensus function, and
a specifically tailored branch-and-regret method. Further, they also
consider settings in which pre-emptive depot returns are allowed.

Regarding the setting and the solution approach this set of pub-
lications is related to our work; however, the decisive difference
is that they do not consider explicit demand management, i.e.,
which customers are served is a result of a pure tour-planning op-
timization. Compared to tour-planning problems without explicit
demand management, for solving our problem it is critical to have
a very accurate value approximation. This is needed to determine
profitable prices across a relatively small set of close price points.
At the same time, we need an online tour-planning approach.
Therefore, we combine the ideas of multiple-scenario approaches
for online tour-planning with a basic idea known from rollout algo-
rithms, namely approximating the value of a decision by averaging
the values of heuristic solutions of sampled trajectories (Soeffker
et al. (2021)). More precisely, we extend the approach of Voccia
et al. (2019) by incorporating a sophisticated demand-management
approach that anticipates demand management in scenario solu-
tions for value approximations. Finally we need to point out that
there is another research stream dealing with SDD problems con-
sidering integrated approaches for SDD, but in this context nei-
ther the setting nor the approach is as closely related to our prob-
lem as those previously mentioned. Respective works are Klapp,
Erera, & Toriello (2018), Klapp, Erera, & Toriello (2020), Chen, Ul-
mer, & Thomas (2019), and Soeffker, Ulmer, & Mattfeld (2017). Fur-
ther, please note that there are other research streams in the SDD
community that consider a variety of research questions which we
disregarded here. For a review of respective fields of research, the
interested reader is referred to Boysen et al. (2021).

2.3. Research gaps concerning the literature on MDP modeling and
solution approaches regarding the SDD-DMTP

From a comprehensive analysis of the existing literature on re-
lated problems as summarized in Appendix B, the following re-
search gaps can be conducted with regard to MDP modeling and
solution approach:

e MDP modeling - There is no MDP model neither for SDD
problem settings nor for AHD problem settings which ex-
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plicitly accounts for the simultaneous integration of demand-
management and tour-planning decisions.

Solution approach - While there is a wide range of solution ap-
proaches that tackle AHD problem settings, the existing solu-
tion approaches for SDD are not sufficiently holistic and evolved
to integrate anticipation in demand management and tour plan-
ning at the same time. Further, literature proposing approaches
that aim at profit optimization and thereby consider revenue
and cost at the same time, is scarce for SDD.

Further, the following insights can be derived: Among the
approaches that address anticipatory tour planning of which
demand-management decisions are an implicit result, there exist
learning-based and non-learning-based approaches. Among the ap-
proaches that apply explicit anticipatory demand management but
base that on myopic tour planning, there are only learning-based
approaches. In the following, we close the identified research gaps
by presenting a holistic MDP model, and by proposing a solution
approach, which involves anticipation for the tour-planning op-
timization and the demand-management optimization simultane-
ously. The proposed approach is a non-learning based approach. In
the following, we start by introducing the holistic MDP model for
the SDD-DMTP.

3. Problem statement

In Section 3.1, we introduce the SDD-DMTP in detail and state
our assumptions. In Section 3.2, we formalize it in a holistic MDP
model formulation.

3.1. Problem description

The SDD-DMTP comprises two types of decisions, namely
demand-management decisions and tour-planning decisions.
Demand-management decisions have to be made for every
customer arrival and comprise the decisions on which delivery
options to offer each particular customer at which prices. The
combination of a subset of delivery options with fixed prices
is termed an offer-set. Every offer-set gives different customer
choice probabilities according to which customers choose a delivery
option, thus-either turning the request into a confirmed customer
order or choosing to leave the system without purchasing any-
thing. All confirmed customer orders have to be served by the
provider’s delivery operations. Therefore, the provider continu-
ously takes tour-planning decisions and executes them, while the
booking period is still running. Below, we describe the relevant
components of the SDD-DMTP in detail:

Customer arrivals: Customer requests ¢ can arrive at random
times t within a pre-defined booking period with arrival rate A.
The arriving customers log in to the provider’s website with reg-
istered profiles and fill their shopping basket. For every incoming
customer request, the provider then knows the corresponding lo-
cation (x,y)c, as well as the shopping basket’s potential value r.

Delivery options: Delivery options are predefined nested time
spans in which the provider commits to deliver. The set of deliv-
ery options could, for example, comprise delivery within the next
90 minutes or within the next 300 minutes. Delivery options are
referred to with indices in ascending order, so that the length of
the delivery option with index i, denoted as [(i), is shorter than
the length of delivery option i, denoted as I(i"), if i < i’. The corre-
sponding index set is denoted by Z.

Offer sets: Considering all delivery options, the provider decides
on a subset to offer in response to an incoming customer request.
In doing so, the provider also selects a price for each delivery
option, either from predefined price points or from a continu-
ous (potentially limited) price range. In defining offer sets, the
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Table 2
Potential offer-sets.

prices of delivery options choice probabilities

g i=1 i=2 P° p! p? =
1 riz r2 0.2 0.4 0.4 1
2 riz r2 0.3 0.4 0.3 1
3 ri2 not offered 0.4 0.6 0.0 1
4 i r2 0.3 0.2 0.5 1
5 rit r2 0.4 0.2 0.4 1
6 i not offered 0.6 0.4 0.0 1
7 not offered 22 0.3 0.0 0.7 1
8 not offered 2t 0.5 0.0 0.5 1
9 not offered not offered 1 0.0 0.0 1

provider has to take the following restrictions into consideration:
(1) Within an offer set, each delivery option can appear only once.
(2) Since a customer can always decide not to make a purchase, a
fictive delivery option that represents a no-purchase option has to
be included in every offer set. It is priced at zero and is referred
to by index i = 0. (3) To ensure pricing consistency, the prices of
deliveries with longer time spans can never exceed the prices of
those with shorter spans. An offer set is denoted by g and the set
of all offer sets by G. It is either finite, if potential prices originate
from a finite set, or infinite, if potential prices originate from a
continuous range.

Customer choice probabilities: The utility u' that an arriving
customer experiences when choosing a certain delivery option i
at a certain price r' consists of an observable and an unobservable
component. The deterministic (i.e. observable) component can be
calculated and is influenced by the length of the delivery option
and its price. The unobservable component can be drawn from a
certain probability distribution and is represented here by €'. The
choice probability with which a customer chooses a delivery option
i from a set of offered options g is Pi(g) = P(u' > max{u' : i € g}).
It is calculated differently for different random utility models
which usually differ regarding the assumptions underpinning the
distribution of the random component €' (see Talluri & Van Ryzin
(2006) for more on random utility models). Table 2 illustratively
shows a set of offer-sets G with |G| =9. Every ge G is depicted
in a row with artificial purchase probabilities. In the example,
there are two different delivery options {1,2} with I(1) <[(2),
and two potential prices ri!, 2 each, with r!! > r12 > r21 > r22,
The no-purchase probability is denoted as PO.

Delivery operations: If a customer chooses an option other than
the no-purchase option, their request ¢ turns into a customer order
c. A customer order is assigned a delivery deadline td¢ that is cal-
culated from its request time t;°? and the length I(i) of the chosen
delivery option i, i.e., tdu¢ = t* + I(i). Since the delivery deadlines
are typically narrow in SDD, the service period in which customer
orders are being served starts with, or shortly after, the first re-
alized customer order and ends when the last customer order of
a day has been served. Hence, a particularity of SDD is that the
booking and service periods overlap (Fleckenstein et al., 2022).

During the service period, a fleet of homogeneous vehicles V
serves the customer orders from a centrally located depot. Once a
customer order has been realized, it has to be loaded onto a vehi-
cle in the depot. Thus, the order can only be served either by a ve-
hicle that visits the depot after the request’s arrival or by one that
is idle in the depot when the request arrives. The provider contin-
uously takes tour-planning decisions, i.e., decisions about whether
and when a vehicle should leave the depot, and when it leaves
which orders will be assigned to it. If a vehicle leaves the depot to
serve customers, a tour is planned. A tour is denoted as 6V for a ve-
hicle v € V and is defined by a start time t59"* and a set of loaded
customer orders L= {cq,cy,c3,...}. Further, to store the order in
which a given tour will reach customer locations, we introduce a
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set of tuples that assign positions x., to customer orders ¢;, i € L.
The set is denoted by X, i.e., X = {(c1, Xc¢,). (C2. Xcp)» (€3, X3)- - -}
Hence, 6V = (t5t%t | L, X). Accordingly, we refer to the fields of the
tuple of a given tour by t5¢t(8"), L(AV) and X (6Y).

After leaving the depot, a tour is always fully executed as
planned, without pre-emptive depot returns. All tours have to be
planned in such a way that no customer orders will be served later
than their delivery deadline. We assume deterministic travel times
7. from the location of the customer order c¢ to the location of
customer order ¢’. Without loss of generality, we assume that the
service time of serving customer order ¢’ is included in 7. Vehi-
cles can have several sequential tours during the day. In line with
most SDD literature, we do not consider physical vehicles’ capac-
ities, because the narrow delivery deadlines of the customer or-
ders are far more restrictive for the delivery operations than the
available space in a vehicle (see for example Angelelli, Archetti, Fil-
ippi, & Vindigni, 2021, Lang, Cleophas, & Ehmke, 2021a, Berbeglia,
Cordeau, & Laporte, 2010, Ulmer, 2020a, Voccia et al., 2019).

3.2. Markov decision process formulation

In the following, we model the SDD-DMTP as a Markov deci-
sion process (MDP). In every decision epoch, the provider has to
take an action denoted as A;, taking the current state of the sys-
tem S; into consideration. More precisely, the provider evaluates
the current state of the delivery operations, as well as the cus-
tomer orders already confirmed though not yet being delivered,
to determine the feasibility of potential actions. The action then
taken, yields a transition as well as a reward in that a customer
chooses a delivery option from the set of offered delivery options
(including the no-purchase option), which triggers the execution
of the corresponding delivery decision. Accordingly, rewards fol-
low: if a customer chooses to buy, they pay a delivery fee and the
shopping basket value realizes. Further, tour costs realize for every
vehicle that leaves the depot. After such realizations, the system
transitions to the next state S;, 1, which differs from the previous
one, potentially by the newly accepted customer order and/or new
tours, and by the delivery execution’s progress up to that time. The
objective that the provider seeks is to maximize the total profit ac-
crued over all decision epochs. In the following, we describe the
MDP elements in detail:

Decision epochs: To model the SDD-DMTP as MDP, we assume
a discretized booking period 72 in such a way that the stages
of the MDP correspond to time steps t € 7P =1 ... T. The time
steps represent micro-periods in each of which no more than one
customer request with arrival probability A arrives.

State: The state S; of a system at time t consists of all infor-
mation relevant to making decisions and already revealed by time
t. In the SDD-DMTP, two state components are required. The first
component is the set of confirmed and not yet being delivered cus-
tomer orders, denoted as C;. For all of those orders c e ¢, it con-
tains information about their location (x,y). and their due time
tf“e, stored in a tuple: ((x,y)c, tf“e). The second component is the
overall tour plan at time ¢, denoted by ¢; (see modelling of route-
based MDPs in Ulmer, Goodson, Mattfeld, & Thomas, 2020). It con-
tains the currently running tours 6} for every vehicle v € V. If the
vehicle v is idle in the depot, 6 = (). So, the state is defined as
St = (Ct, ¢r).

All possible combinations of customer requests from the regis-
tered customer pool, with all possible arrival and due times and
with all possible tour plans, define the state space S, with S; € S.
Action: Fig. 2 is a schematic representation of the stochastic deci-
sion process of the SDD-DMTP. We differentiate between actions
in decision epochs in which, with probability A, a customer arrival
occurs and decision epochs in which, with probability (1 —A), no
customer request arrives. In the former case, two types of deci-
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sions have to be made integratively, namely demand-management
and tour-planning decisions. In the latter case, only tour-planning
decisions have to be made. We depict both cases in Fig. 2.

Customer request - In period t of Fig. 2, a customer request ar-
rives. Therefore, a demand-management decision has to be made
by selecting which offer set g € G to offer the requesting customer.
The offer set presented at time t is denoted as g;. Further, for ev-
ery delivery option i € g;, potential tour-planning decisions that are
executed after observing the customer’s actual choice, are made.
Thus, a tour-planning decision consists of the subsequent state’s
possible overall tour plan which depends on the yet unknown cus-
tomer choice for a delivery option i. Therefore, we introduce qﬁ{ for
i € g as the tour plans that will be executed if the customer were
to choose delivery option i, and include it in the action definition.

No customer request - In t+ 1 of Fig. 2, no customer request
arrives. Therefore, the corresponding action only comprises tour-
planning decisions ¢[°+1 without a new customer request.

Accordingly, the action A; of micro-period t has two distinct
cases:

if there is a customer request at t
else

(gc, (¢Z+1 )ieg[)
0

At:{(f)

Correspondingly, the action space at decision epoch t, denoted as
Ay, is also defined for the above-mentioned two distinct cases:

Customer request — For the first case, if there is a customer re-
quest in t, the action space comprises two components. One com-
ponent, denoted as G(S;, ¢¢), defines all offer sets that only contain
delivery options for which there is at least one feasible tour plan,
given state S; and customer c;. The other component, denoted as
(CIZ'Lr1 (St ¢t))ieg(s,.;)» defines all potential tour plans that are fea-
sible given C, and assuming that the current customer request c;
turns into a customer order with a deadline according to delivery
option i € G(St, ¢t). This could also comprise the decision that no
new tour will start, i.e., that the tour plan does not change.

No customer request — If there is no customer request in t, the
action space accordingly comprises all feasible tour plans for the
set of confirmed customers C;. In this case, the set of all potential
tour plans is denoted as ®9 . (S;). Consequently,

(1)

t+1

t+1
(G(St. co). if there is

Ar € Ay = { (®L;(St.Ct))iegs,)) @ customer request at t  (2)
@Y, (St) else.

Note that for both cases, the tour-planning component of the ac-
tion space comprises all tours currently running at t and poten-
tially new tours for vehicles that are standing idle at the depot
(8Y = ()) or returning to the depot during the decision epoch.

Transition model: The transition model of the SDD-DMTP com-
prises demand-management related and tour-planning related
transitions. While the former are stochastic, the latter are deter-
ministic transitions from one state S; to a successor state Sgq.
Fig. 3 is a schematic representation of the transitions involved in
the SDD-DMTP, which shows the temporal relation between two
consecutive states and transitions. As Fig. 3 shows, the stochastic
event of whether there is a new customer request c¢; arriving or
not can be observed at the beginning of a decision epoch t, after
observing state S;. The resulting transitions differ accordingly.

If there is a request, integrated demand-management and tour-
planning decisions are made and a transition, namely the customer
choice i’ follows. This is depicted in the upper stream of Fig. 3. This
transition is stochastic, and potential outcomes i’ can be observed
with known probability P/ (g;). It defines whether the first state
component, namely the set of confirmed, yet still to be delivered
customer orders C;, alters from one state S; to a successor state
St41 by adding a new customer order. Following this, another tran-
sition, namely the execution of deliveries, brings the system to the
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t+2

- Demand mgmt. and tour-planning decisions

D - Tour-planning decisions

. - Customer request?

O - Customer choice ?

Fig. 2. Schematic representation of the stochastic decision process.

=4 customer request

A No customer request

St

Stochastic outcome
Deterministic outcome —»

..... » Tour planning decision

I
[
l
\

Transitions

Fig. 3. Schematic representation of the transitions.

next state Sy, 1. The latter strictly follows the tour-planning deci-
sion ¢>§’+1 in A;, with i = 0 representing the case that the current
requesting customer in t has rejected all offered delivery options.
As we assume deterministic travel times, this transition is purely
deterministic, therefore in state S;,q, ¢, is set to ¢)§’+1 from A;.
This also influences the first state component, because all customer
orders from set C; that are newly loaded onto a vehicle according
to the new tour-plan ¢, are removed from C;. We introduce the
set W(¢,1 | ¢¢) that contains all those customers.

If no customer request is observed in state S;, only tour-
planning decisions are made. The corresponding deterministic
transition of the delivery execution alters the system from state
St to the successor state S, . This is depicted in the lower stream
of Fig. 3.

The transitions of the state components can be formalized as
follows:

¢t+l = ‘P;’H
Ce\ W (@rs1 | Po),

3)
if there is no customer request in t
with probability(1 — quc A (£)), or if
the incoming request ¢; does not turn into
a customer order with probability

Crr1 = ) .ng[
€ u{ah\ if there is a customer request
W (i1 | dr), ¢, that turns into a customer order with
probabilityA, (t) - i0 Pg"[
(4)
Rewards: The SDD-DMTP rewards can also be attributed to

demand-management and tour-planning decisions. The rewards
accrued through the demand-management related transitions are
positive. They are the sum of the contribution margin of the cus-
tomer order c, denoted as ri, and the delivery fee of the chosen de-
livery option ri(g;), determined by the offer set g;. Here ri = rc ap-
plies, for all i # 0, and i = ri(g;) = 0, for all g; € G, if i = 0. The re-
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wards that are induced by the deterministic tour-planning related
transitions are negative. Such rewards are called logistics-related
rewards of a transition from S; to S;,; given a decision q}{ 410 for-
mally denoted as r;,. . The logistics-related rewards equal the sum

t+1
of delivery costs of all tours that start in t + 1 according to action

Ar.

Objective: The objective of solving the SDD-DMTP is to maxi-
mize the overall profit, i.e., to maximize the difference between
the sum of positive rewards and the sum of negative rewards.
Positive rewards are accrued across all decision periods by selling
shopping-baskets and delivery options. Negative rewards equal the
delivery costs accrued across all decision periods. The objective can
be represented by the well-known Bellman equation that captures
the value of being in a given state (Powell et al., 2012). We spec-
ify the Bellman equation for the SDD-DMTP and explicitly integrate
the two interdependent decisions that have to be made:

V(S) = Z)‘Cf (t) - arg max,g Zpi(g) ) [Ti(g)

creC icg
i | i
I +arg maxy o (g +V(Se | Se di)]

+ (1=) Aq(t)) -arg MaXy9 g0

t+1

cieC
(g, +V(Sir1 150 8%) ). (5)

with boundary condition:

V(sr41) = 0. (6)

The first two lines of Eq. (5) reflects the value and decision mak-
ing in cases where a customer request arrives. The last two lines
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reflect the corresponding value and decision making if no customer
request arrives. If a customer request arrives, the provider derives
the demand-management decision by solving arg maxg.;(-). To do
so, the provider needs to consider the value of all delivery options
(including the no-purchase option) i that the current customer
might choose. This is obtained by solving arg max¢)gﬂg¢i+1 (-). If no
customer request arrives, the tour-planning decisions equal those
of i=0.

4. Solution approach

The presented SDD-DMTP is a dynamic stochastic optimization
problem with large state and action spaces. Since solutions have to
be determined in near real-time, it is not possible to solve it to op-
timality. Therefore, we develop a heuristic solution approach which
takes the SDD-DMTP’s two types of decision into account, namely
dynamic demand-management decisions and online tour-planning
decisions. The approach is based on the following consideration: If
the second part of the second line of Eq. (5), i.e.,

(i) o

t+1
was known for all potential customer choice outcomes i¢
g, solving the Bellman Eq. (5) would be simplified tremen-
dously. V/(Si 41) captures the optimal tour-planning decision, i.e.,
arg max " (-), the resulting logistics reward, i.e.,

) 1= arg maxy; e

t+1

e o,
well as the value of the associated successor state, i.e., V(Sq;1 |
St, ¢g+1). Thus, with known V’(Sgﬂ), and if |G| is not large,
Eq. (5) could be solved to optimality by total enumeration across
all ge G (Yang, Strauss, Currie, & Eglese, 2016). In the SDD-DMTP,
we indeed assume |G| to be of tractable size. However, V’(Sgﬂ)
cannot be determined exactly. Thus, we propose a problem-specific
approximation of V’ (S{ +1)» e, an approximation of the optimal
tour-planning decision, the related reward, and the resulting value,
which is carried out every time a customer request arrives and de-
cisions have to be made. As already outlined in the introduction
and schematically depicted in the upper part of Fig. 1, the under-
lying procedure consists of three main components: a multiple sce-
nario approach (see Section 4.1), from which a value approximation
can be derived (see Section 4.2), and that, at the same time, re-
turns anticipatory tour-planning decisions (see Section 4.3).

In the following, we describe each component of the approach
separately, starting with a description of how to generate and solve
scenarios.

4.1. Multiple scenario approach

The sample-scenario value approximation and tour-planning
approach adapts the online tour-planning ideas of Bent & Van Hen-
tenryck (2004) as well as Voccia et al. (2019) and substantially
extends them in order to include demand-management decisions.
The basic idea is to sample scenarios, and then, to solve a deter-
ministic version of the SDD-DMTP (d-SDD-DMTP) for every sce-
nario. The resulting solutions are then used to derive state values
as input for decision making. In this section, we present the newly
developed multiple scenario approach (MSA) in more detail. We
first describe how scenarios are generated. Then, we describe how
to solve these scenarios.

Generation of scenarios: Every time a customer request arrives,
different customer request realizations are sampled into the fu-
ture to generate scenarios. In order to reach the previously de-
scribed goals, i.e., to derive a value approximation for demand-
management decisions and to derive tour-planning decisions, sce-
narios are needed that are state, time, and customer-choice-
specific. Consequently, a scenario w € Q; at time t and for a cer-
tain delivery option i consists of three types of customers: first,
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the confirmed and not yet being delivered customer orders C;; sec-
ond, the current customer request ¢; with assigned deadline ac-
cording to i, i.e., t&“e =t +1(i), if i # 0; third, a sampled realization
of customer requests N®, sampled from t on until the end of a pre-
defined sampling horizon length. For those sampled customer re-
quests, for now we assume a preliminary delivery deadline accord-
ing to the longest available delivery span, t24¢ = £/ + max{l(i) | i
T}. Further, for the sampled customers, we simplify the demand-
management decisions, such that the respective requests can only
be accepted or rejected. This allows us to formulate the d-SDD-
DMTP for each scenario, as a deterministic, profitable multi-trip
vehicle routing problem, as formalized in Appendix C. In the fol-
lowing, we present a specifically tailored heuristic to solve the d-
SDD-DMTP.

Solving scenarios: The d-SDD-DMTP, as presented in Appendix C,
is a profitable multi-trip vehicle routing problem (PVRPMT), and
thus, belongs to the class of NP-hard problems (Chbichib, Mellouli,
& Chabchoub, 2012). Even more, the d-SDD-DMTP has to be solved
for every scenario. Consequently, we cannot solve the presented
MIP for all instances in reasonable time. Instead, we propose a
heuristic approach, which consists of the following three steps:

Relaxation - First, for the moment, we relax explicitly consider-
ing depot returns in the d-SDD-DMTP. The resulting problem is a
profitable single trip vehicle routing problem with time windows
(P-VRPTW) (Toth & Vigo, 2014). A customer request’s arrival time
now forms the start of their delivery time window, while the de-
livery deadline remains unchanged. The trick is that all vehicles
can now start only one tour, but can, theoretically, serve customer
orders that have not yet realized at the time the tour starts. There-
with, we enable to apply standard tour-planning software in the
next step and, thus, ensure practical applicability of our heuristic.

Solving the relaxed problem - Next, we solve the resulting P-
VRPTW heuristically by means of a standard tour-planning soft-
ware (e.g. Google OR Tools). The result is a tour plan with one tour
per vehicle, including confirmed and sampled customer orders.

Feasibility repair - When the tours start, not all sampled cus-
tomer orders have already realized, which is why we have to add
depot returns to the planned tours. Thus, for feasibility, we repair
the respective tours as follows: We interrupt a vehicle’s tour for a
depot return each time a sampled customer order has to be served
of which the request had not yet arrived when the tour started in
the depot. For the same vehicle, a new tour is planned to serve
the original tour’s remaining customers in the same order, until it
has to be interrupted for another depot return. If a depot return
causes a late delivery for a sampled customer, the customer is re-
moved from the tour; yet, if the depot return causes a late delivery
for a confirmed customer, the latest sampled customer is removed
from the tour and, according to vehicle availability, the departure
time is updated to an earlier time. This procedure is repeated un-
til all late deliveries have been removed. If the algorithm does not
find a feasible solution without late deliveries, at the end of the
algorithm, an empty scenario tour plan ¢“ and a scenario value
Ve (S, ;) = —oo is returned. For the original decision problem (5),
this results in not offering the corresponding delivery option i to
the current customer c;. Note that since a tour plan can now com-
prise more than just one tour per vehicle, we add an index k to the
tour notation, i.e., Y% denotes the k" tour of vehicle v. This proce-
dure is more formally presented in Algorithm 1 in Appendix D.

4.2. Value approximation and demand-management decision

The heuristic presented in Section 4.1 is used to solve the d-
SDD-DRMP for scenarios w e Q’t In this way, we generate scenario-
specific tour plans ¢®. Those are anticipatory in the sense that
they anticipate future customer requests. However, the demand
management that was considered for those requests, only com-
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prised accept/reject decisions. In particular, neither did it involve
prices for delivery options and the respective rewards rit, nor were
choice and no-choice probabilities of the sampled customers and
their resulting delivery revenues considered. Thus, in order to de-
termine accurate scenario values, denoted as V”(S{ +1)» these as-
pects have to be captured retrospectively and integrated into the
scenarios’ solutions. In the following, we first give a verbal descrip-
tion of the idea underlying our re-integration of demand manage-
ment. Afterwards, we formalize the respective procedure and show
how to approximate a state value:

Idea underlying the re-integration of demand management: The
main target is to reconstruct demand-management decisions for all
a scenario’s sampled customers in such a way that the same sce-
nario tour plan would result as in the scenario’s d-SDD-DMTP so-
lution. Consequently, for every sampled customer request of such
a solution, it has to be determined which offer sets provoke pur-
chase choices with which the corresponding scenario solution is
feasible. Across those offer sets, the expected contribution for ev-
ery sampled customer is maximized and a close estimation of the
scenario value V® can be determined. More precisely, in order to
derive the best possible estimate, we want to imitate, as closely
as possible, the original demand management of the SDD-DMTP as
the Bellman equation (Eq. (5)) solved it. Therefore, imagine solv-
ing Eq. (5) by hand: in a first step one would intuitively define the
feasible action space by excluding all infeasible decisions from be-
ing considered. For the demand-management decision this means
determining which delivery options can be feasibly offered to the
current customer, i.e., defining the set of feasible offer sets. In a
next step, the offer set with the highest expected sum of imme-
diate reward and successor state value is offered to the requesting
customer. This last step includes making tour-planning decisions.

For re-integrating demand management into a scenario’s solu-
tion ¢®, this previously described procedure is mimicked with two
modifications:

(1) When identifying the offer sets for the accepted, sampled cus-
tomer requests c € N® N {L(OY) : 0% ¢ ¢©} that are feasible
with respect to the scenario’s d-SDD-DMTP solution, all re-
sulting tour-planning decisions have already been determined.
Thus, the specific delivery times for customer orders a’k, are al-
ready defined. Consequently, delivery options are only feasible,
if a% can be matched within the delivery option.

(2) When selecting which offer set to offer, only the expectation
regarding the immediate rewards is considered. Displacement
cost and marginal cost to serve can be neglected.

The second modification can be made without sacrificing accu-
racy because the scenario solution, i.e., the acceptance and delivery
times of all requesting customers in the scenario under consider-
ation, has already been decided. Thus, it does not matter whether
the currently considered customer chooses one of the offered de-
livery options or the no-purchase option. The value that might be
incurred with subsequent customer requests will not change for
this scenario.

Formalization and value approximation: More formally, re-
integrating demand management into a scenario’s solution ¢ can
be described as follows: For every c € N® N {L(6%) : 6 ¢ ¢}, the
procedure determines which delivery options i € Z can feasibly be
offered according to their planned delivery time a’* when follow-
ing ¢“. Next, for each of those customers, a subset G/(¢®) C G de-
fines all offer sets that include only the valid delivery options i. To
approximate the sampled customer’s contribution r; 4o to a sce-

nario’s value Vw(Si +1)» the expected reward across all g e Gl(@®) is
maximized: 1. go = MaXy g (po) YicgP'(g) - (it 4 1), if a customer
order c is being accepted in the scenario’s solution, otherwise
rc P = 0.
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A scenario’s value is then defined as V< (Siﬂ) =2 ceNo Te g —
ré)w. Following this, V/(S{, ;) is approximated by

Zweﬂf ve (S£+1 )
| €2 |
Finally, the SDD-DMTP’s demand-management decision is taken by
substituting (8) in the Bellman equation. That yields the following

demand-management decision policy for when a customer request
arrives:

V'(Sty) = (8)

g =arg max, ;[ Y Pi(g) - [r'(g) + i + V(S )] ). 9)
ieg

Note that the value approximation described above relies on solv-
ing scenarios ex-post, under the assumption that all customer ar-
rivals were known. This could lead to a systematic over-estimation
of the actual value of a state. However, for deciding on which offer
set to present to an incoming customer, this over-estimation is not
a major issue for the reason that when solving Eq. (9), not the ab-
solute level of the values V’(S{H) for i € g is decision-relevant, but
the differences between them. As the potential over-estimation is
systematic, it applies similarly to all those values.

Other approaches that approximate values/costs via heuristi-
cally solving scenarios ex-post in order to derive tour-planning de-
cisions are for example Azi et al. (2012), Campbell & Savelsbergh
(2005), and Angelelli et al. (2021).

4.3. Anticipatory tour planning

Having described how we approximate values to make demand-
management decisions based on tour plans resulting from a sce-
nario’s d-SDD-DMTP solution (in the following referred to as sce-
nario tour plans), we now explain how tour-planning decisions are
derived.

For every potential customer choice i and the corresponding
successor state Siﬂ, a set of scenario tour plans ¢® e Q; with val-
ues \7“’(5; 41) is available from the scenarios’ solutions. These can
be used to derive tour-planning decisions. Typically, in MSAs, at
this point, a consensus function measures the robustness of par-
tials of those tour-plans by evaluating, which partials appear most
frequently among the solutions. Then, from the result, it constructs
a robust overall tour plan, called a distinguished plan (see for ex-
ample in Bent & Van Hentenryck, 2004, Voccia et al.,, 2019). Due
to the large number of stochastic influences in our problem, i.e.,
customer location, request arrival time, and customer choice, the
scenario solutions exhibit high variability. This is why typical con-
sensus functions proved not to perform well in pre-tests. Therefore,
we derive tour-planning decisions from the one sampled tour plan
¢®, which has the highest value V(S ,) of all tour plans in Q.
Note, we are fully aware of and accept that the derived tour plan’s
performance might naturally be lower in entirely different realiza-
tions. The highest value tour plan is selected as distinguished plan
¢* and comprises planned tours 6% for all v € V. The tours of one
vehicle v start sequentially at given start times AY and they con-
tain sampled and confirmed customer orders. Then, in line with
the literature on MSAs, all sampled customer orders are removed
from those tours and the delivery times a¥* of all remaining con-
firmed customer orders c, as well as the return times to the depot,
are updated according to A¥ and relevant 7. This procedure is
more formally described in Algorithm 2 in Appendix E.

An executable tour at state S; +1» derived from the tour-planning
decision ¢* for vehicle v €V is denoted as §*. All 9*7 for v e
V,k € K of ¢* form the tour-planning decision ¢, in t and for all
subsequent t’ until a new customer request arrives. If a new cus-
tomer request arrives, the full decision-making procedure as pre-
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sented in Fig. 1 starts all over again. For the tour-planning deci-
sions that means all tours in ¢, ; that have not already started by
the time of the new customer request, can be revised.

Note that the tour-planning decisions are based on predictions
into the future, which means they consider potential future cus-
tomer requests, potential time-steps in between future customer
arrivals, and, especially, also future vehicle departures. Thus, a
tour-planning decision in t also includes potential future tour-
planning decisions. Accordingly, it is not necessary to revise tour
plans if no customer request arrives in a new decision epoch. In-
stead, in decision epochs in which no customer request arrives, the
provider analyses the latest MSA solution to derive tour-planning
decisions. More precisely, the provider checks whether, for the cur-
rent decision epoch, a new tour was planned to start and if yes,
which customer orders are assigned to it. Then, the tour-planning
decision for the current decision epoch with no customer request
is derived respectively. Consequently, unlike the MDP model of the
SDD-DMTP, the solution approach is not defined across all decision
epochs t in the booking period. Instead, it is event driven, i.e., cus-
tomer request arrival driven.

Regarding the literature discussed in Section 2, our solution ap-
proach falls in the class of non-learning approaches. It uses an in-
formation model internally, i.e., for decision making, in a predictive
matter (Soeffker et al., 2021) and is conducted fully online.

5. Computational study

In this section, we present a computational study on a variety
of parameter settings for which we apply our solution approach in
different variants, e.g., with different lengths of the sampling hori-
zon. Additionally, we solve some benchmark approaches and com-
pare the results. In particular, we assess the effectiveness of our
approach and evaluate the value of anticipation, as well as that of
an explicit price optimization. In Section 5.1, we describe the pa-
rameters of the settings under consideration and explain how in-
stances are generated. In Sections 5.2 and 5.3, we discuss our ex-
tensive computational experiments’ results on the two evaluations,
i.e., of anticipation and of explicit price optimization.

5.1. Setup

The computational study is based on a number of settings that
we examine in a stochastic simulation, applying and comparing
different anticipation and pricing approaches. In Section 5.1.1, we
specify the parameters that are commonly used throughout all
considered settings. In Section 5.1.2, we discuss the parameters
that may vary across settings. In Section 5.1.3, we describe how
we generate instances for each setting within our stochastic
simulation.

5.1.1. Setting-independent parameters

The following parameters are defined identically for all settings
considered in our computational study.

Time horizon and delivery options: The considered time horizon
corresponds to the booking and service course of one day. It is rep-
resented by 900 episodes, which could be thought of as represent-
ing 900 minutes from 7am to 10pm. The booking period consists
of 600 minutes, i.e., it starts at 7am and ends at 5pm. The service
period starts with the first accepted customer order and ends at
10pm, latest. In all settings, offer sets can be generated based on
two possible delivery options, i.e., delivery within 90 minutes or
within 300 minutes.

Customer segments: Customers are defined by a segment af-
filiation, their location, their arrival times, and arrival rates. A
customer’s segment affiliation defines the potential contribution
margins of selected shopping baskets. More precisely, it indicates
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a probability distribution across the potential contribution mar-
gins in connection with a purchase decision. Further, it defines
their utility for different delivery options with different prices.
In our computational study, we assume there are two segments,
distinguishing between segment-one customers and segment-two
customers. The contribution margin of a segment-one customer
is drawn from a uniform distribution over [75, 85, 100] monetary
units (MU). The contribution margin of a segment-two customer is
drawn from a uniform distribution over [20, 35, 40] MU. Addition-
ally, segment-one customers have a higher observable utility for
shorter delivery options than segment-two customers. The basic
observable utilities before pricing u;'mic of segment-one customers
are 22 and 14, and those of segment-two customers are 13 and
10.5 for the short and the long delivery options. To calculate the
observable utility for a delivery option with a certain price u!, the

corresponding basic utility u;'msic is reduced by the offered price

ri, but it cannot be negative, ie., u’ = max{ul . —1'.0}. Also, the
no-purchase option has a utility for customers from both seg-
ments. For segment-one customers, this utility equals 2, while for
segment-two customers it equals 3. This reflects that segment-two
customers are more likely to purchase via a traditional, non-SDD
delivery option or in a brick-and-mortar store.

We model the purchase probabilities for different delivery
options within the offer sets according to a basic attraction model.
Therefore, the purchase probabilities for delivery options i in an

offer set ge G can be calculated by solving Pi(g) = E”—lul (Luce,
ieg

1959).

Service area and customer locations: We simulate the service
area on a squared grid with a width of 120 distance units (DU),
with a centrally located depot. On this grid, we generated 200 cus-
tomer locations from a uniform distribution in advance, which we
will use later on in instance generation. Travelling a DU equals one
minute in the simulation run and costs 0.3 MU. Thus, all potential
customer locations on this grid can be visited within 120 minutes,
i.e,, if vehicle capacity allows, every customer can at least be of-
fered the longer delivery option.

Customer arrivals: In every decision epoch t, customers arrive
according to their individual, time-dependent arrival rates A, (t).
Thereby, decision epochs are sufficiently small that at most one
customer arrives. In practice, these arrival rates can be derived
from historic data. For our computational study, we assume the
following pattern regarding the sum of customer specific arrival
rates (cumulative arrival rate) per decision epoch: We assume two
peaks in the cumulative arrival rate in order to mimic common
online shopping behavior, namely customers placing orders dur-
ing their lunch break or after returning home from work. Further,
we design arrival rates in a way that the cumulative arrival rate
over the lower valued segment-two customers forms lower and
wider peaks than for the higher valued segment-one customers.
This reflects more flexible working conditions with lower income
for segment-two customers and, vice versa, less flexible working
conditions with higher income for segment-one customers. The
distribution of arrival rates is illustratively depicted in Fig. 4.

Pricing approach: We assume two price points per delivery op-
tion: 8 or 10 MU for guaranteed delivery within 90 minutes and
5 or 7 MU for guaranteed delivery within 300 minutes. We also
assume that no delivery option other than the no-purchase option
needs to be offered. These pricing parameters result in nine poten-
tial price lists from which the provider can select one to offer to
an incoming request.

5.1.2. Setting-dependent parameters

The settings we consider differ in terms of the expected num-
ber of incoming customer requests and the number of delivery ve-
hicles. More specifically, we consider settings resulting from each
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Table 3
Setting-dependent parameters.
customer requests
100 150 200
vehicles 1 1v_100 1V_150 1V_200
2 2V_100 2V_150 2V_200
3 3V_100 3V_150 3V_200

possible combination of 100, 150, and 200 expected customer re-
quests with one, two, and three delivery vehicles. The correspond-
ing settings are shown in Table 3.

5.1.3. Instance generation

To ensure comparability, we test our approach and the bench-
mark approaches on the same set of registered customers, which
we refer to as the customer base. More precisely, based on the cus-
tomer segments’ and customer locations’ characteristics described
in Section 5.1.2, we initially generate a customer base of 3000 dif-
ferent customers once. Thirty percent of the customers in this cus-
tomer base are segment-one customers. Then, for each setting, in-
stances basically represent particular demand streams that we ob-
tain by event-based discrete simulation based on the arrival rates
and according to the setting’s expected number of customers. Re-
quests’ characteristics are obtained by sampling from the customer
base. We generate 300 instances for each setting. Note that, again
to ensure comparability, we use the same 300 instances for set-
tings that differ only in the number of delivery vehicles.

5.2. Value of anticipation

In the following, we discuss the value of anticipation for the
SDD-DMTP with respect to the developed approach as presented
in Section 4.

5.2.1. Experimental design and performance metrics

In studying the impact of different levels of anticipation, we ap-
ply different variants of our approach. They differ as to the length
of the sample horizon used for approximating the scenario val-
ues and tour planning (see Section 4). We consider sample hori-
zon lengths of 30, 60, 90, and 120 minutes. Here, we base the
decision making on the anticipation of a total of 15 scenarios, a
number that led to good decisions in the pre-tests we performed.
We sample the scenarios by drawing new customer requests from
the customer base each time a decision has to be taken. Further,
we benchmark our anticipatory approach against myopic decision
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Table 4
Averaged results 1V_100.
look-ahead
myopic 30 60 90 120
# segment 1 customers 5.01 7.14 8.71 9.85 10.67
# segment 2 customers 14.16 12.36 10.53 8.77 7.27
# 90 minutes choice 1.25 1.60 1.44 1.21 1.67
# 300 minute choice 17.92 17.90 17.80 17.41 16.26
average price 90 minutes 8.00 8.49 8.55 8.69 8.78
average price 300 minutes 5.00 5.36 5.45 5.52 5.53
active vehicle minutes 809 760 734 704 686

making. Myopic decisions are taken in exactly the same way as in
the anticipatory approach, except that all potential successor state
values in Eq. (5) are set to 0. Further, the tour-planning decisions
are taken without anticipated customer requests. Thus, in this ap-
proach the demand-management decision is based only on myopic
marginal costs of serving a request.

To measure performance, for each setting and each length of
the sample horizon, we evaluate the deviation from the myopic
benchmark with respect to the following metrics:

Metric Description

Revenue Shopping (RSB) sum of contribution margins of all

Baskets shopping baskets sold in one instance

Revenue Deliveries (RD) sum of delivery fees accrued by selling
delivery options throughout one instance

Delivery Costs (DC) overall cost of delivery operations, i.e., all
executed delivery tours in one instance

Contribution Margin (CM) RSB + RD - DC

Number Of Deliveries  (NOD) number of accepted customer requests

that turned into orders and are being
served in the course of one instance

The deviation of a given metric from the myopic benchmark for
a given setting with a given sample horizon length is determined
as follows: We average the results of the metric across the 300 test
instances of the setting under consideration, and compare them to
the corresponding averaged values resulting from solving the same
300 instances with the myopic benchmark approach. For example,
the deviation of the CM with a sample horizon length of 30 min-
utes from the myopic results is calculated by m%;fw -1
5.2.2. Numerical results

The results we obtained are shown in Fig. 5. On the tested set-
tings, it is possible to achieve an increase in CM of 15 to 50%.
First, the increase grows degressively as the sample horizon length
increases, until it reaches a peak at a sample horizon length of
90 or 120 minutes for most settings. It then slowly decreases for
longer sample horizon lengths, which is displayed in more detail
in Appendix F.1), where we depict the absolute values of the mean
CM across all 300 instances, as well as the corresponding 95%-
confidence intervals. For almost all settings, these intervals of the
myopic approach and the anticipatory approaches do not overlap.
For those settings, this implies with a confidence of 95%, that the
increase in CM results from our anticipation approach. The only
setting in which the increase in CM is smaller than 10% and where
95%-confidence intervals overlap, is the setting with low resource
scarcity, in which the myopic approach also yields good results.
Regarding the degressive course of the CM increase with increas-
ing sample horizon length, pre-tests have shown that using fewer
samples flattens the growth and shifts the peak to a shorter sam-
ple horizon length. This is shown illustratively for setting 1V_100
in Fig. 6. Increasing the sample size does not significantly shift the
peak to a longer sample horizon length. Table 4 shows further nu-
merical results for the 1V_100 setting, namely the average abso-
lute values of customer choices, the segments of customer orders,
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and the average prices paid for delivery options per instance. Here,

50% we observe that as the length of the sampling horizon increases,
the average number of highly valued customer orders accepted in
40% - an instance increases, and correspondingly, the average number of
B ®... low-value customer orders accepted, decreases. Another trend ob-
{:E) 30% 4 et RRLLTT" YA @ served is the increase in the average prices. paid for the delivery
é . .o _Nee_ - spans, as the length of t.he sample hquzon increases. The average
< 20%] @ * v- - Ne———y number of customer choices for the different delivery spans shows
3 - - no obvious pattern. All of these observations are representative of
£ the results in the other instances, as can be seen in Appendix F.2.
E 10% 1 -
8 To track down the demand-management that underlies the pre-
5 viously discussed trends, we further analyze the relationship of
E 0% 1 price lists offered and resulting customer choices, per customer
3 segment. More precisely, for every customer segment, for the my-
-10% \b\;\’ opic and the best anticipatory approach (120 minutes look-ahead),
we compare the partials of the different price lists offered, and the
-20% +— : : : : resulting ratios of customer choices. Again, we analyze the same
30 60 IookgA(r)\ead 120 150 300 instances as before and summarized our results for time in-

tervals of width 50 minutes. The results for setting 1V_100 are
Fig. 6. 1V_100, 5 samples. depicted in Fig. 8. The results for further settings are found in
Appendix F.3. The price lists are represented by their prices with
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the following pattern: the first element represents the price for the
short delivery span, the second element is the price for the long
delivery span, and the third element represents the no-purchase
option with a price equal to OMU in all price lists. If the price of a
delivery span equals 100MU, the resulting choice probability equals
0 for all customer segments.

When comparing the anticipatory results with the myopic ones,
it can be observed that the acceptance rate, i.e., the ratio of cus-
tomer requests that were offered any delivery span for a price
lower than 100MU, decreases over all time intervals for segment
2 customers. In turn, the respective numbers increase for all seg-
ment 1 customers. Further, it can be observed for both customer
segments, that the anticipatory approach accepts less customer re-
quests at the beginning of the booking horizon. Additionally, for
segment 2 customers, i.e., customers with a low valued shopping
basket, the ratio of customer requests being accepted substantially
decreases for certain time intervals. Those time intervals corre-
spond to the time intervals, in which the demand of segment 1
customer rises.

This last observation led to the idea, that our anticipatory
approach could be imitated by a simple rule-based demand-
management policy, if the demand pattern is known. To test this
hypothesis, we derived two rule-based approaches, in which there
is no explicit anticipation. Instead, the rule-based decision mak-
ing is following these demand-management patterns observed in
our anticipatory solutions, i.e., to lower the demand of segment
two customers. Thus, we evaluated the following two simple rules
for demand-management decisions: The first rule (’seg2-high’) is
to only offer the higher prices for each feasible delivery span to
customers with a shopping basket value < 50MU. The second rule
(’seg2-high-critical-t’) is to only offer the higher prices for each
feasible delivery span to customers with a shopping basket value
< 50MU, if they request in certain decision epochs. Those decision
epochs were derived from analyzing the results of our anticipatory
approach and are the intervals [100;250] and [400; 500]. The av-
erage CM that can be observed with these rule based approaches
is depicted in Fig. 7. The respective results for MOD, RSB, RD, and
DC are depicted in Appendix F4. It can be observed, that the two
rule-based approaches yield comparable results as our original my-
opic approach ("OA-myop’) and much worse results than our origi-
nal anticipatory approach ('OA-ant’).

5.2.3. Analysis and insights

According to our observation, the contribution margin that can
be achieved with anticipation is always higher than the contribu-
tion margin of any myopic benchmark. This is mainly due to the
fact that the revenues generated by selling shopping baskets in-
crease and the delivery costs decrease disproportionately to the
decrease in delivery orders. Combined with Table 4, Fig. 8, and Ap-
pendices F.2 and E.3, this shows that anticipation indeed allows us
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to preserve capacity for high-value customer orders, and also to
generally guide customer choice with respect to a favorable spa-
cial structure. Thus, compared to myopic decision making, through
anticipation delivery efficiency can be improved. Further, we ob-
served a degression in the increase of contribution margin with
an increasing sample horizon length. Such degression is explained
by the lengths of the sample horizon becoming longer, and as
this happens, the proportion of uncertainty in decision making in-
creases. Thus, these results indicate that the solutions’ quality de-
creases if the sample horizon is too long or if too few samples are
used. This is because, for every decision, increasing the sampling
horizon length also increases the number of sampled, and hence
uncertain requests, while the number of certain orders does not
increase. Additionally, due to the tight delivery spans that distin-
guish SDD from other last mile logistics services, all certain orders
in the scenarios will be served shortly after the time when the
sampling starts. Hence, sampling into the future too far leads to
decision making based on tours that include only uncertain orders.
This distorts the precision of the value approximation.

5.3. Value of explicit pricing optimization

Here, we elaborate the value of the explicit pricing approach as
described in Section 5.1.1, and compare it with three benchmark
pricing approaches.

5.3.1. Experimental design

To determine the value of (explicitly) using a pricing optimiza-
tion model within our approach, we benchmark three variants. The
first pricing benchmark reflects pure availability control, in which
the provider can only decide whether to offer certain delivery op-
tions or not. Thereby, all prices are set to the corresponding lower
prices from the explicit pricing approach described in Section 5.1.1.
The second pricing approach equals the first, but prices are set
corresponding to the higher prices from the explicit pricing ap-
proach. The third pricing benchmark replaces solving an explicit
pricing optimization problem in our approach by a simple pric-
ing rule based on opportunity cost estimation, which mimics an
idea followed by Ulmer (2020a). If a delivery option’s calculated
opportunity costs are low, its base price (as before the lower price
point used in the explicit pricing optimization) is set. If the oppor-
tunity costs of an option exceed this base price, the price is set
to the opportunity costs. For calculating opportunity cost, Ulmer
(2020a) follows a definition by Yang et al. (2016). They define op-
portunity cost as the difference between the values of the states
that result from rejecting a customer and those from accepting the
customer (for a certain delivery option). In our benchmark study,
we also follow this definition and calculate opportunity cost ac-
cordingly, based on state values resulting from our approximation
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approach (see Section 4.2). We refer to the first benchmark as ‘AC-
BP-low’ (for ‘availability control with low base prices’), to the sec-
ond benchmak as ‘AC-BP-high’ (for ‘availability control with high
base prices’), and to the third as ‘OCBP’ (for ‘opportunity costs
based pricing’). Further, we refer to our explicit pricing approach
as ‘OP’ (for ‘original pricing approach’).

We conduct the study on the same 300 instances for each set-
ting as in Section 5.2.1. We approximate state values, and thus
also the opportunity costs, by averaging the values of 15 samples
across a sample horizon of 120 minutes length. Based on the anal-
ysis in Section 5.2.2, this has proven to be the best combination
for the considered settings. In this way, we minimize the effects
of bad opportunity cost estimation by sub-optimal sampling hori-
zon lengths/number of samples. Again, we measure performance
by evaluating the average of the contribution margins, the number
of accepted customer orders, the sum of revenues from shopping

baskets and from selling delivery options, as well as of the delivery
costs.

5.3.2. Numerical results

The obtained results are given in Fig. 9. Although the results
of the average contribution margins are close, the OP yields bet-
ter results than the benchmark approaches in nearly all settings.
Only in the settings with 200 customers, with two as well as with
three vehicles, does the AC-BP-low yield a higher averaged CM;
however, the results of the OP are exceeded by less than 0.5% and
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0.005%, respectively. In the setting with 100 customers and three
vehicles, the OCBP yields a less than 0.05% higher CM than the OP
(see Fig. 9a). The OCBP, on average, accepts the most customer re-
quests of all settings (see Fig. 9b), but at most settings its average
RSB falls below the other approaches’ RSB. Also, it yields a substan-
tially higher DC for all settings and yields the highest RD in only
three settings, where it does not substantially exceed the RD of the
OP. In most instances the AC-BP-low accepts the lowest number of
customer requests, also with substantially lower RD than the other
approaches, but it still accrues a comparably high RSB. It even ex-
ceeds the other approaches’ RSB in four settings. Also, the AC-BP-
low yields the lowest DC of all instances except one.

5.3.3. Analysis and insights

The results in Section 5.3.2 show that the different pricing ap-
proaches rely on three different levers to increase the CM, and that
each of the various approaches exploits those levers to a different
extent. The levers we observed are (1) increasing the overall rev-
enue by setting higher prices where possible (mainly observed for
the OCBP and the AC-BP-high), (2) increasing the overall revenue
by preserving capacity for high-value customer orders (mainly ob-
served for the BP and AC-BP-low), and (3) reduce overall delivery
costs by steering customer choices toward the most efficient de-
livery options and rejecting those requests that negatively affect
routing efficiency (mainly observed for the AC-BP-low and OP). The
OCBP has the highest pricing flexibility, as prices originate from a
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continuous range instead of being chosen from a predefined, finite
set of price points. Therefore, this approach can exploit lever (1)
the most (see Fig. 9d) and hence can also accept the most cus-
tomer requests. Still, regarding the CM, for most settings the OCBP
performs worse than the other approaches due to exploiting levers
(2) and (3) less effectively. This can be derived from the lower or
under-proportionally higher RSB (see Fig. 9c), and from the over-
proportionally higher DC (9e).

The AC-BP-low and the AC-BP-high, in turn, have the lowest
pricing flexibility. Thus, the AC-BP-low cannot exploit lever (1) as
the much lower RD (Fig. 9d) shows. On the contrary, the AC-BP-
high yields a high RD, but cannot exploit lever (3) and, thus, also
yields substantially higher delivery cost. Generally, the AC-BP-low
is a performant approach regarding the exploitation of levers (2)
and (3). We observed the same for the OP, as well as recognizing
that the OP also exploits lever (1). In addition to exploiting lever
(1), the OP enables us to enlarge the provider’s service provision,
as the OP can offer delivery of customer requests that the AC-BP-
low would deny and the customers can themselves decide whether
to accept or reject the corresponding offer.

6. Conclusion and outlook

In this paper, we investigated the SDD demand-management
and tour-planning problem, with special attention to explicitly
incorporating two types of required decisions, namely demand-
management decisions and tour-planning decisions. The problem
under consideration is characterized by overlapping booking and
service periods. This adds an online tour-planning component to
the demand-management problem, which itself is computationally
intractable. Thus, it makes the overall problem substantially more
difficult to optimize than related problems dealt with in the
literature.

We have developed a non-learning based solution approach
that provides integrated decision making for the two types of de-
cisions and does not require extensive offline learning. In this ap-
proach, both decisions are anticipatory and based on the com-
bination of two central ideas - multiple scenario approaches for
online tour-planning and approximation of state values - which
is done by averaging across sampled trajectories, such as those
known from rollout algorithms.

In the first part of our extensive numerical study, we assessed
how our approach performed at different levels of anticipation. The
assessment showed that anticipation can increase the contribution
margin with as much as 10-50% in our settings, especially if deliv-
ery resources are scarce (in a low ratio of vehicles to customers).
When we incorporated anticipation through sampling, we found
that appropriately limiting the length of the sample-horizon can
improve decision making. The main reason for this is that as the
length of the sample horizon increases, decisions are made with
increasing uncertainty. This is especially relevant for practical set-
tings where booking and service periods overlap, as in the SDD
case. If the sampling horizon is too long, anticipatory decisions are
based on tours that contain only sampled orders and no confirmed
ones.

In the second part of our study, we compared three different
pricing approaches: pure availability control, our proposed explicit
pricing approach, and a simple pricing rule based on opportu-
nity cost. Comparing the different approaches, we found that as
price flexibility increases (from fixed prices to a limited number of
possible price points to possible prices from an unbounded con-
tinuous space), the quality of the resulting tours decreases. This
demonstrates that the integrated state value approximation and
decision-making approach does indeed allow us to steer customer
choice toward efficient delivery options, while at the same time
preserving capacity for high-value customer orders. Compared to
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the other two approaches, this one has the best ratios of number
of customer requests accepted to the corresponding sum of rev-
enues from shopping baskets, and delivery efficiency. Further, we
found the approach that accepts the most customer requests is not
necessarily the best in terms of contribution margin, as it yields
the highest delivery costs. In practice, when choosing a pricing
approach, one has to examine closely which is more relevant for
long-term success — losing a customer’s goodwill due to being re-
jected or due to higher delivery costs.

We believe that our study’s results provide starting points for
future efforts in several directions. The first direction concerns
anticipation in solving integrated demand-management and tour-
planning problems with overlapping booking and service periods.
In future studies, it could be useful to examine hybrid anticipation
approaches that combine learning based and non-learning based
decision making. Thus, a good starting point would be to explore
whether adding a previously learned end-of horizon valuation to
the presented approach would improve its performance. The sec-
ond direction concerns the pricing component of our approach
and the different variations we compared. Our results show that
an increase in price flexibility leads to a decrease in cost effi-
ciency, which is a very interesting direction for deeper analysis, es-
pecially when dealing with continuous explicit price optimization
and more complex customer choice models. The third direction
concerns an entirely different, more revenue management oriented
view. It would be very interesting to further investigate the hierar-
chical demand-management decomposition approach we have de-
veloped. Particularly, we could study how this approach performs
in different environments and for different problems, e.g., with
more complex pricing and choice models, and whether it would
then still be possible to apply it in online algorithms.

Appendix A. Literature reviews addressing integrated demand
management and online tour planning

In this section, we shortly discuss the existing surveys fea-
turing integrated demand management and tour planning in
home-delivery applications in general. We first outline surveys
with a focus to demand management. Then, we discuss the re-
spective literature with a focus on the tour-planning problem. At
last, we review literature that considers both perspectives in an
integrative manner.

Demand-management perspective Agatz, Fleischmann, &
Van Nunen (2008) provide the first review on the distributional
challenges in e-fulfillment, including initial ideas to connect de-
mand management and tour planning. The authors name two
features of e-fulfillment systems that enable demand manage-
ment. Those are pricing flexibility and extensive availability of
data concerning purchasing behavior. In those two features, the
authors see the foundation for segment-specific pricing as well
as promotion. In a later review, Agatz et al. (2013) compare the
demand-management-related processes of a large e-grocer with
those prevalent in airline revenue management and elaborate sim-
ilarities as well as decisive features of both concepts. Therewith,
they provide starting points for incorporating differentiated and/or
dynamic slotting/pricing into home delivery business concepts
with a focus on the demand-management side. The same holds for
Klein et al. (2020) who review recent generalizations and advances
of revenue management techniques in traditional applications and
new industry applications. They show how to transfer availability
control to AHD problem settings and present the corresponding
DP formulation.

Tour-planning perspective — Archetti & Bertazzi (2021) consider
the problems under consideration with a focus on tour-planning
aspects. They review recent advancement and challenges of home
delivery systems. They see pricing as a measure to balance demand
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Table B5

Anticipatory solution approaches for i-DMVRPs in LMD.
Authors Appli-  Anticipatory  Learning Objective oC

cation DM TP based

Asdemir, Jacob, & Krishnan (2009) AHD N X analytical rev DPC
Lebedev, Goulart, & Margellos (2021) AHD v X analytical profit N
Dumouchelle, Frejinger, & Lodi (2021) AHD N X Vv profit -
Koch & Klein (2020) AHD Vv X N profit v
Lang et al. (2021a) AHD VA X N rev DPC
Lang, Cleophas, & Ehmke (2021b) AHD VA X N rev DPC
Lebedev, Margellos, & Goulart (2020) AHD v X v profit -
Ulmer & Thomas (2020) AHD N X V rev -
Yang & Strauss (2017) AHD N X VA profit VA
Vinsensius, Wang, Chew, & Lee (2020) AHD v X Vv cost MCTS
Angelelli et al. (2021) AHD N X X profit v
Campbell & Savelsbergh (2005) AHD VA X X profit v
Giallombardo, Guerriero, & Miglionico (2020) AHD Vv X X profit -
Klein, Mackert, Neugebauer, & Steinhardt (2018)  AHD N X X profit v
Mackert (2019) AHD N X X profit Vv
Strauss, Giilpinar, & Zheng (2021) AHD N X X profit VA
Yang et al. (2016) AHD N X X profit MCTS
Chen et al. (2019) SDD X N Vv accept -
Chen, Wang, Thomas, & Ulmer (2020) SDD X N N accept&fair -
Ulmer (2020b) SDD X Vv v accept -
Ulmer, Mattfeld, & Koster (2018) SDD X N N accept -
Ulmer et al. (2019) SDD X N VA accept -
Azi et al. (2012) SDD X N X profit -
Coté et al. (2021) SDD X N X accept&cost -
Klapp et al. (2018) SDD X Vv X cost&serv -
Klapp et al. (2020) SDD X N X profit -
Voccia et al. (2019) SDD X N X cost -
Prokhorchuk et al. (2019) SDD J X 4 rev&penalty cost ~ DPC
Soeffker et al. (2017) SDD v X N accept&fair -
Ulmer (2020a) SDD v X N rev DPC

among favorable and unfavorable delivery time windows, but do
not further elaborate demand-management measures in particular.
The same is true for the survey by Snoeck et al. (2020). Although
the authors specifically address revenue management in AHD prob-
lem settings, they focus on the influences of potential extensions
and future developments on the tour-planning component only.
Boysen et al. (2021) survey research on home delivery problems
with a focus on newly emerged business concepts and Soeffker
et al. (2021) discuss the related stochastic dynamic vehicle rout-
ing problems (VRPs) and embed them into a prescriptive analytics
framework. Both consider pricing as an essential decision dimen-
sion in existing business concepts that influences stochastic dy-
namic vehicle routing respectively.

Integrated perspective — The most recent and comprehensive sur-
vey of related literature that integrates both of the previously dis-
cussed perspectives, is the survey by Fleckenstein et al. (2022).
The authors provide a generalized problem definition and out-
line AHD and SDD applications, as well as literature on mobility-
on-demand (MOD). They propose a high-level, generic MDP mod-
eling formulation and outline typically involved customer choice
models. Further, they provide a comprehensive survey of gen-
eral solution concepts and describe solution approaches for all
involved subproblems, i.e., demand-management-related subprob-
lems and tour-planning-related subproblems. Another holistic sur-
vey is WaBmuth et al. (2022). The authors review recent literature
dealing with demand management in home delivery on the strate-
gic, tactical and operational level and specifically differentiate be-
tween the two demand-management levers offering and pricing.

Appendix B. Tabular overview of anticipatory solution
approaches for integrated demand management and online
tour planning

Table B.5 summarizes the literature that addresses anticipa-
tory solution approaches for AHD and SDD in home-delivery ap-
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plications, as well as literature that deals with demand manage-
ment for such home delivery applications analytically. The sec-
ond column shows for which applications, i.e., AHD or SDD, a so-
lution approach is designed. In the next two columns, it is in-
dicated whether an approach involves anticipatory demand man-
agement (DM) (/) and/or tour planning (TP) (/) or not (X). The
fourth column shows whether the addressed anticipation is an-
alytical, learning-based (./), or non-learning-based (X). The fifth
column summarizes the objectives addressed by an approach. The
observed objectives are the maximization of revenue (rev), profit
(profit), customer request acceptances (accept), fairness (fair), cov-
erage of the service area (serv), the minimization of cost (cost), or
a (hierarchical) combination of those objectives. Approaches that
aim at minimizing the number of rejected customer requests are
counted as those maximizing customer request acceptances. The
last column shows whether opportunity cost are considered ex-
plicitly and, if so, whether they are considered comprehensively,
accounting for displaced acceptances and variable fulfillment cost
(v/), or whether the displacement of expected revenue (DPC) or
variable fulfillment cost (MCTS) are considered only.

Appendix C. MIP Formulation of the d-SDD-DMTP with
first-tier demand management

The d-SDD-DMTP with accept/reject demand management is a
deterministic profitable multi-trip vehicle routing problem with re-
lease and due times (PVRPRDT). It is defined across nodes for the
already confirmed and not yet being delivered customer orders, a
node representing the current customer request, and nodes for all
sampled customers. Additionally, a node ¢y that represents a cen-
trally located depot with coordinates (x,y)c, = (0,0), is needed.
Thus, the corresponding set of nodes N® equals the following
union: Cr U {c;} UN® U{cq}. For every confirmed customer order
and for the current customer request, this set contains information
about the customer’s location (x,y). and their confirmed delivery
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deadline tdt¢. For every sampled customer request, the set contains information about the customer’s location (x,y)., their request time
t7°9, the reward their requested shopping-basket r. will bring, and their utility ul. for delivery options i € Z. Further, all sampled customers
c € N‘” are assigned a preliminary delivery deadline according to the longest avallable delivery span, td¥¢ =t + max{I(i) | i € Z}. The
underlying idea is that if those customers are included in a scenario’s solution, it is always possible to offer them at least one, namely the
longest, delivery option when their request realizes. This ensures that it is always possible to feasibly reconstruct such a solution with the
actual demand management for value approximation.

In the d-SDD-DMTP, a number V of homogeneous vehicles operates a chronologically ordered number of tours k € K = 1..K. { .- repre-
sents the costs of travelling from the location of customer order c to the location of customer order ¢’. p.» is a customer order individual
penalty which equals the value of the shopping basket for all ¢’ e N¥ and equals a very high number M for all ¢’ € C; U {c¢}. Since C;
only contains customer orders for which a feasible solution (without delays and dropped visits) is available, these penalties ensure that
no confirmed customer order is dropped when solving the model. The parameter t describes the current decision period. The following
decision variables are included in the model:

1 if customer ¢’
is served after

x'c’f,: customer ¢ on Ve, deN®:c#C, veV, kek
tour k by vehicle v
0 else
a’ >t Y e N®, ke K, veV Delivery time at customerlocation ¢’
on tour k of vehicle v
AV >t Vk e K, veV Departure time of tour k of vehicle v
BYk > t Vke K, veV Time of finishing tour k of vehicle v

in the depot
The d-SDD-DMTP can be formulated as the following MIP, which is further explained below:

minY >N N X Lot Y U‘ZZZ"CC’) P (C1)

VeV kek CeN© c'eN® ceNe\{0 VeV kek ceN®
s.t.

Y xk < 1 V' e N\ {co} (c2)

VeV kek CeEN®
A% < ag" YveV, kek (C3)
(Y ak < AV YveV, kek, c e N9\ {co} (C4)

ceN®
ther (1= Y x5y M = a¥ YveV, kek, ¢ e N\ {co} (C.5)

ceN®
a¥+(1-x%).M > a4+ x% T VeV, kek,ce N c e N\ {co} (C.6)
ALY 3 X T < B Yvev, kek (C7)
CeN® c'eN\{co}

Bk < Avk+1 YveV, ke k\[K} (C.8)
>l = >0k YveV, kek, d e N\ {co} (C9)
ceN® ceN®

oY < 1% (C.10)
c’eN®\{co} VeV
Sk < K Yvev (c1)
c’eN®\{co} kek
doxe < 1 YveV, kek (C12)
deN®
Yoo < > Yvev\ {V} (C13)
c’eN®\{0} ceNe\{co}
Yoot < > YveV, ke K\ {K} (C14)
c'eNe\{0} c’eNe\{co}
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The objective function (C.1) minimizes the overall travel costs
and the sum of the penalties of all dropped visits. Dropping a sam-
pled customer in the solution of the MIP means rejecting their
request. Therefore, (C.1) balances the increase in travel costs for
visiting a sampled customer and their shopping basket value - if
marginal costs to serve and displacement costs are higher than
a customer’s shopping basket value, this customer request is re-
jected. Constraints (C.2) enable dropping visits/rejection of cus-
tomer requests. Thus, in combination with the objective func-
tion, this represents the first-tier demand management. Constraints
(C.3)-(C.8) are time restrictions, which ensure that a tour starts
neither before t, nor before all allocated customer orders have real-
ized, that all customer orders will be served on time, that the du-
ration of a tour is the sum of all travel times of that tour, and that
a vehicle can only start a new tour after having returned to the de-
pot. Constraints (C.9) ensure flow conservation. Constraints (C.10)-
(C12) ensure that the number of available vehicles and the max-
imum number of tours are not exceeded. Constraints (C.13) and
(C.14) are symmetry breaking constraints.

This MIP formulation is a generalization of a profitable multi-
trip vehicle routing problem (PVRPMT), which additionally consid-
ers time restrictions. It is an adaption of the PVRPMT formula-
tion of Chbichib et al. (2012) and of a multi-trip team orienteering
problem with time windows formulation by Voccia et al. (2019).

Appendix D. Feasibility repair

Algorithm 1 Feasibility repair scenarios.

1: ¢ < Heuristic solution of P-VRPTW
: 0V(¢) < tour of vehicle v according tosolution ¢
: a¥ < Delivery time of customer ¢ with vehicle v according
to solution ¢
: for vin v do
initialize first tour 6! by adding depot ¢ = 0 and customer or-
der ¢ with smallest a¥ according to 6V(¢)

6:  calculate current departure time: AV " « a¥ — 7o
7: Qv next . gul

8: ¢ v <« ev next

9:  repeat

10: 91/ curr «— 91/ next

11: AU curr <« AV next

12: LBV vy« {}

13: XV )y « {}
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15:

16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

31:

32
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add not yet planned customer orders c of 0V(¢) to L(6Y ')
with increasing a? until ¢/ > AY %7 and amend X (6" ®) accord-
ingly
cut tour by adding depot return and calculate return time
Bv prev
91} curr «— (AI/ CUTT’ L(el/ CUTT)’X(QI/ curr))
append 6Y ' to ¢
initialize next tour ¥ " by adding depot c =0
add not yet planned customer order ¢ with next smallest a¥
according to 6(¢)
calculate latest
Tocs BY prev}
until all customer orders c in #Y(¢) are planned to tours
for tour in ¢V do
update all a? " according to AV " and travel times 7.
if a? tour > tdve for any sampled customer order ¢ in §? o

departure time: A" " <« max{a’ —

then
remove ¢ from Y " and update all left a? " according
to A " and travel times T,
if a? tour > tdve for any confirmed customer order ¢ in Y o
then
repeat
remove sampled customer order ¢ with highest t*¢
update AVt according to vehicle availability
update all left a¥ " according to AY " and travel
times T,
until there are no longer any late deliveries

<~ {@pV:veV}

Appendix E. Tour-planning decision and post-processing

Algorithm 2 Tour-planning decision and post-processing.

1:

L X NI AN

i < customer choice
St.1 < regarding successor state
. PF < arg maxww:wegi}vw(gﬂ)
: forveVdo
for k € K do
Remove all sampled customers c € 6%
for remaining customers c € 8% do
Update a% according to A¥* and travel and service

times T
. e*vk «— euk
c ot — {0 v eV, kek)
D < @
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Appendix F. Basic setting - Further numerical results

F1. Mean contribution margins - Boxplots and confidence intervals
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Fig. F1. Mean contribution margins across 300 simulation runs: Boxplots and 95%-confidence intervals.
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F2. Averaged results on customer segments, purchase choice, and
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F3. Offers and choices per customer segment
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Fig. F2. Offers and choices per customer segment - myopic and anticipatory - 1V_150.
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F4. Rule-based benchmark results
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