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a b s t r a c t 

For providers to stay competitive in a context of continued growth in e-retail sales and increasing cus- 

tomer expectations, same-day delivery options have become very important. Typically, with same-day 

delivery, customers purchase online and expect to receive their ordered goods within a narrow deliv- 

ery time span. Providers thus experience substantial operational challenges to run profitable tours and 

generate sufficiently high contribution margins to cover overhead costs. We address these challenges by 

combining a demand-management approach with an online tour-planning approach for same-day deliv- 

ery. More precisely, in order to reserve capacity for high-value customer orders and to guide customer 

choices toward efficient delivery operations, we propose a demand-management approach that explicitly 

optimizes the combination of delivery spans and prices which are presented to each incoming customer 

request. The approach includes an anticipatory sample-scenario based value approximation, which in- 

corporates a direct online tour-planning heuristic. It does not require extensive offline learning and is 

scalable to realistically sized instances with multiple vehicles. In a comprehensive computational study, 

we show that our anticipatory approach can improve the contribution margin by up to 50% compared 

to a myopic benchmark approach. We also show that solving an explicit pricing optimization problem is 

a beneficial component of our approach. More precisely, it outperforms both a pure availability control 

and a simple pricing rule based on opportunity costs. The latter idea is one used in other approaches for 

related dynamic pricing problems dealt with in the literature. 

© 2022 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

From 2014 to 2019, global retail e-commerce sales nearly 

ripled, and they are forecast to nearly double over the next few 

ears to reach an expected USD 7.4 trillion in sales volume by 2025 

 eMarketer, 2022 ). Many e-retail providers started out by offering 

ame-day delivery (SDD), meaning that customers could shop on- 

ine and receive the ordered goods on the very same day, typi- 

ally within the next few hours, depending on the provider. For 

ustomers, such fast delivery brings instant gratification similar to 

hopping in brick-and-mortar stores, with the added convenience 

f online shopping. For this reason, the majority of customers are 

illing to pay higher fees for faster delivery ( McKinsey & Com- 

any, 2016; PwC, 2018 ). However, despite high demand and the 

ustomers’ willingness to pay more for faster delivery, many SDD- 
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roviders went out of service or shifted their service portfolio to- 

ard different business segments. This is because with SDD, they 

ere not able to maintain profitable delivery operations and were 

ot able to achieve sufficiently high overall contribution margins 

o cover their overhead costs. Thus, e-retail providers need to im- 

rove the profitability of their delivery operations in order to live 

p to increasing customer expectations regarding delivery speed. 

Known from related fields of research regarding home delivery, 

here is two measures to increase the respective profitability. 

hose are (1) optimizing tour planning and (2) optimizing demand 

anagement. With the latter, it is possible to avoid unfavorable 

equests without loosing customer goodwill by making informed 

ecisions on which delivery options and prices to offer each 

ustomer. This additionally holds potential to further improve tour 

lanning with regard to profitability. Both measures have success- 

ully been applied to related fields of research. The most related 

f those fields is attended home delivery (AHD), where customers 

ave to be present when their goods are delivered. However, 

rom a theoretical point of view, both measures, i.e., demand 
nder the CC BY-NC-ND license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Overview of the interaction of the considered business process, the respective MDP model, and our proposed solution approach. 
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anagement as well as tour planning, are substantially more 

ifficult to optimize for SDD than for the broadly investigated AHD 

roblems. This is due to the overlap of booking and service peri- 

ds in SDD, which is typically not assumed for AHD. This overlap 

auses the necessity of closely integrating both previously named 

ptimization measures with each other, with the additional re- 

uirement for the tour-planning optimization to be conducted 

nline. More precisely, contrary to AHD, with SDD, not only the 

ecision on which delivery options to offer at which prices must 

e made online, but also the decision on which orders to allocate 

o which tours and when to start each. Additionally, with SDD, 

oth decisions have to be made under anticipation of potential 

uture decisions. However, in the related literature, there only exist 

orks that tackle the SDD problem in an anticipatory manner 

ither with regard to optimizing the demand management, or 

ith regard to optimizing the online tour planning. To the best of 

ur knowledge, there is no approach that explicitly incorporates 

nticipation holistically for both components. 

In this paper, we consider an SDD problem setting and 

pproach increasing its profitability by holistically optimizing 

emand management and tour planning in an integrated manner. 

e thus refer to the problem under consideration as the SDD 

emand-management and tour-planning problem (SDD-DMTP). In 

articular, we approach such an SDD-DMTP from the perspective of 

ome typical middle sized e-retailer offering the delivery of goods 

t the same day to a registered pool of customers in an urban area

ith a small number of delivery vehicles. We aim to make the 

oncept of SDD profitable and to improve provider services and 

hus customer satisfaction. We do so by exploiting two demand- 

anagement levers, namely reserving more capacity for higher 

alued customers and guiding the stochastic customer choice to- 

ard efficient delivery options. Simultaneously, we improve online 

our planning. Methodologically, we model the problem holistically 

s Markov decision process (MDP) and present a forward approxi- 

ate dynamic programming (ADP) optimization approach ( Powell, 

imao, & Bouzaiene-Ayari, 2012 ) for its solution. Within the ADP 

pproach, we combine ideas of multiple scenario approaches for 

nline tour planning with the ideas of value approximation via 

ampled trajectories, such as those known from rollout algo- 

ithms/Monte Carlo methods (see for example Sutton & Barto, 

018 ). Fig. 1 shows the interaction of our proposed optimization 

pproach with the SDD booking and service process of an e- 

etailer (in the following referred to as provider ). The lower stream 

hows the actual business process of the provider, and the upper 

tream shows the main components of our solution approach and 

heir temporal correspondence. In the following, we describe the 

nteraction of our solution approach with the business process. 

hereby, we do not assume that the individual components are 

lready known and, thus, only provide a high-level overview, 

ollowing the numbering within the figure: (1) A customer logs 

n to the website with information about their location and de- 

ivery preferences stored in the profile and chooses a shopping 
861 
asket online while expecting a selection of narrow delivery time 

pans to be offered at affordable prices. This initiates a delivery 

equest in response to which the provider has to make a demand- 

anagement decision. Therefore, simultaneously to the customer’s 

ogin, (2) the provider samples different customer request trajec- 

ories and conducts tentative tour-planning optimization, called 

ultiple scenario approach. From the solution of the multiple sce- 

ario approach, a value approximation can be conducted, which is 

hen the input for an anticipatory demand-management decision 

3). More precisely, based on the approximated value, the provider 

erives anticipatory decisions on which delivery time spans to 

ffer the current customer and at what prices. (4) As a result, the 

ustomer chooses one of the options offered or leaves the website 

ithout purchasing, following their own individual preferences. If 

he customer chooses to purchase, the delivery request becomes 

 confirmed customer order with a delivery deadline and (5) the 

our planning is updated on the basis of the previously sampled 

rajectories. (6) To enable prompt delivery, the execution of de- 

iveries might start/continue immediately, even though further 

ustomer requests could arrive. (7) When a new customer request 

rrives, the whole process starts over again. Note, as typical in the 

elated literature, we assume that customers log-in to the website 

ne-by-one. 

The contribution of this paper is threefold and regards MDP 

odeling , solution approach , and practical application as described 

n the following: 

• MDP modeling – We contribute to the literature on modeling 

MDPs for SDD applications by being the first to explicitly for- 

malize the interaction between two co-dependent types of de- 

cisions, i.e., the demand-management and tour-planning deci- 

sions, in a specifically adapted Bellman function. 
• Solution approach – As the main contribution of our work we 

propose a holistic anticipatory solution approach to the inte- 

grated demand-management and online tour-planning problem, 

which does not require extensive offline learning, and guaran- 

tees applicability and scalability to realistically sized problem 

instances. 
• Practical application – In a comprehensive computational study, 

we derive substantial contributions regarding the practical ap- 

plication of the SDD-DMTP. First, we derive a potential of 

increasing the contribution margin by anticipation in deci- 

sion making within our approach of up to 50% and elabo- 

rate cases in which anticipation is particularly valuable. There- 

with, we give a differentiated insight into the problem. Sec- 

ond, we benchmark our approach in relation to other demand- 

management and pricing approaches, adopting ideas from the 

existing literature. We show how explicit price optimization in- 

creases the contribution margin compared to the benchmarks, 

and discuss how the different approaches affect the solution 

structure. Generally, the results give a strong indication that our 

new approach can deliver decision support that helps to finally 
make SDD applications profitable in practice. 
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Table 1 

Surveys that feature related problems. 

Authors Application Perspective Concepts Models Approaches 

Agatz, Campbell, Fleischmann, Van Nunen, & Savelsbergh (2013) AHD DM 

√ 

✗ 
√ 

Archetti & Bertazzi (2021) G VRP 
√ 

✗ 
√ 

Boysen, Fedtke, & Schwerdfeger (2021) G VRP 
√ 

✗ ✗ 

Fleckenstein, Klein, & Steinhardt (2022) G i-DMVRPs 
√ √ √ 

Klein, Koch, Steinhardt, & Strauss (2020) G DM 

√ √ √ 

Snoeck, Merchan, & Winkenbach (2020) AHD VRP 
√ 

✗ ✗ 

Soeffker, Ulmer, & Mattfeld (2021) G VRP 
√ √ √ 

Waßmuth, Köhler, Agatz, & Fleischmann (2022) G i-DMVRPs 
√ 

✗ 
√ 
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he remainder of the paper is organized as follows. In Section 2 , 

e review the literature of related research streams. In Section 3 , 

e model the problem as MDP with two integrated decisions. 

hen, in Section 4 , we present our solution approach, which is sub- 

equently evaluated in a numerical study. We discuss the results 

n Section 5 , and in Section 6 summarize them, also giving the in-

ights that emerged, as well as future research directions. 

. Literature review 

In this section, we examine the existing literature related to 

DD-DMTPs. In Section 2.1 , we start with a short overview of ex- 

sting surveys, that generally address related demand-management 

nd tour-planning problems. Then, in Section 2.2 , existing solution 

pproaches for operational decision making in SDD-DMTP problem 

ettings are analyzed. Note that we omit a detailed discussion of 

xisting solution approaches for related AHD problem settings, be- 

ause, as stated earlier, the overlap of the booking and service 

orizons in SDD yields substantially different challenges since it 

ncorporates an online tour-planning component. Nevertheless, in 

ppendix B , we provide a list of recent solution approaches of re- 

ated AHD literature. We conclude the discussion of the related lit- 

rature by summarizing the identified research gaps in Section 2.3 . 

.1. Surveys on integrated demand management and tour planning 

In this section, we provide a brief overview of the existing 

urveys featuring integrated demand management and tour plan- 

ing in home-delivery applications in general. We list the respec- 

ive works in Table 1 and show whether AHD is considered in 

articular, or if general concepts are addressed (G). There is no 

urvey that specifically addresses SDD literature. Further, Table 

 summarizes whether the authors focus on a specific compo- 

ent, i.e., the demand-management component (DM) or the tour- 

lanning component (VRP), or consider the integrated demand- 

anagement and tour-planning problem (i-DMVRP) holistically. 

dditionally, Table 1 gives an overview of whether the respective 

urvey addresses business concepts, mathematical models, and/or 

olution approaches. The reader is referred to Appendix A for a 

ummary of the key insights of each of the listed surveys. 

.2. Solution approaches for the SDD-DMTP 

Here, we describe existing solution approaches for the SDD- 

MTP with a focus to anticipatory approaches. We structure our 

laboration by first discussing research that involves learning- 

ased anticipation (see Section 2.2.1 ). Next, we discuss research 

hat involves non-learning-based anticipation (see Section 2.2.2 ). 

n each of these sections, we start by briefly discussing the 

ost related research on pure online tour-planning approaches 

o show how the discussed integrated approaches evolve from 

hem. Integrated approaches exceed basic feasibility control by (at 

east) allowing feasible customer requests to be rejected if the 
862 
xpected contribution to the objective is negative ( Fleckenstein, 

lein, & Steinhardt, 2022 ). Further, our discussion is structured 

long groups of publications that follow comparable ideas. For each 

roup, we first describe the approaches and then highlight what 

istinguishes our approach from the presented works. 

.2.1. Learning-based approaches 

Pure online tour-planning : Learning-based approaches aim to 

earn accurate value function approximations (VFAs) either offline, 

y simulation in upstream learning phases, or online. To solve 

tochastic dynamic VRPs with unknown requests, VFAs are typi- 

ally applied to derive tour-planning/routing decisions. Recent pub- 

ications on solving stochastic dynamic VRPs with stochastic cus- 

omer requests as considered in our problem are Ulmer (2017) and 

lmer (2019) . These works present a variety of VFA approaches to 

ake tour-planning decisions that will match as many customer 

equests as possible. In all approaches, the VFA is learned offline by 

 large number of simulation runs. The learned VFA can be applied 

o assess post-decision values in an online decision period in or- 

er to make good tour-planning decisions. Hildebrandt, Thomas, & 

lmer (2021) summarize solution frameworks for solving stochas- 

ic dynamic VRPs that originate from different research streams, 

amely computer science and operations research . They propose a 

igh-level concept on how to combine those frameworks to build 

 reinforcement learning-based solution framework. 

Integrated approaches : Ulmer, Goodson, Mattfeld, & Hennig 

2019) combine an offline VFA with a simulation-based online roll- 

ut algorithm to solve a dynamic VRP with stochastic service re- 

uests for a single vehicle. They present an offline learned, dy- 

amic look-up table which is generated by approximate value iter- 

tion using temporal information. When this look-up table is used 

or online decision making, it is combined with a simulation-based 

nline rollout algorithm considering spatial information of poten- 

ial post-decision states. In contrast to our approach, their demand- 

anagement decision results from the optimized tour-planning, 

ut is not actively steered nor anticipated. Additionally, we con- 

ider multiple vehicles with multiple tours, and offer multiple de- 

ivery options to incoming customer requests. This results in very 

arge state and action spaces, even if a state space aggregation is 

pplied. Therefore, generally, look-up table based approaches can- 

ot be implemented efficiently for the setting we consider. 

In a different set of publications, researchers consider a 

ricing component within their integrated approaches. Ulmer 

2020a) solves a dynamic routing and pricing problem for SDD by 

eveloping an anticipatory pricing and routing policy that is based 

n a sophisticated VFA approach and upstream policy learning. He 

s the first to present a VFA approach for a fleet of vehicles, which 

e does by separating the value function with regard to different 

ehicles. He includes the tour-plans of the vehicles in the state 

efinition. To solve the pricing problem, the author relies on an 

pportunity cost estimate for different delivery options from com- 

aring approximated state values. If the opportunity costs are low, 

he corresponding delivery options are offered for budget prices 
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erived from the upstream policy learning. Those prices represent 

he typical base prices of the delivery options. Only in cases where 

he opportunity cost estimate exceeds the budget price, are the 

orresponding delivery options priced differently, setting prices 

o equal the opportunity costs. Therefore, this procedure ensures 

hat only requests with a non-negative contribution to the overall 

bjective are accepted. The routing aspect of the problem is solved 

y a simple, non-anticipatory insertion heuristic. 

In the same set of publications, Prokhorchuk, Dauwels, & Jaillet 

2019) introduce a stochastic dynamic pricing and routing prob- 

em for SDD with stochastic travel times. They also base decision 

aking on the approximation of opportunity costs and amend the 

pproach of Ulmer (2020a) by stochastic travel times, a different 

outing heuristic that accounts for stochastic travel times, and by 

sing standard VFA procedures. 

Our work differs decisively from the above-mentioned two 

ecision-making approaches. In both, the authors construct a VFA 

round the post-decision state that is derived from myopic tour 

lanning, i.e., from cheapest insertion algorithms. They approx- 

mate the corresponding value, and thus the opportunity cost, 

y anticipating customer orders that can be accepted. Note that 

he proposed learning based approaches rely on the use of base 

rices in their anticipation, which is a pre-requisite for this VFA 

cf. Ulmer, 2020a ). However, in contrast, we aim to integrate ex- 

licit anticipation in both tour planning and price optimization. 

ore precisely, our tour-planning approach substantially differs 

rom theirs, as we apply anticipatory replanning for every new cus- 

omer order. Regarding the price optimization, we solve a choice- 

ased pricing optimization problem with discrete, predefined price 

oints and we aim to apply this optimization for anticipation in 

earning a state value as well, instead of relying on base prices. We 

ropose a non-learning-based value approximation approach that 

ncorporates a number of novel, problem-specific ideas. 

.2.2. Non-learning-based approaches 

Here, we discuss non-learning-based solution approaches for 

tochastic dynamic VRPs with stochastic requests. 

Pure online tour planning : Bent & Van Hentenryck (2004) in- 

roduce a multiple scenario approach to take tour-planning deci- 

ions in dynamic VRPs with stochastic customer requests. They aim 

o maximize the number of accepted customer requests by con- 

tantly generating multiple tour plans based on sampled customer 

equests. From those tour plans, a distinguished tour plan is cho- 

en, repaired for feasibility, and frequently updated. It serves as in- 

ut for taking decisions on which customers will be served next 

nd by which vehicle. In Bent & Van Hentenryck (2007) , the au- 

hors enhance the previous approach by including waiting and re- 

ocating strategies. With this approach, not only routing decisions, 

.g., a vehicle’s next destination, but also dispatching decisions, i.e., 

hich orders to allocate to one tour, are taken. 

Integrated approaches : Among the considered integrated, non- 

earning-based approaches, the most relevant group of papers is 

ased on the idea of the multiple scenario approach by Bent 

 Van Hentenryck (2004) , as described above. Azi, Gendreau, & 

otvin (2012) introduce an initial demand-management approach 

o a dynamic VRP with stochastic requests and non-disjoint book- 

ng and service horizons. They consider a profit maximization 

roblem in determining which requests to accept and which to re- 

ect. To solve the routing problem, they apply an adaptive large 

eighborhood search to scenarios that, like the ones in Bent & 

an Hentenryck (2004) , include already accepted customer orders 

nd sampled customer requests. What is new about their approach 

s that they then compare scenario solutions with and without 

he current customer request and define the difference in solution 

uality as a scenario-specific opportunity value . If the sum of all 

cenario-specific opportunity values is positive, they accept the re- 
863 
uest. This approach delivers an estimate of whether or not the 

cceptance of a customer request yields a positive contribution to 

he overall objective, taking potential future developments into ac- 

ount. 

Voccia, Campbell, & Thomas (2019) also adapt the ideas from 

ent & Van Hentenryck (2004) and Bent & Van Hentenryck (2007) . 

hey aim to maximize the number of feasibly inserted customer 

equests for a stochastic dynamic VRP with time windows and 

tochastic requests. The customer requests that are not inserted 

n a feasible solution are outsourced to a third party logistics 

rovider, which comes with a penalty cost per order. Their ap- 

roach yields comprehensive tour-planning decisions including the 

et of orders allocated, vehicle assignment, as well as a schedule 

or each tour. Like Bent & Van Hentenryck (2007) , they consider 

uture, not yet realized customer requests by applying a sample- 

cenario approach. Thereby, they solve a multi-trip team orienteer- 

ng problem with a standard implementation of a variable neigh- 

orhood search. Afterwards, the scenario solutions are used to con- 

truct anticipatory tour plans. Compared to Bent & Van Hentenryck 

2007) , they apply an enhanced consensus function that chooses 

artial plans according to their appearance frequency in the sce- 

ario solutions. Also, they include waiting strategies to improve 

he anticipatory quality of their solutions. Côté, de Queiroz, Gallesi, 

 Iori (2021) build on the approach by Voccia et al. (2019) and 

mend it by a regret heuristic, a different consensus function, and 

 specifically tailored branch-and-regret method. Further, they also 

onsider settings in which pre-emptive depot returns are allowed. 

Regarding the setting and the solution approach this set of pub- 

ications is related to our work; however, the decisive difference 

s that they do not consider explicit demand management, i.e., 

hich customers are served is a result of a pure tour-planning op- 

imization. Compared to tour-planning problems without explicit 

emand management, for solving our problem it is critical to have 

 very accurate value approximation. This is needed to determine 

rofitable prices across a relatively small set of close price points. 

t the same time, we need an online tour-planning approach. 

herefore, we combine the ideas of multiple-scenario approaches 

or online tour-planning with a basic idea known from rollout algo- 

ithms, namely approximating the value of a decision by averaging 

he values of heuristic solutions of sampled trajectories ( Soeffker 

t al. (2021) ). More precisely, we extend the approach of Voccia 

t al. (2019) by incorporating a sophisticated demand-management 

pproach that anticipates demand management in scenario solu- 

ions for value approximations. Finally we need to point out that 

here is another research stream dealing with SDD problems con- 

idering integrated approaches for SDD, but in this context nei- 

her the setting nor the approach is as closely related to our prob- 

em as those previously mentioned. Respective works are Klapp, 

rera, & Toriello (2018) , Klapp, Erera, & Toriello (2020) , Chen, Ul- 

er, & Thomas (2019) , and Soeffker, Ulmer, & Mattfeld (2017) . Fur- 

her, please note that there are other research streams in the SDD 

ommunity that consider a variety of research questions which we 

isregarded here. For a review of respective fields of research, the 

nterested reader is referred to Boysen et al. (2021) . 

.3. Research gaps concerning the literature on MDP modeling and 

olution approaches regarding the SDD-DMTP 

From a comprehensive analysis of the existing literature on re- 

ated problems as summarized in Appendix B , the following re- 

earch gaps can be conducted with regard to MDP modeling and 

olution approach : 

• MDP modeling – There is no MDP model neither for SDD 

problem settings nor for AHD problem settings which ex- 
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Table 2 

Potential offer-sets. 

prices of delivery options choice probabilities 

g i = 1 i = 2 P 0 P 1 P 2 �

1 r 12 r 22 0.2 0.4 0.4 1 

2 r 12 r 21 0.3 0.4 0.3 1 

3 r 12 not offered 0.4 0.6 0.0 1 

4 r 11 r 22 0.3 0.2 0.5 1 

5 r 11 r 21 0.4 0.2 0.4 1 

6 r 11 not offered 0.6 0.4 0.0 1 

7 not offered r 22 0.3 0.0 0.7 1 

8 not offered r 21 0.5 0.0 0.5 1 

9 not offered not offered 1 0.0 0.0 1 

p
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(

fi
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plicitly accounts for the simultaneous integration of demand- 

management and tour-planning decisions. 
• Solution approach – While there is a wide range of solution ap- 

proaches that tackle AHD problem settings, the existing solu- 

tion approaches for SDD are not sufficiently holistic and evolved 

to integrate anticipation in demand management and tour plan- 

ning at the same time. Further, literature proposing approaches 

that aim at profit optimization and thereby consider revenue 

and cost at the same time, is scarce for SDD. 

Further, the following insights can be derived: Among the 

pproaches that address anticipatory tour planning of which 

emand-management decisions are an implicit result, there exist 

earning-based and non-learning-based approaches. Among the ap- 

roaches that apply explicit anticipatory demand management but 

ase that on myopic tour planning, there are only learning-based 

pproaches. In the following, we close the identified research gaps 

y presenting a holistic MDP model, and by proposing a solution 

pproach, which involves anticipation for the tour-planning op- 

imization and the demand-management optimization simultane- 

usly. The proposed approach is a non-learning based approach. In 

he following, we start by introducing the holistic MDP model for 

he SDD-DMTP. 

. Problem statement 

In Section 3.1 , we introduce the SDD-DMTP in detail and state 

ur assumptions. In Section 3.2 , we formalize it in a holistic MDP 

odel formulation. 

.1. Problem description 

The SDD-DMTP comprises two types of decisions, namely 

emand-management decisions and tour-planning decisions . 

emand-management decisions have to be made for every 

ustomer arrival and comprise the decisions on which delivery 

ptions to offer each particular customer at which prices. The 

ombination of a subset of delivery options with fixed prices 

s termed an offer-set . Every offer-set gives different customer 

hoice probabilities according to which customers choose a delivery 

ption, thus-either turning the request into a confirmed customer 

rder or choosing to leave the system without purchasing any- 

hing. All confirmed customer orders have to be served by the 

rovider’s delivery operations . Therefore, the provider continu- 

usly takes tour-planning decisions and executes them, while the 

ooking period is still running. Below, we describe the relevant 

omponents of the SDD-DMTP in detail: 

Customer arrivals : Customer requests c can arrive at random 

imes t within a pre-defined booking period with arrival rate λ. 
he arriving customers log in to the provider’s website with reg- 

stered profiles and fill their shopping basket. For every incoming 

ustomer request, the provider then knows the corresponding lo- 

ation (x, y ) c , as well as the shopping basket’s potential value r c . 

Delivery options : Delivery options are predefined nested time 

pans in which the provider commits to deliver. The set of deliv- 

ry options could, for example, comprise delivery within the next 

0 minutes or within the next 300 minutes. Delivery options are 

eferred to with indices in ascending order, so that the length of 

he delivery option with index i , denoted as l(i ) , is shorter than

he length of delivery option i ′ , denoted as l(i ′ ) , if i < i ′ . The corre-
ponding index set is denoted by I . 

Offer sets : Considering all delivery options, the provider decides 

n a subset to offer in response to an incoming customer request. 

n doing so, the provider also selects a price for each delivery 

ption, either from predefined price points or from a continu- 

us (potentially limited) price range. In defining offer sets, the 
864 
rovider has to take the following restrictions into consideration: 

1) Within an offer set, each delivery option can appear only once. 

2) Since a customer can always decide not to make a purchase, a 

ctive delivery option that represents a no-purchase option has to 

e included in every offer set. It is priced at zero and is referred 

o by index i = 0 . (3) To ensure pricing consistency, the prices of

eliveries with longer time spans can never exceed the prices of 

hose with shorter spans. An offer set is denoted by g and the set 

f all offer sets by G. It is either finite, if potential prices originate
rom a finite set, or infinite, if potential prices originate from a 

ontinuous range. 

Customer choice probabilities : The utility u i that an arriving 

ustomer experiences when choosing a certain delivery option i 

t a certain price r i consists of an observable and an unobservable 

omponent. The deterministic (i.e. observable) component can be 

alculated and is influenced by the length of the delivery option 

nd its price. The unobservable component can be drawn from a 

ertain probability distribution and is represented here by ε i . The 

hoice probability with which a customer chooses a delivery option 

 from a set of offered options g is P i (g) = P (u i ≥ max { u i : i ∈ g} ) .
t is calculated differently for different random utility models 

hich usually differ regarding the assumptions underpinning the 

istribution of the random component ε i (see Talluri & Van Ryzin 

2006) for more on random utility models). Table 2 illustratively 

hows a set of offer-sets G with |G| = 9 . Every g ∈ G is depicted

n a row with artificial purchase probabilities. In the example, 

here are two different delivery options { 1 , 2 } with l(1) < l(2) ,

nd two potential prices r i 1 , r i 2 each, with r 11 > r 12 > r 21 > r 22 .

he no-purchase probability is denoted as P 0 . 

Delivery operations : If a customer chooses an option other than 

he no-purchase option, their request c turns into a customer order 

. A customer order is assigned a delivery deadline t due c that is cal- 

ulated from its request time t 
req 
c and the length l(i ) of the chosen

elivery option i , i.e., t due c = t 
req 
c + l(i ) . Since the delivery deadlines

re typically narrow in SDD, the service period in which customer 

rders are being served starts with, or shortly after, the first re- 

lized customer order and ends when the last customer order of 

 day has been served. Hence, a particularity of SDD is that the 

ooking and service periods overlap ( Fleckenstein et al., 2022 ). 

During the service period, a fleet of homogeneous vehicles V
erves the customer orders from a centrally located depot. Once a 

ustomer order has been realized, it has to be loaded onto a vehi- 

le in the depot. Thus, the order can only be served either by a ve-

icle that visits the depot after the request’s arrival or by one that 

s idle in the depot when the request arrives. The provider contin- 

ously takes tour-planning decisions, i.e., decisions about whether 

nd when a vehicle should leave the depot, and when it leaves 

hich orders will be assigned to it. If a vehicle leaves the depot to 

erve customers, a tour is planned. A tour is denoted as θ v for a ve-

icle v ∈ V and is defined by a start time t start and a set of loaded

ustomer orders L = { c 1 , c 2 , c 3 , . . . } . Further, to store the order in
hich a given tour will reach customer locations, we introduce a 
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et of tuples that assign positions χc i to customer orders c i , i ∈ L .

he set is denoted by X , i.e., X = { (c 1 , χc 1 ) , (c 2 , χc 2 ) , (c 3 , χc 3 ) , . . . } .
ence, θ v = (t start , L, X ) . Accordingly, we refer to the fields of the

uple of a given tour by t start (θ v ) , L (θ v ) and X(θ v ) . 

After leaving the depot, a tour is always fully executed as 

lanned, without pre-emptive depot returns. All tours have to be 

lanned in such a way that no customer orders will be served later 

han their delivery deadline. We assume deterministic travel times 

c c ′ from the location of the customer order c to the location of 

ustomer order c ′ . Without loss of generality, we assume that the 

ervice time of serving customer order c ′ is included in τc c ′ . Vehi- 
les can have several sequential tours during the day. In line with 

ost SDD literature, we do not consider physical vehicles’ capac- 

ties, because the narrow delivery deadlines of the customer or- 

ers are far more restrictive for the delivery operations than the 

vailable space in a vehicle (see for example Angelelli, Archetti, Fil- 

ppi, & Vindigni, 2021, Lang, Cleophas, & Ehmke, 2021a, Berbeglia, 

ordeau, & Laporte, 2010, Ulmer, 2020a, Voccia et al., 2019 ). 

.2. Markov decision process formulation 

In the following, we model the SDD-DMTP as a Markov deci- 

ion process (MDP). In every decision epoch , the provider has to 

ake an action denoted as A t , taking the current state of the sys-

em S t into consideration. More precisely, the provider evaluates 

he current state of the delivery operations, as well as the cus- 

omer orders already confirmed though not yet being delivered, 

o determine the feasibility of potential actions. The action then 

aken, yields a transition as well as a reward in that a customer 

hooses a delivery option from the set of offered delivery options 

including the no-purchase option), which triggers the execution 

f the corresponding delivery decision. Accordingly, rewards fol- 

ow: if a customer chooses to buy, they pay a delivery fee and the 

hopping basket value realizes. Further, tour costs realize for every 

ehicle that leaves the depot. After such realizations, the system 

ransitions to the next state S t+1 , which differs from the previous 

ne, potentially by the newly accepted customer order and/or new 

ours, and by the delivery execution’s progress up to that time. The 

bjective that the provider seeks is to maximize the total profit ac- 

rued over all decision epochs. In the following, we describe the 

DP elements in detail: 

Decision epochs : To model the SDD-DMTP as MDP, we assume 

 discretized booking period T book in such a way that the stages 

f the MDP correspond to time steps t ∈ T book = 1 . . . T . The time

teps represent micro-periods in each of which no more than one 

ustomer request with arrival probability λ arrives. 

State : The state S t of a system at time t consists of all infor-

ation relevant to making decisions and already revealed by time 

. In the SDD-DMTP, two state components are required. The first 

omponent is the set of confirmed and not yet being delivered cus- 

omer orders, denoted as C t . For all of those orders c ∈ C t , it con-
ains information about their location (x, y ) c and their due time 

 
due 
c , stored in a tuple: ((x, y ) c , t 

due 
c ) . The second component is the

verall tour plan at time t , denoted by φt (see modelling of route- 

ased MDPs in Ulmer, Goodson, Mattfeld, & Thomas, 2020 ). It con- 

ains the currently running tours θ v 
t for every vehicle v ∈ V . If the 

ehicle v is idle in the depot, θ v 
t = () . So, the state is defined as

 t = (C t , φt ) . 

All possible combinations of customer requests from the regis- 

ered customer pool, with all possible arrival and due times and 

ith all possible tour plans, define the state space S , with S t ∈ S .
ction : Fig. 2 is a schematic representation of the stochastic deci- 

ion process of the SDD-DMTP. We differentiate between actions 

n decision epochs in which, with probability λ, a customer arrival 

ccurs and decision epochs in which, with probability (1 − λ) , no 

ustomer request arrives. In the former case, two types of deci- 
865 
ions have to be made integratively, namely demand-management 

nd tour-planning decisions. In the latter case, only tour-planning 

ecisions have to be made. We depict both cases in Fig. 2 . 

Customer request – In period t of Fig. 2 , a customer request ar- 

ives. Therefore, a demand-management decision has to be made 

y selecting which offer set g ∈ G to offer the requesting customer. 

he offer set presented at time t is denoted as g t . Further, for ev- 

ry delivery option i ∈ g t , potential tour-planning decisions that are 

xecuted after observing the customer’s actual choice, are made. 

hus, a tour-planning decision consists of the subsequent state’s 

ossible overall tour plan which depends on the yet unknown cus- 

omer choice for a delivery option i . Therefore, we introduce φi 
t for 

 ∈ g t as the tour plans that will be executed if the customer were

o choose delivery option i , and include it in the action definition. 

No customer request – In t + 1 of Fig. 2 , no customer request

rrives. Therefore, the corresponding action only comprises tour- 

lanning decisions φ0 
t+1 

without a new customer request. 

Accordingly, the action A t of micro-period t has two distinct 

ases: 

 t = 

{
(g t , (φi 

t+1 ) i ∈ g t ) if there is a customer request at t 

φ0 
t+1 else 

(1) 

orrespondingly, the action space at decision epoch t , denoted as 

 t , is also defined for the above-mentioned two distinct cases: 

Customer request – For the first case, if there is a customer re- 

uest in t , the action space comprises two components. One com- 

onent, denoted as G(S t , c t ) , defines all offer sets that only contain

elivery options for which there is at least one feasible tour plan, 

iven state S t and customer c t . The other component, denoted as 

	i 
t+1 

(S t , c t )) i ∈G(S t ,c t ) 
, defines all potential tour plans that are fea- 

ible given C t , and assuming that the current customer request c t 
urns into a customer order with a deadline according to delivery 

ption i ∈ G(S t , c t ) . This could also comprise the decision that no

ew tour will start, i.e., that the tour plan does not change. 

No customer request – If there is no customer request in t , the 

ction space accordingly comprises all feasible tour plans for the 

et of confirmed customers C t . In this case, the set of all potential
our plans is denoted as 	0 

t+1 
(S t ) . Consequently, 

 t ∈ A t = 

{ 

(G(S t , c t ) , if there is 

(	i 
t+1 (S t , c t )) i ∈G(S t ) ) a customer request at t 

	0 
t+1 (S t ) else. 

(2) 

ote that for both cases, the tour-planning component of the ac- 

ion space comprises all tours currently running at t and poten- 

ially new tours for vehicles that are standing idle at the depot 

 θ v 
t = () ) or returning to the depot during the decision epoch. 

Transition model : The transition model of the SDD-DMTP com- 

rises demand-management related and tour-planning related 

ransitions. While the former are stochastic, the latter are deter- 

inistic transitions from one state S t to a successor state S t+1 . 

ig. 3 is a schematic representation of the transitions involved in 

he SDD-DMTP, which shows the temporal relation between two 

onsecutive states and transitions. As Fig. 3 shows, the stochastic 

vent of whether there is a new customer request c t arriving or 

ot can be observed at the beginning of a decision epoch t , after 

bserving state S t . The resulting transitions differ accordingly. 

If there is a request, integrated demand-management and tour- 

lanning decisions are made and a transition, namely the customer 

hoice i ′ follows. This is depicted in the upper stream of Fig. 3 . This

ransition is stochastic, and potential outcomes i ′ can be observed 
ith known probability P i 

′ 
(g t ) . It defines whether the first state 

omponent, namely the set of confirmed, yet still to be delivered 

ustomer orders C t , alters from one state S t to a successor state 

 t+1 by adding a new customer order. Following this, another tran- 

ition, namely the execution of deliveries, brings the system to the 
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Fig. 2. Schematic representation of the stochastic decision process. 

Fig. 3. Schematic representation of the transitions. 
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ext state S t+1 . The latter strictly follows the tour-planning deci- 

ion φi ′ 
t+1 

in A t , with i ′ = 0 representing the case that the current

equesting customer in t has rejected all offered delivery options. 

s we assume deterministic travel times, this transition is purely 

eterministic, therefore in state S t+1 , φt+1 is set to φ
i ′ 
t+1 

from A t . 

his also influences the first state component, because all customer 

rders from set C t that are newly loaded onto a vehicle according 

o the new tour-plan φt+1 , are removed from C t . We introduce the 

et 
(φt+1 | φt ) that contains all those customers. 

If no customer request is observed in state S t , only tour- 

lanning decisions are made. The corresponding deterministic 

ransition of the delivery execution alters the system from state 

 t to the successor state S t+1 . This is depicted in the lower stream 

f Fig. 3 . 

The transitions of the state components can be formalized as 

ollows: 

t+1 = φi ′ 
t+1 (3) 

 t+1 = 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C t \ 
(φt+1 | φt ) , if there is no customer request in t 

with probability (1 − ∑ 

c t ∈ C λc t 
(t)) , or if 

the incoming request c t does not turn into 

a customer order with probability 

λc t 
(t) · P 0 g t 

(C t ∪ { c t } ) \ if there is a customer request 


(φt+1 | φt ) , c t , that turns into a customer order with 

probability λc t 
(t) · ∑ 

i � =0 P 
i 
g t 

(4) 

ewards : The SDD-DMTP rewards can also be attributed to 

emand-management and tour-planning decisions. The rewards 

ccrued through the demand-management related transitions are 

ositive. They are the sum of the contribution margin of the cus- 

omer order c, denoted as r i c , and the delivery fee of the chosen de-

ivery option r i (g t ) , determined by the offer set g t . Here r 
i 
c = r c ap-

lies, for all i � = 0 , and r i c = r i (g t ) = 0 , for all g t ∈ G, if i = 0 . The re-
866 
ards that are induced by the deterministic tour-planning related 

ransitions are negative. Such rewards are called logistics-related 

ewards of a transition from S t to S t+1 given a decision φ
i 
t+1 

, for- 

ally denoted as r l 
φi 
t+1 

. The logistics-related rewards equal the sum 

f delivery costs of all tours that start in t + 1 according to action

 t . 

Objective : The objective of solving the SDD-DMTP is to maxi- 

ize the overall profit, i.e., to maximize the difference between 

he sum of positive rewards and the sum of negative rewards. 

ositive rewards are accrued across all decision periods by selling 

hopping-baskets and delivery options. Negative rewards equal the 

elivery costs accrued across all decision periods. The objective can 

e represented by the well-known Bellman equation that captures 

he value of being in a given state ( Powell et al., 2012 ). We spec-

fy the Bellman equation for the SDD-DMTP and explicitly integrate 

he two interdependent decisions that have to be made: 

 (S t ) = 

∑ 

c t ∈ C 
λc t (t) · arg max g∈G 

( ∑ 

i ∈ g 
P i (g) ·

[
r i (g) 

+ r i c t + arg max φi 
t+1 

∈ 	i 
t+1 

(r l 
φi 
t+1 

+ V (S t+1 | S t , φi 
t+1 )) 

]) 

+ (1 −
∑ 

c t ∈ C 
λc t (t)) · arg max φ0 

t+1 
∈ 	0 

t+1 

·
(
r l 
φ0 
t+1 

+ V 
(
S t+1 | S t , φ0 

t+1 

))
, (5) 

ith boundary condition: 

 (s T +1 ) = 0 . (6) 

he first two lines of Eq. (5) reflects the value and decision mak- 

ng in cases where a customer request arrives. The last two lines 
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eflect the corresponding value and decision making if no customer 

equest arrives. If a customer request arrives, the provider derives 

he demand-management decision by solving arg max g∈G (·) . To do 
o, the provider needs to consider the value of all delivery options 

including the no-purchase option) i that the current customer 

ight choose. This is obtained by solving arg max φi 
t+1 

∈ 	i 
t+1 

(·) . If no 
ustomer request arrives, the tour-planning decisions equal those 

f i = 0 . 

. Solution approach 

The presented SDD-DMTP is a dynamic stochastic optimization 

roblem with large state and action spaces. Since solutions have to 

e determined in near real-time, it is not possible to solve it to op- 

imality. Therefore, we develop a heuristic solution approach which 

akes the SDD-DMTP’s two types of decision into account, namely 

ynamic demand-management decisions and online tour-planning 

ecisions. The approach is based on the following consideration: If 

he second part of the second line of Eq. (5) , i.e., 

 
′ (S i t+1 ) := arg max φi 

t+1 
∈ 	i 

t+1 

(
r l 
φi 
t+1 

+ V 
(
S t+1 | S t , φi 

t+1 

))
(7) 

as known for all potential customer choice outcomes i ∈ 

, solving the Bellman Eq. (5) would be simplified tremen- 

ously. V ′ (S i 
t+1 

) captures the optimal tour-planning decision, i.e., 

rg max φi 
t+1 

∈ 	i 
t+1 

(·) , the resulting logistics reward, i.e., r l 
φi 
t+1 

, as 

ell as the value of the associated successor state, i.e., V (S t+1 | 
 t , φi 

t+1 
) . Thus, with known V ′ (S i 

t+1 
) , and if |G| is not large,

q. (5) could be solved to optimality by total enumeration across 

ll g ∈ G ( Yang, Strauss, Currie, & Eglese, 2016 ). In the SDD-DMTP,

e indeed assume |G| to be of tractable size. However, V ′ (S i 
t+1 

) 

annot be determined exactly. Thus, we propose a problem-specific 

pproximation of V ′ (S i 
t+1 

) , i.e., an approximation of the optimal 

our-planning decision, the related reward, and the resulting value, 

hich is carried out every time a customer request arrives and de- 

isions have to be made. As already outlined in the introduction 

nd schematically depicted in the upper part of Fig. 1 , the under- 

ying procedure consists of three main components: a multiple sce- 

ario approach (see Section 4.1 ), from which a value approximation 

an be derived (see Section 4.2 ), and that, at the same time, re-

urns anticipatory tour-planning decisions (see Section 4.3 ). 

In the following, we describe each component of the approach 

eparately, starting with a description of how to generate and solve 

cenarios. 

.1. Multiple scenario approach 

The sample-scenario value approximation and tour-planning 

pproach adapts the online tour-planning ideas of Bent & Van Hen- 

enryck (2004) as well as Voccia et al. (2019) and substantially 

xtends them in order to include demand-management decisions. 

he basic idea is to sample scenarios, and then, to solve a deter- 

inistic version of the SDD-DMTP (d-SDD-DMTP) for every sce- 

ario. The resulting solutions are then used to derive state values 

s input for decision making. In this section, we present the newly 

eveloped multiple scenario approach (MSA) in more detail. We 

rst describe how scenarios are generated. Then, we describe how 

o solve these scenarios. 

Generation of scenarios : Every time a customer request arrives, 

ifferent customer request realizations are sampled into the fu- 

ure to generate scenarios. In order to reach the previously de- 

cribed goals, i.e., to derive a value approximation for demand- 

anagement decisions and to derive tour-planning decisions, sce- 

arios are needed that are state, time, and customer-choice- 

pecific. Consequently, a scenario ω ∈ �i 
t at time t and for a cer- 

ain delivery option i consists of three types of customers: first, 
867 
he confirmed and not yet being delivered customer orders C t ; sec- 
nd, the current customer request c t with assigned deadline ac- 

ording to i , i.e., t due c t 
= t + l(i ) , if i � = 0 ; third, a sampled realization

f customer requests N 
ω , sampled from t on until the end of a pre-

efined sampling horizon length. For those sampled customer re- 

uests, for now we assume a preliminary delivery deadline accord- 

ng to the longest available delivery span, t due c = t 
req 
c + max { l(i ) | i ∈

} . Further, for the sampled customers, we simplify the demand- 

anagement decisions, such that the respective requests can only 

e accepted or rejected. This allows us to formulate the d-SDD- 

MTP for each scenario, as a deterministic, profitable multi-trip 

ehicle routing problem, as formalized in Appendix C . In the fol- 

owing, we present a specifically tailored heuristic to solve the d- 

DD-DMTP. 

Solving scenarios : The d-SDD-DMTP, as presented in Appendix C , 

s a profitable multi-trip vehicle routing problem (PVRPMT), and 

hus, belongs to the class of NP-hard problems ( Chbichib, Mellouli, 

 Chabchoub, 2012 ). Even more, the d-SDD-DMTP has to be solved 

or every scenario. Consequently, we cannot solve the presented 

IP for all instances in reasonable time. Instead, we propose a 

euristic approach, which consists of the following three steps: 

Relaxation – First, for the moment, we relax explicitly consider- 

ng depot returns in the d-SDD-DMTP. The resulting problem is a 

rofitable single trip vehicle routing problem with time windows 

P-VRPTW) ( Toth & Vigo, 2014 ). A customer request’s arrival time 

ow forms the start of their delivery time window, while the de- 

ivery deadline remains unchanged. The trick is that all vehicles 

an now start only one tour, but can, theoretically, serve customer 

rders that have not yet realized at the time the tour starts. There- 

ith, we enable to apply standard tour-planning software in the 

ext step and, thus, ensure practical applicability of our heuristic. 

Solving the relaxed problem – Next, we solve the resulting P- 

RPTW heuristically by means of a standard tour-planning soft- 

are (e.g. Google OR Tools). The result is a tour plan with one tour 

er vehicle, including confirmed and sampled customer orders. 

Feasibility repair – When the tours start, not all sampled cus- 

omer orders have already realized, which is why we have to add 

epot returns to the planned tours. Thus, for feasibility, we repair 

he respective tours as follows: We interrupt a vehicle’s tour for a 

epot return each time a sampled customer order has to be served 

f which the request had not yet arrived when the tour started in 

he depot. For the same vehicle, a new tour is planned to serve 

he original tour’s remaining customers in the same order, until it 

as to be interrupted for another depot return. If a depot return 

auses a late delivery for a sampled customer, the customer is re- 

oved from the tour; yet, if the depot return causes a late delivery 

or a confirmed customer, the latest sampled customer is removed 

rom the tour and, according to vehicle availability, the departure 

ime is updated to an earlier time. This procedure is repeated un- 

il all late deliveries have been removed. If the algorithm does not 

nd a feasible solution without late deliveries, at the end of the 

lgorithm, an empty scenario tour plan φω and a scenario value 
˜  ω (S i 

t+1 
) = −∞ is returned. For the original decision problem (5) , 

his results in not offering the corresponding delivery option i to 

he current customer c t . Note that since a tour plan can now com- 

rise more than just one tour per vehicle, we add an index k to the

our notation, i.e., θ v k denotes the k th tour of vehicle v . This proce- 
ure is more formally presented in Algorithm 1 in Appendix D . 

.2. Value approximation and demand-management decision 

The heuristic presented in Section 4.1 is used to solve the d- 

DD-DRMP for scenarios ω ∈ �i 
t . In this way, we generate scenario- 

pecific tour plans φω . Those are anticipatory in the sense that 

hey anticipate future customer requests. However, the demand 

anagement that was considered for those requests, only com- 
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rised accept/reject decisions. In particular, neither did it involve 

rices for delivery options and the respective rewards r i c t , nor were 

hoice and no-choice probabilities of the sampled customers and 

heir resulting delivery revenues considered. Thus, in order to de- 

ermine accurate scenario values, denoted as ˜ V ω (S i 
t+1 

) , these as- 

ects have to be captured retrospectively and integrated into the 

cenarios’ solutions. In the following, we first give a verbal descrip- 

ion of the idea underlying our re-integration of demand manage- 

ent. Afterwards, we formalize the respective procedure and show 

ow to approximate a state value: 

Idea underlying the re-integration of demand management : The 

ain target is to reconstruct demand-management decisions for all 

 scenario’s sampled customers in such a way that the same sce- 

ario tour plan would result as in the scenario’s d-SDD-DMTP so- 

ution. Consequently, for every sampled customer request of such 

 solution, it has to be determined which offer sets provoke pur- 

hase choices with which the corresponding scenario solution is 

easible. Across those offer sets, the expected contribution for ev- 

ry sampled customer is maximized and a close estimation of the 

cenario value ˜ V ω can be determined. More precisely, in order to 

erive the best possible estimate, we want to imitate, as closely 

s possible, the original demand management of the SDD-DMTP as 

he Bellman equation ( Eq. (5) ) solved it. Therefore, imagine solv- 

ng Eq. (5) by hand: in a first step one would intuitively define the 

easible action space by excluding all infeasible decisions from be- 

ng considered. For the demand-management decision this means 

etermining which delivery options can be feasibly offered to the 

urrent customer, i.e., defining the set of feasible offer sets. In a 

ext step, the offer set with the highest expected sum of imme- 

iate reward and successor state value is offered to the requesting 

ustomer. This last step includes making tour-planning decisions. 

For re-integrating demand management into a scenario’s solu- 

ion φω , this previously described procedure is mimicked with two 

odifications: 

1) When identifying the offer sets for the accepted, sampled cus- 

tomer requests c ∈ N 
ω ∩ { L (θ v k ) : θ v k ∈ φω } that are feasible

with respect to the scenario’s d-SDD-DMTP solution, all re- 

sulting tour-planning decisions have already been determined. 

Thus, the specific delivery times for customer orders a v k c , are al- 

ready defined. Consequently, delivery options are only feasible, 

if a v k c can be matched within the delivery option. 

2) When selecting which offer set to offer, only the expectation 

regarding the immediate rewards is considered. Displacement 

cost and marginal cost to serve can be neglected. 

The second modification can be made without sacrificing accu- 

acy because the scenario solution, i.e., the acceptance and delivery 

imes of all requesting customers in the scenario under consider- 

tion, has already been decided. Thus, it does not matter whether 

he currently considered customer chooses one of the offered de- 

ivery options or the no-purchase option. The value that might be 

ncurred with subsequent customer requests will not change for 

his scenario. 

Formalization and value approximation : More formally, re- 

ntegrating demand management into a scenario’s solution φω can 

e described as follows: For every c ∈ N 
ω ∩ { L (θ v k ) : θ v k ∈ φω } , the

rocedure determines which delivery options i ∈ I can feasibly be 

ffered according to their planned delivery time a v k c when follow- 

ng φω . Next, for each of those customers, a subset G ′ c (φω ) ⊂ G de- 

nes all offer sets that include only the valid delivery options i . To

pproximate the sampled customer’s contribution r c φω to a sce- 

ario’s value ˜ V ω (S i 
t+1 

) , the expected reward across all g ∈ G ′ c (φω ) is

aximized: r c φω = max g∈G ′ c (φω ) 

∑ 

i ∈ g P i (g) · (r i c + r i ) , if a customer 

rder c is being accepted in the scenario’s solution, otherwise 

 c φω = 0 . 
868 
A scenario’s value is then defined as ˆ V ω (S i 
t+1 

) = 

∑ 

c∈ N ω r c φω −
 
l 
φω . Following this, V ′ (S i 

t+1 
) is approximated by 

ˆ 
 
′ (S i t+1 ) = 

∑ 

ω∈ �i 
t 

˜ V ω (S i t+1 ) 

| �i 
t | 

. (8) 

inally, the SDD-DMTP’s demand-management decision is taken by 

ubstituting (8) in the Bellman equation. That yields the following 

emand-management decision policy for when a customer request 

rrives: 

 
∗ = arg max g∈G 

( ∑ 

i ∈ g 
P i (g) · [ r i (g) + r i c t + 

ˆ V ′ (S i t+1 )] 

) 

. (9) 

ote that the value approximation described above relies on solv- 

ng scenarios ex-post, under the assumption that all customer ar- 

ivals were known. This could lead to a systematic over-estimation 

f the actual value of a state. However, for deciding on which offer 

et to present to an incoming customer, this over-estimation is not 

 major issue for the reason that when solving Eq. (9) , not the ab-

olute level of the values ˆ V ′ (S i 
t+1 

) for i ∈ g is decision-relevant, but 

he differences between them. As the potential over-estimation is 

ystematic, it applies similarly to all those values. 

Other approaches that approximate values/costs via heuristi- 

ally solving scenarios ex-post in order to derive tour-planning de- 

isions are for example Azi et al. (2012) , Campbell & Savelsbergh 

2005) , and Angelelli et al. (2021) . 

.3. Anticipatory tour planning 

Having described how we approximate values to make demand- 

anagement decisions based on tour plans resulting from a sce- 

ario’s d-SDD-DMTP solution (in the following referred to as sce- 

ario tour plans), we now explain how tour-planning decisions are 

erived. 

For every potential customer choice i and the corresponding 

uccessor state S i 
t+1 

, a set of scenario tour plans φω ∈ �i 
t with val- 

es ˜ V ω (S i 
t+1 

) is available from the scenarios’ solutions. These can 

e used to derive tour-planning decisions. Typically, in MSAs, at 

his point, a consensus function measures the robustness of par- 

ials of those tour-plans by evaluating, which partials appear most 

requently among the solutions. Then, from the result, it constructs 

 robust overall tour plan, called a distinguished plan (see for ex- 

mple in Bent & Van Hentenryck, 2004, Voccia et al., 2019 ). Due 

o the large number of stochastic influences in our problem, i.e., 

ustomer location, request arrival time, and customer choice, the 

cenario solutions exhibit high variability. This is why typical con- 

ensus functions proved not to perform well in pre-tests. Therefore, 

e derive tour-planning decisions from the one sampled tour plan 
ω , which has the highest value ˜ V ω (S i 

′ 
t+1 

) of all tour plans in �i ′ 
t .

ote, we are fully aware of and accept that the derived tour plan’s 

erformance might naturally be lower in entirely different realiza- 

ions. The highest value tour plan is selected as distinguished plan 
∗ and comprises planned tours θ v k for all v ∈ V . The tours of one 
ehicle v start sequentially at given start times A v k and they con- 

ain sampled and confirmed customer orders. Then, in line with 

he literature on MSAs, all sampled customer orders are removed 

rom those tours and the delivery times a v k c of all remaining con- 

rmed customer orders c, as well as the return times to the depot, 

re updated according to A v k and relevant τc c ′ . This procedure is 
ore formally described in Algorithm 2 in Appendix E . 

An executable tour at state S i 
t+1 

, derived from the tour-planning 

ecision φ∗ for vehicle v ∈ V is denoted as θ ∗v k . All θ ∗v k for v ∈ 

, k ∈ K of φ∗ form the tour-planning decision φt+1 in t and for all 

ubsequent t ′ until a new customer request arrives. If a new cus- 

omer request arrives, the full decision-making procedure as pre- 
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ented in Fig. 1 starts all over again. For the tour-planning deci- 

ions that means all tours in φt+1 that have not already started by 

he time of the new customer request, can be revised. 

Note that the tour-planning decisions are based on predictions 

nto the future, which means they consider potential future cus- 

omer requests, potential time-steps in between future customer 

rrivals, and, especially, also future vehicle departures. Thus, a 

our-planning decision in t also includes potential future tour- 

lanning decisions. Accordingly, it is not necessary to revise tour 

lans if no customer request arrives in a new decision epoch. In- 

tead, in decision epochs in which no customer request arrives, the 

rovider analyses the latest MSA solution to derive tour-planning 

ecisions. More precisely, the provider checks whether, for the cur- 

ent decision epoch, a new tour was planned to start and if yes, 

hich customer orders are assigned to it. Then, the tour-planning 

ecision for the current decision epoch with no customer request 

s derived respectively. Consequently, unlike the MDP model of the 

DD-DMTP, the solution approach is not defined across all decision 

pochs t in the booking period. Instead, it is event driven, i.e., cus- 

omer request arrival driven. 

Regarding the literature discussed in Section 2 , our solution ap- 

roach falls in the class of non-learning approaches. It uses an in- 

ormation model internally, i.e., for decision making, in a predictive 

atter ( Soeffker et al., 2021 ) and is conducted fully online. 

. Computational study 

In this section, we present a computational study on a variety 

f parameter settings for which we apply our solution approach in 

ifferent variants, e.g., with different lengths of the sampling hori- 

on. Additionally, we solve some benchmark approaches and com- 

are the results. In particular, we assess the effectiveness of our 

pproach and evaluate the value of anticipation, as well as that of 

n explicit price optimization. In Section 5.1 , we describe the pa- 

ameters of the settings under consideration and explain how in- 

tances are generated. In Sections 5.2 and 5.3 , we discuss our ex- 

ensive computational experiments’ results on the two evaluations, 

.e., of anticipation and of explicit price optimization. 

.1. Setup 

The computational study is based on a number of settings that 

e examine in a stochastic simulation, applying and comparing 

ifferent anticipation and pricing approaches. In Section 5.1.1 , we 

pecify the parameters that are commonly used throughout all 

onsidered settings. In Section 5.1.2 , we discuss the parameters 

hat may vary across settings. In Section 5.1.3 , we describe how 

e generate instances for each setting within our stochastic 

imulation. 

.1.1. Setting-independent parameters 

The following parameters are defined identically for all settings 

onsidered in our computational study. 

Time horizon and delivery options : The considered time horizon 

orresponds to the booking and service course of one day. It is rep- 

esented by 900 episodes, which could be thought of as represent- 

ng 900 minutes from 7am to 10pm. The booking period consists 

f 600 minutes, i.e., it starts at 7am and ends at 5pm. The service 

eriod starts with the first accepted customer order and ends at 

0pm, latest. In all settings, offer sets can be generated based on 

wo possible delivery options, i.e., delivery within 90 minutes or 

ithin 300 minutes. 

Customer segments : Customers are defined by a segment af- 

liation, their location, their arrival times, and arrival rates. A 

ustomer’s segment affiliation defines the potential contribution 

argins of selected shopping baskets. More precisely, it indicates 
869 
 probability distribution across the potential contribution mar- 

ins in connection with a purchase decision. Further, it defines 

heir utility for different delivery options with different prices. 

n our computational study, we assume there are two segments, 

istinguishing between segment-one customers and segment-two 

ustomers. The contribution margin of a segment-one customer 

s drawn from a uniform distribution over [75 , 85 , 100] monetary 

nits (MU). The contribution margin of a segment-two customer is 

rawn from a uniform distribution over [20 , 35 , 40] MU. Addition- 

lly, segment-one customers have a higher observable utility for 

horter delivery options than segment-two customers. The basic 

bservable utilities before pricing u i 
basic 

of segment-one customers 

re 22 and 14, and those of segment-two customers are 13 and 

0.5 for the short and the long delivery options. To calculate the 

bservable utility for a delivery option with a certain price u i , the 

orresponding basic utility u i 
basic 

is reduced by the offered price 

 
i , but it cannot be negative, i.e., u i = max { u i 

basic 
− r i , 0 } . Also, the

o-purchase option has a utility for customers from both seg- 

ents. For segment-one customers, this utility equals 2, while for 

egment-two customers it equals 3. This reflects that segment-two 

ustomers are more likely to purchase via a traditional, non-SDD 

elivery option or in a brick-and-mortar store. 

We model the purchase probabilities for different delivery 

ptions within the offer sets according to a basic attraction model. 

herefore, the purchase probabilities for delivery options i in an 

ffer set g ∈ G can be calculated by solving P i (g) = 
u i ∑ 

i ∈ g u i 
( Luce,

959 ). 

Service area and customer locations : We simulate the service 

rea on a squared grid with a width of 120 distance units (DU), 

ith a centrally located depot. On this grid, we generated 200 cus- 

omer locations from a uniform distribution in advance, which we 

ill use later on in instance generation. Travelling a DU equals one 

inute in the simulation run and costs 0.3 MU. Thus, all potential 

ustomer locations on this grid can be visited within 120 minutes, 

.e., if vehicle capacity allows, every customer can at least be of- 

ered the longer delivery option. 

Customer arrivals : In every decision epoch t , customers arrive 

ccording to their individual, time-dependent arrival rates λc t (t) . 

hereby, decision epochs are sufficiently small that at most one 

ustomer arrives. In practice, these arrival rates can be derived 

rom historic data. For our computational study, we assume the 

ollowing pattern regarding the sum of customer specific arrival 

ates (cumulative arrival rate) per decision epoch: We assume two 

eaks in the cumulative arrival rate in order to mimic common 

nline shopping behavior, namely customers placing orders dur- 

ng their lunch break or after returning home from work. Further, 

e design arrival rates in a way that the cumulative arrival rate 

ver the lower valued segment-two customers forms lower and 

ider peaks than for the higher valued segment-one customers. 

his reflects more flexible working conditions with lower income 

or segment-two customers and, vice versa, less flexible working 

onditions with higher income for segment-one customers. The 

istribution of arrival rates is illustratively depicted in Fig. 4 . 

Pricing approach : We assume two price points per delivery op- 

ion: 8 or 10 MU for guaranteed delivery within 90 minutes and 

 or 7 MU for guaranteed delivery within 300 minutes. We also 

ssume that no delivery option other than the no-purchase option 

eeds to be offered. These pricing parameters result in nine poten- 

ial price lists from which the provider can select one to offer to 

n incoming request. 

.1.2. Setting-dependent parameters 

The settings we consider differ in terms of the expected num- 

er of incoming customer requests and the number of delivery ve- 

icles. More specifically, we consider settings resulting from each 
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Fig. 4. Customer arrivals. 

Table 3 

Setting-dependent parameters. 

customer requests 

100 150 200 

vehicles 1 1V_100 1V_150 1V_200 

2 2V_100 2V_150 2V_200 

3 3V_100 3V_150 3V_200 
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Table 4 

Averaged results 1V_100. 

look-ahead 

myopic 30 60 90 120 

# segment 1 customers 5.01 7.14 8.71 9.85 10.67 

# segment 2 customers 14.16 12.36 10.53 8.77 7.27 

# 90 minutes choice 1.25 1.60 1.44 1.21 1.67 

# 300 minute choice 17.92 17.90 17.80 17.41 16.26 

average price 90 minutes 8.00 8.49 8.55 8.69 8.78 

average price 300 minutes 5.00 5.36 5.45 5.52 5.53 

active vehicle minutes 809 760 734 704 686 
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ossible combination of 100, 150, and 200 expected customer re- 

uests with one, two, and three delivery vehicles. The correspond- 

ng settings are shown in Table 3 . 

.1.3. Instance generation 

To ensure comparability, we test our approach and the bench- 

ark approaches on the same set of registered customers, which 

e refer to as the customer base . More precisely, based on the cus- 

omer segments’ and customer locations’ characteristics described 

n Section 5.1.2 , we initially generate a customer base of 30 0 0 dif-

erent customers once. Thirty percent of the customers in this cus- 

omer base are segment-one customers. Then, for each setting, in- 

tances basically represent particular demand streams that we ob- 

ain by event-based discrete simulation based on the arrival rates 

nd according to the setting’s expected number of customers. Re- 

uests’ characteristics are obtained by sampling from the customer 

ase. We generate 300 instances for each setting. Note that, again 

o ensure comparability, we use the same 300 instances for set- 

ings that differ only in the number of delivery vehicles. 

.2. Value of anticipation 

In the following, we discuss the value of anticipation for the 

DD-DMTP with respect to the developed approach as presented 

n Section 4 . 

.2.1. Experimental design and performance metrics 

In studying the impact of different levels of anticipation, we ap- 

ly different variants of our approach. They differ as to the length 

f the sample horizon used for approximating the scenario val- 

es and tour planning (see Section 4 ). We consider sample hori- 

on lengths of 30, 60, 90, and 120 minutes. Here, we base the 

ecision making on the anticipation of a total of 15 scenarios, a 

umber that led to good decisions in the pre-tests we performed. 

e sample the scenarios by drawing new customer requests from 

he customer base each time a decision has to be taken. Further, 

e benchmark our anticipatory approach against myopic decision 
870 
aking. Myopic decisions are taken in exactly the same way as in 

he anticipatory approach, except that all potential successor state 

alues in Eq. (5) are set to 0. Further, the tour-planning decisions 

re taken without anticipated customer requests. Thus, in this ap- 

roach the demand-management decision is based only on myopic 

arginal costs of serving a request. 

To measure performance, for each setting and each length of 

he sample horizon, we evaluate the deviation from the myopic 

enchmark with respect to the following metrics: 

Metric Description 

Revenue Shopping 

Baskets 

(RSB) sum of contribution margins of all 

shopping baskets sold in one instance 

Revenue Deliveries (RD) sum of delivery fees accrued by selling 

delivery options throughout one instance 

Delivery Costs (DC) overall cost of delivery operations, i.e., all 

executed delivery tours in one instance 

Contribution Margin (CM) RSB + RD - DC 

Number Of Deliveries (NOD) number of accepted customer requests 

that turned into orders and are being 

served in the course of one instance 

The deviation of a given metric from the myopic benchmark for 

 given setting with a given sample horizon length is determined 

s follows: We average the results of the metric across the 300 test 

nstances of the setting under consideration, and compare them to 

he corresponding averaged values resulting from solving the same 

00 instances with the myopic benchmark approach. For example, 

he deviation of the CM with a sample horizon length of 30 min- 

tes from the myopic results is calculated by CM 
30 

CM 
myopic − 1 . 

.2.2. Numerical results 

The results we obtained are shown in Fig. 5 . On the tested set- 

ings, it is possible to achieve an increase in CM of 15 to 50%. 

irst, the increase grows degressively as the sample horizon length 

ncreases, until it reaches a peak at a sample horizon length of 

0 or 120 minutes for most settings. It then slowly decreases for 

onger sample horizon lengths, which is displayed in more detail 

n Appendix F.1 ), where we depict the absolute values of the mean 

M across all 300 instances, as well as the corresponding 95%- 

onfidence intervals. For almost all settings, these intervals of the 

yopic approach and the anticipatory approaches do not overlap. 

or those settings, this implies with a confidence of 95%, that the 

ncrease in CM results from our anticipation approach. The only 

etting in which the increase in CM is smaller than 10% and where 

5%-confidence intervals overlap, is the setting with low resource 

carcity, in which the myopic approach also yields good results. 

egarding the degressive course of the CM increase with increas- 

ng sample horizon length, pre-tests have shown that using fewer 

amples flattens the growth and shifts the peak to a shorter sam- 

le horizon length. This is shown illustratively for setting 1V_100 

n Fig. 6 . Increasing the sample size does not significantly shift the 

eak to a longer sample horizon length. Table 4 shows further nu- 

erical results for the 1V_100 setting, namely the average abso- 

ute values of customer choices, the segments of customer orders, 
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Fig. 5. Value of anticipation. 

Fig. 6. 1V_100, 5 samples. 
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nd the average prices paid for delivery options per instance. Here, 

e observe that as the length of the sampling horizon increases, 

he average number of highly valued customer orders accepted in 

n instance increases, and correspondingly, the average number of 

ow-value customer orders accepted, decreases. Another trend ob- 

erved is the increase in the average prices paid for the delivery 

pans, as the length of the sample horizon increases. The average 

umber of customer choices for the different delivery spans shows 

o obvious pattern. All of these observations are representative of 

he results in the other instances, as can be seen in Appendix F.2 . 

To track down the demand-management that underlies the pre- 

iously discussed trends, we further analyze the relationship of 

rice lists offered and resulting customer choices, per customer 

egment. More precisely, for every customer segment, for the my- 

pic and the best anticipatory approach (120 minutes look-ahead), 

e compare the partials of the different price lists offered, and the 

esulting ratios of customer choices. Again, we analyze the same 

00 instances as before and summarized our results for time in- 

ervals of width 50 minutes. The results for setting 1V_100 are 

epicted in Fig. 8 . The results for further settings are found in 

ppendix F.3 . The price lists are represented by their prices with 
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Fig. 7. Rule-based benchmark - Contribution margin. 

t

s

d

o  

d

0

i

t

l

2

m

s

q

s

b

d

s

c

a

m

h

i

i

o

t

f

t

c

(

f

≤
e

a

e

i  

D  

r

o

n

5

b

t

f

c

d

p

t

g

c

a

s

a

b

t

c

c

u

h

u

i

g

i

s

d

T

5

d

p

5

t

fi

t

t

p

T

c

p

p

i

i

o

p

t

t

(

p

t

c

w

c

he following pattern: the first element represents the price for the 

hort delivery span, the second element is the price for the long 

elivery span, and the third element represents the no-purchase 

ption with a price equal to 0 MU in all price lists. If the price of a

elivery span equals 100 MU , the resulting choice probability equals 

 for all customer segments. 

When comparing the anticipatory results with the myopic ones, 

t can be observed that the acceptance rate, i.e., the ratio of cus- 

omer requests that were offered any delivery span for a price 

ower than 100 MU , decreases over all time intervals for segment 

 customers. In turn, the respective numbers increase for all seg- 

ent 1 customers. Further, it can be observed for both customer 

egments, that the anticipatory approach accepts less customer re- 

uests at the beginning of the booking horizon. Additionally, for 

egment 2 customers, i.e., customers with a low valued shopping 

asket, the ratio of customer requests being accepted substantially 

ecreases for certain time intervals. Those time intervals corre- 

pond to the time intervals, in which the demand of segment 1 

ustomer rises. 

This last observation led to the idea, that our anticipatory 

pproach could be imitated by a simple rule-based demand- 

anagement policy, if the demand pattern is known. To test this 

ypothesis, we derived two rule-based approaches, in which there 

s no explicit anticipation. Instead, the rule-based decision mak- 

ng is following these demand-management patterns observed in 

ur anticipatory solutions, i.e., to lower the demand of segment 

wo customers. Thus, we evaluated the following two simple rules 

or demand-management decisions: The first rule (’seg2-high’) is 

o only offer the higher prices for each feasible delivery span to 

ustomers with a shopping basket value ≤ 50 MU . The second rule 

’seg2-high-critical-t’) is to only offer the higher prices for each 

easible delivery span to customers with a shopping basket value 

50 MU , if they request in certain decision epochs. Those decision 

pochs were derived from analyzing the results of our anticipatory 

pproach and are the intervals [100;250] and [400; 500]. The av- 

rage CM that can be observed with these rule based approaches 

s depicted in Fig. 7 . The respective results for MOD, RSB, RD, and

C are depicted in Appendix F.4 . It can be observed, that the two

ule-based approaches yield comparable results as our original my- 

pic approach (’OA-myop’) and much worse results than our origi- 

al anticipatory approach (’OA-ant’). 

.2.3. Analysis and insights 

According to our observation, the contribution margin that can 

e achieved with anticipation is always higher than the contribu- 

ion margin of any myopic benchmark. This is mainly due to the 

act that the revenues generated by selling shopping baskets in- 

rease and the delivery costs decrease disproportionately to the 

ecrease in delivery orders. Combined with Table 4, Fig. 8 , and Ap- 

endices F.2 and F.3 , this shows that anticipation indeed allows us 
872 
o preserve capacity for high-value customer orders, and also to 

enerally guide customer choice with respect to a favorable spa- 

ial structure. Thus, compared to myopic decision making, through 

nticipation delivery efficiency can be improved. Further, we ob- 

erved a degression in the increase of contribution margin with 

n increasing sample horizon length. Such degression is explained 

y the lengths of the sample horizon becoming longer, and as 

his happens, the proportion of uncertainty in decision making in- 

reases. Thus, these results indicate that the solutions’ quality de- 

reases if the sample horizon is too long or if too few samples are 

sed. This is because, for every decision, increasing the sampling 

orizon length also increases the number of sampled, and hence 

ncertain requests, while the number of certain orders does not 

ncrease. Additionally, due to the tight delivery spans that distin- 

uish SDD from other last mile logistics services, all certain orders 

n the scenarios will be served shortly after the time when the 

ampling starts. Hence, sampling into the future too far leads to 

ecision making based on tours that include only uncertain orders. 

his distorts the precision of the value approximation. 

.3. Value of explicit pricing optimization 

Here, we elaborate the value of the explicit pricing approach as 

escribed in Section 5.1.1 , and compare it with three benchmark 

ricing approaches. 

.3.1. Experimental design 

To determine the value of (explicitly) using a pricing optimiza- 

ion model within our approach, we benchmark three variants. The 

rst pricing benchmark reflects pure availability control, in which 

he provider can only decide whether to offer certain delivery op- 

ions or not. Thereby, all prices are set to the corresponding lower 

rices from the explicit pricing approach described in Section 5.1.1 . 

he second pricing approach equals the first, but prices are set 

orresponding to the higher prices from the explicit pricing ap- 

roach. The third pricing benchmark replaces solving an explicit 

ricing optimization problem in our approach by a simple pric- 

ng rule based on opportunity cost estimation, which mimics an 

dea followed by Ulmer (2020a) . If a delivery option’s calculated 

pportunity costs are low, its base price (as before the lower price 

oint used in the explicit pricing optimization) is set. If the oppor- 

unity costs of an option exceed this base price, the price is set 

o the opportunity costs. For calculating opportunity cost, Ulmer 

2020a) follows a definition by Yang et al. (2016) . They define op- 

ortunity cost as the difference between the values of the states 

hat result from rejecting a customer and those from accepting the 

ustomer (for a certain delivery option). In our benchmark study, 

e also follow this definition and calculate opportunity cost ac- 

ordingly, based on state values resulting from our approximation 
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Fig. 8. Offers and choices per customer segment - myopic and anticipatory - 1V_100. 
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pproach (see Section 4.2 ). We refer to the first benchmark as ‘AC- 

P-low’ (for ‘availability control with low base prices’), to the sec- 

nd benchmak as ‘AC-BP-high’ (for ‘availability control with high 

ase prices’), and to the third as ‘OCBP’ (for ‘opportunity costs 

ased pricing’). Further, we refer to our explicit pricing approach 

s ‘OP’ (for ‘original pricing approach’). 

We conduct the study on the same 300 instances for each set- 

ing as in Section 5.2.1 . We approximate state values, and thus 

lso the opportunity costs, by averaging the values of 15 samples 

cross a sample horizon of 120 minutes length. Based on the anal- 

sis in Section 5.2.2 , this has proven to be the best combination 

or the considered settings. In this way, we minimize the effects 

f bad opportunity cost estimation by sub-optimal sampling hori- 

on lengths/number of samples. Again, we measure performance 

y evaluating the average of the contribution margins, the number 

f accepted customer orders, the sum of revenues from shopping 

askets and from selling delivery options, as well as of the delivery 

osts. 

.3.2. Numerical results 

The obtained results are given in Fig. 9 . Although the results 

f the average contribution margins are close, the OP yields bet- 

er results than the benchmark approaches in nearly all settings. 

nly in the settings with 200 customers, with two as well as with 

hree vehicles, does the AC-BP-low yield a higher averaged CM; 

owever, the results of the OP are exceeded by less than 0.5% and 
873 
.005%, respectively. In the setting with 100 customers and three 

ehicles, the OCBP yields a less than 0.05% higher CM than the OP 

see Fig. 9a ). The OCBP, on average, accepts the most customer re- 

uests of all settings (see Fig. 9b ), but at most settings its average

SB falls below the other approaches’ RSB. Also, it yields a substan- 

ially higher DC for all settings and yields the highest RD in only 

hree settings, where it does not substantially exceed the RD of the 

P. In most instances the AC-BP-low accepts the lowest number of 

ustomer requests, also with substantially lower RD than the other 

pproaches, but it still accrues a comparably high RSB. It even ex- 

eeds the other approaches’ RSB in four settings. Also, the AC-BP- 

ow yields the lowest DC of all instances except one. 

.3.3. Analysis and insights 

The results in Section 5.3.2 show that the different pricing ap- 

roaches rely on three different levers to increase the CM, and that 

ach of the various approaches exploits those levers to a different 

xtent. The levers we observed are (1) increasing the overall rev- 

nue by setting higher prices where possible (mainly observed for 

he OCBP and the AC-BP-high), (2) increasing the overall revenue 

y preserving capacity for high-value customer orders (mainly ob- 

erved for the BP and AC-BP-low), and (3) reduce overall delivery 

osts by steering customer choices toward the most efficient de- 

ivery options and rejecting those requests that negatively affect 

outing efficiency (mainly observed for the AC-BP-low and OP). The 

CBP has the highest pricing flexibility, as prices originate from a 
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Fig. 9. Pricing benchmark II. 
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ontinuous range instead of being chosen from a predefined, finite 

et of price points. Therefore, this approach can exploit lever (1) 

he most (see Fig. 9d ) and hence can also accept the most cus-

omer requests. Still, regarding the CM, for most settings the OCBP 

erforms worse than the other approaches due to exploiting levers 

2) and (3) less effectively. This can be derived from the lower or 

nder-proportionally higher RSB (see Fig. 9c ), and from the over- 

roportionally higher DC (9e). 

The AC-BP-low and the AC-BP-high, in turn, have the lowest 

ricing flexibility. Thus, the AC-BP-low cannot exploit lever (1) as 

he much lower RD ( Fig. 9d ) shows. On the contrary, the AC-BP- 

igh yields a high RD, but cannot exploit lever (3) and, thus, also 

ields substantially higher delivery cost. Generally, the AC-BP-low 

s a performant approach regarding the exploitation of levers (2) 

nd (3). We observed the same for the OP, as well as recognizing 

hat the OP also exploits lever (1). In addition to exploiting lever 

1), the OP enables us to enlarge the provider’s service provision, 

s the OP can offer delivery of customer requests that the AC-BP- 

ow would deny and the customers can themselves decide whether 

o accept or reject the corresponding offer. 

. Conclusion and outlook 

In this paper, we investigated the SDD demand-management 

nd tour-planning problem, with special attention to explicitly 

ncorporating two types of required decisions, namely demand- 

anagement decisions and tour-planning decisions. The problem 

nder consideration is characterized by overlapping booking and 

ervice periods. This adds an online tour-planning component to 

he demand-management problem, which itself is computationally 

ntractable. Thus, it makes the overall problem substantially more 

ifficult to optimize than related problems dealt with in the 

iterature. 

We have developed a non-learning based solution approach 

hat provides integrated decision making for the two types of de- 

isions and does not require extensive offline learning. In this ap- 

roach, both decisions are anticipatory and based on the com- 

ination of two central ideas – multiple scenario approaches for 

nline tour-planning and approximation of state values – which 

s done by averaging across sampled trajectories, such as those 

nown from rollout algorithms. 

In the first part of our extensive numerical study, we assessed 

ow our approach performed at different levels of anticipation. The 

ssessment showed that anticipation can increase the contribution 

argin with as much as 10–50% in our settings, especially if deliv- 

ry resources are scarce (in a low ratio of vehicles to customers). 

hen we incorporated anticipation through sampling, we found 

hat appropriately limiting the length of the sample-horizon can 

mprove decision making. The main reason for this is that as the 

ength of the sample horizon increases, decisions are made with 

ncreasing uncertainty. This is especially relevant for practical set- 

ings where booking and service periods overlap, as in the SDD 

ase. If the sampling horizon is too long, anticipatory decisions are 

ased on tours that contain only sampled orders and no confirmed 

nes. 

In the second part of our study, we compared three different 

ricing approaches: pure availability control, our proposed explicit 

ricing approach, and a simple pricing rule based on opportu- 

ity cost. Comparing the different approaches, we found that as 

rice flexibility increases (from fixed prices to a limited number of 

ossible price points to possible prices from an unbounded con- 

inuous space), the quality of the resulting tours decreases. This 

emonstrates that the integrated state value approximation and 

ecision-making approach does indeed allow us to steer customer 

hoice toward efficient delivery options, while at the same time 

reserving capacity for high-value customer orders. Compared to 
875
he other two approaches, this one has the best ratios of number 

f customer requests accepted to the corresponding sum of rev- 

nues from shopping baskets, and delivery efficiency. Further, we 

ound the approach that accepts the most customer requests is not 

ecessarily the best in terms of contribution margin, as it yields 

he highest delivery costs. In practice, when choosing a pricing 

pproach, one has to examine closely which is more relevant for 

ong-term success – losing a customer’s goodwill due to being re- 

ected or due to higher delivery costs. 

We believe that our study’s results provide starting points for 

uture effort s in several directions. The first direction concerns 

nticipation in solving integrated demand-management and tour- 

lanning problems with overlapping booking and service periods. 

n future studies, it could be useful to examine hybrid anticipation 

pproaches that combine learning based and non-learning based 

ecision making. Thus, a good starting point would be to explore 

hether adding a previously learned end-of horizon valuation to 

he presented approach would improve its performance. The sec- 

nd direction concerns the pricing component of our approach 

nd the different variations we compared. Our results show that 

n increase in price flexibility leads to a decrease in cost effi- 

iency, which is a very interesting direction for deeper analysis, es- 

ecially when dealing with continuous explicit price optimization 

nd more complex customer choice models. The third direction 

oncerns an entirely different, more revenue management oriented 

iew. It would be very interesting to further investigate the hierar- 

hical demand-management decomposition approach we have de- 

eloped. Particularly, we could study how this approach performs 

n different environments and for different problems, e.g., with 

ore complex pricing and choice models, and whether it would 

hen still be possible to apply it in online algorithms. 

ppendix A. Literature reviews addressing integrated demand 

anagement and online tour planning 

In this section, we shortly discuss the existing surveys fea- 

uring integrated demand management and tour planning in 

ome-delivery applications in general. We first outline surveys 

ith a focus to demand management . Then, we discuss the re- 

pective literature with a focus on the tour-planning problem. At 

ast, we review literature that considers both perspectives in an 

ntegrative manner. 

Demand-management perspective – Agatz, Fleischmann, & 

an Nunen (2008) provide the first review on the distributional 

hallenges in e-fulfillment, including initial ideas to connect de- 

and management and tour planning. The authors name two 

eatures of e-fulfillment systems that enable demand manage- 

ent. Those are pricing flexibility and extensive availability of 

ata concerning purchasing behavior. In those two features, the 

uthors see the foundation for segment-specific pricing as well 

s promotion. In a later review, Agatz et al. (2013) compare the 

emand-management-related processes of a large e-grocer with 

hose prevalent in airline revenue management and elaborate sim- 

larities as well as decisive features of both concepts. Therewith, 

hey provide starting points for incorporating differentiated and/or 

ynamic slotting/pricing into home delivery business concepts 

ith a focus on the demand-management side. The same holds for 

lein et al. (2020) who review recent generalizations and advances 

f revenue management techniques in traditional applications and 

ew industry applications. They show how to transfer availability 

ontrol to AHD problem settings and present the corresponding 

P formulation. 

Tour-planning perspective – Archetti & Bertazzi (2021) consider 

he problems under consideration with a focus on tour-planning 

spects. They review recent advancement and challenges of home 

elivery systems. They see pricing as a measure to balance demand 
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Table B5 

Anticipatory solution approaches for i-DMVRPs in LMD. 

Authors Appli- Anticipatory Learning Objective OC 

cation DM TP based 

Asdemir, Jacob, & Krishnan (2009) AHD 
√ 

✗ analytical rev DPC 

Lebedev, Goulart, & Margellos (2021) AHD 
√ 

✗ analytical profit 
√ 

Dumouchelle, Frejinger, & Lodi (2021) AHD 
√ 

✗ 
√ 

profit - 

Koch & Klein (2020) AHD 
√ 

✗ 
√ 

profit 
√ 

Lang et al. (2021a) AHD 
√ 

✗ 
√ 

rev DPC 

Lang, Cleophas, & Ehmke (2021b) AHD 
√ 

✗ 
√ 

rev DPC 

Lebedev, Margellos, & Goulart (2020) AHD 
√ 

✗ 
√ 

profit - 

Ulmer & Thomas (2020) AHD 
√ 

✗ 
√ 

rev - 

Yang & Strauss (2017) AHD 
√ 

✗ 
√ 

profit 
√ 

Vinsensius, Wang, Chew, & Lee (2020) AHD 
√ 

✗ 
√ 

cost MCTS 

Angelelli et al. (2021) AHD 
√ 

✗ ✗ profit 
√ 

Campbell & Savelsbergh (2005) AHD 
√ 

✗ ✗ profit 
√ 

Giallombardo, Guerriero, & Miglionico (2020) AHD 
√ 

✗ ✗ profit - 

Klein, Mackert, Neugebauer, & Steinhardt (2018) AHD 
√ 

✗ ✗ profit 
√ 

Mackert (2019) AHD 
√ 

✗ ✗ profit 
√ 

Strauss, Gülpınar, & Zheng (2021) AHD 
√ 

✗ ✗ profit 
√ 

Yang et al. (2016) AHD 
√ 

✗ ✗ profit MCTS 

Chen et al. (2019) SDD ✗ 
√ √ 

accept - 

Chen, Wang, Thomas, & Ulmer (2020) SDD ✗ 
√ √ 

accept&fair - 

Ulmer (2020b) SDD ✗ 
√ √ 

accept - 

Ulmer, Mattfeld, & Köster (2018) SDD ✗ 
√ √ 

accept - 

Ulmer et al. (2019) SDD ✗ 
√ √ 

accept - 

Azi et al. (2012) SDD ✗ 
√ 

✗ profit - 

Côté et al. (2021) SDD ✗ 
√ 

✗ accept&cost - 

Klapp et al. (2018) SDD ✗ 
√ 

✗ cost&serv - 

Klapp et al. (2020) SDD ✗ 
√ 

✗ profit - 

Voccia et al. (2019) SDD ✗ 
√ 

✗ cost - 

Prokhorchuk et al. (2019) SDD 
√ 

✗ 
√ 

rev&penalty cost DPC 

Soeffker et al. (2017) SDD 
√ 

✗ 
√ 

accept&fair - 

Ulmer (2020a) SDD 
√ 

✗ 
√ 

rev DPC 
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mong favorable and unfavorable delivery time windows, but do 

ot further elaborate demand-management measures in particular. 

he same is true for the survey by Snoeck et al. (2020) . Although

he authors specifically address revenue management in AHD prob- 

em settings, they focus on the influences of potential extensions 

nd future developments on the tour-planning component only. 

oysen et al. (2021) survey research on home delivery problems 

ith a focus on newly emerged business concepts and Soeffker 

t al. (2021) discuss the related stochastic dynamic vehicle rout- 

ng problems (VRPs) and embed them into a prescriptive analytics 

ramework. Both consider pricing as an essential decision dimen- 

ion in existing business concepts that influences stochastic dy- 

amic vehicle routing respectively. 

Integrated perspective – The most recent and comprehensive sur- 

ey of related literature that integrates both of the previously dis- 

ussed perspectives, is the survey by Fleckenstein et al. (2022) . 

he authors provide a generalized problem definition and out- 

ine AHD and SDD applications, as well as literature on mobility- 

n-demand (MOD). They propose a high-level, generic MDP mod- 

ling formulation and outline typically involved customer choice 

odels. Further, they provide a comprehensive survey of gen- 

ral solution concepts and describe solution approaches for all 

nvolved subproblems, i.e., demand-management-related subprob- 

ems and tour-planning-related subproblems. Another holistic sur- 

ey is Waßmuth et al. (2022) . The authors review recent literature 

ealing with demand management in home delivery on the strate- 

ic, tactical and operational level and specifically differentiate be- 

ween the two demand-management levers offering and pricing . 

ppendix B. Tabular overview of anticipatory solution 

pproaches for integrated demand management and online 

our planning 

Table B.5 summarizes the literature that addresses anticipa- 

ory solution approaches for AHD and SDD in home-delivery ap- 
876 
lications, as well as literature that deals with demand manage- 

ent for such home delivery applications analytically. The sec- 

nd column shows for which applications, i.e., AHD or SDD, a so- 

ution approach is designed. In the next two columns, it is in- 

icated whether an approach involves anticipatory demand man- 

gement (DM) ( 
√ 

) and/or tour planning (TP) ( 
√ 

) or not ( ✗ ). The

ourth column shows whether the addressed anticipation is an- 

lytical, learning-based ( 
√ 

), or non-learning-based ( ✗ ). The fifth 

olumn summarizes the objectives addressed by an approach. The 

bserved objectives are the maximization of revenue (rev), profit 

profit), customer request acceptances (accept), fairness (fair), cov- 

rage of the service area (serv), the minimization of cost (cost), or 

 (hierarchical) combination of those objectives. Approaches that 

im at minimizing the number of rejected customer requests are 

ounted as those maximizing customer request acceptances. The 

ast column shows whether opportunity cost are considered ex- 

licitly and, if so, whether they are considered comprehensively, 

ccounting for displaced acceptances and variable fulfillment cost 

 

√ 

), or whether the displacement of expected revenue (DPC) or 

ariable fulfillment cost (MCTS) are considered only. 

ppendix C. MIP Formulation of the d-SDD-DMTP with 

rst-tier demand management 

The d-SDD-DMTP with accept/reject demand management is a 

eterministic profitable multi-trip vehicle routing problem with re- 

ease and due times (PVRPRDT). It is defined across nodes for the 

lready confirmed and not yet being delivered customer orders, a 

ode representing the current customer request, and nodes for all 

ampled customers. Additionally, a node c 0 that represents a cen- 

rally located depot with coordinates (x, y ) c 0 = (0 , 0) , is needed.

hus, the corresponding set of nodes N 
ω equals the following 

nion: C t ∪ { c t } ∪ N 
ω ∪ { c 0 } . For every confirmed customer order

nd for the current customer request, this set contains information 

bout the customer’s location (x, y ) c and their confirmed delivery 
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d s information about the customer’s location (x, y ) c , their request time 

t heir utility u i c for delivery options i ∈ I . Further, all sampled customers 

c  the longest available delivery span, t due c = t 
req 
c + max { l(i ) | i ∈ I} . The 

u o’s solution, it is always possible to offer them at least one, namely the 

l at it is always possible to feasibly reconstruct such a solution with the 

a

ates a chronologically ordered number of tours k ∈ K = 1 ..K. ζc c ′ repre- 
s to the location of customer order c ′ . ρc ′ is a customer order individual 

p ∈ N 
ω and equals a very high number M for all c ′ ∈ C t ∪ { c t } . Since C t 

o ut delays and dropped visits) is available, these penalties ensure that 

n . The parameter t describes the current decision period. The following 

d

x  

a , v ∈ V Delivery time at customer location c ′ 

on tour k of vehicle v 

A , v ∈ V Departure time of tour k of vehicle v 

B , v ∈ V Time of finishing tour k of vehicle v 

in the depot 

h is further explained below: 

 −
∑ 

v ∈V 

∑ 

k ∈K 

∑ 

c∈N ω 
x v k c c ′ ) · ρc ′ (C.1) 

s

∀ c ′ ∈ N 
ω \ { c 0 } (C.2) 

∀ v ∈ V, k ∈ K (C.3) 

∀ v ∈ V, k ∈ K, c ′ ∈ N 
ω \ { c 0 } (C.4) 

∀ v ∈ V, k ∈ K, c ′ ∈ N 
ω \ { c 0 } (C.5) 

∀ v ∈ V, k ∈ K, c ∈ N 
ω , c ′ ∈ N 

ω \ { c 0 } (C.6) 

∀ v ∈ V, k ∈ K (C.7) 

∀ v ∈ V, k ∈ K\{ K} (C.8) 

∀ v ∈ V, k ∈ K, c ′ ∈ N 
ω \ { c 0 } (C.9) 

(C.10) 

∀ v ∈ V (C.11) 

∀ v ∈ V, k ∈ K (C.12) 

∀ v ∈ V \ { V } (C.13) 

∀ v ∈ V, k ∈ K \ { K} (C.14) 
eadline t due c . For every sampled customer request, the set contain

 

req 
c , the reward their requested shopping-basket r c will bring, and t

 ∈ N 
ω are assigned a preliminary delivery deadline according to

nderlying idea is that if those customers are included in a scenari

ongest, delivery option when their request realizes. This ensures th

ctual demand management for value approximation. 

In the d-SDD-DMTP, a number V of homogeneous vehicles oper

ents the costs of travelling from the location of customer order c

enalty which equals the value of the shopping basket for all c ′ 
nly contains customer orders for which a feasible solution (witho

o confirmed customer order is dropped when solving the model

ecision variables are included in the model: 

 
v k 
c c ′ = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

1 if customer c ′ 
is served after 
customer c on 
tour k by vehicle v 

0 else 

∀ c, c ′ ∈ N 
ω : c � = c ′ , v ∈ V, k ∈ K

 
v k 
c ′ ≥ t ∀ c ′ ∈ N 

ω , k ∈ K

 
v k ≥ t ∀ k ∈ K
 
v k ≥ t ∀ k ∈ K

The d-SDD-DMTP can be formulated as the following MIP, whic

min 
∑ 

v ∈V 

∑ 

k ∈K 

∑ 

c∈N ω 

∑ 

c ′ ∈N ω 
x v k c c ′ · ζc c ′ + 

∑ 

c ′ ∈N ω \{ 0 } 
(1

.t. ∑ 

v ∈V 

∑ 

k ∈K 

∑ 

c∈N ω 
x v k c c ′ ≤ 1 

A v k ≤ a v k 0 

t req 
c ′ ·

∑ 

c∈N ω 
x v k c c ′ ≤ A v k 

t due 
c ′ + (1 −

∑ 

c∈N ω 
x v k 
c c ′ ) · M ≥ a v k 

c ′ 

a v k 
c ′ + (1 − x v k 

c c ′ ) · M ≥ a v k c + x v k 
c c ′ · τc c ′ 

A v k + 

∑ 

c∈N ω 

∑ 

c ′ ∈N ω \{ c 0 } 
x v k c c ′ · τc c ′ ≤ B v k 

B v k ≤ A v k +1 

∑ 

c∈N ω 
x v k c c ′ = 

∑ 

c∈N ω 
x v k c ′ c 

∑ 

c ′ ∈N ω \{ c 0 } 

∑ 

v ∈V 
x v 0 0 c ′ ≤ V 

∑ 

c ′ ∈N ω \{ c 0 } 

∑ 

k ∈K 
x v k 0 c ′ ≤ K 

∑ 

c ′ ∈N ω 
x v k 0 c ′ ≤ 1 

∑ 

c ′ ∈N ω \{ 0 } 
x v +1 0 
c 0 c ′ ≤

∑ 

c ′ ∈N ω \{ c 0 } 
x v 0 0 c ′ 

∑ 

c ′ ∈N ω \{ 0 } 
x v k +1 
0 c ′ ≤

∑ 

c ′ ∈N ω \{ c 0 } 
x v k 0 c ′ 
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1

The objective function (C.1) minimizes the overall travel costs 

nd the sum of the penalties of all dropped visits. Dropping a sam- 

led customer in the solution of the MIP means rejecting their 

equest. Therefore, (C.1) balances the increase in travel costs for 

isiting a sampled customer and their shopping basket value – if 

arginal costs to serve and displacement costs are higher than 

 customer’s shopping basket value, this customer request is re- 

ected. Constraints (C.2) enable dropping visits/rejection of cus- 

omer requests. Thus, in combination with the objective func- 

ion, this represents the first-tier demand management. Constraints 

C.3) –(C.8) are time restrictions, which ensure that a tour starts 

either before t , nor before all allocated customer orders have real- 

zed, that all customer orders will be served on time, that the du- 

ation of a tour is the sum of all travel times of that tour, and that

 vehicle can only start a new tour after having returned to the de- 

ot. Constraints (C.9) ensure flow conservation. Constraints (C.10) –

C.12) ensure that the number of available vehicles and the max- 

mum number of tours are not exceeded. Constraints (C.13) and 

C.14) are symmetry breaking constraints. 

This MIP formulation is a generalization of a profitable multi- 

rip vehicle routing problem (PVRPMT), which additionally consid- 

rs time restrictions. It is an adaption of the PVRPMT formula- 

ion of Chbichib et al. (2012) and of a multi-trip team orienteering 

roblem with time windows formulation by Voccia et al. (2019) . 

ppendix D. Feasibility repair 

lgorithm 1 Feasibility repair scenarios. 

1: φ ← Heuristic solution of P-VRPTW 

2: θ v (φ) ← tour of vehicle v according to solution φ
3: a v c ← Delivery time of customer c with vehicle v according 

to solution φ
4: for v in V do 
5: initialize first tour θ v 1 by adding depot c = 0 and customer or- 

der c with smallest a v c according to θ
v (φ) 

6: calculate current departure time: A v next ← a v c − τ0 c 
7: θ v next ← θ v 1 

8: φ v ← θ v next 

9: repeat 

0: θ v curr ← θ v next 

1: A v curr ← A v next 

2: L (θ v curr ) ← {} 
3: X(θ v curr ) ← {} 
878 
4: add not yet planned customer orders c of θ v (φ) to L (θ v curr ) 
with increasing a v c until t 

req 
c ≥ A v curr and amend X(θ v curr ) accord- 

ingly 

5: cut tour by adding depot return and calculate return time 

B v pre v 

6: θ v curr ← (A v curr , L (θ v curr ) , X(θ v curr )) 
17: append θ v curr to φv 

8: initialize next tour θ v next by adding depot c = 0 

9: add not yet planned customer order c with next smallest a v c 
according to θ v (φ) 

0: calculate latest departure time: A v next ← max { a v c −
τ0 c , B v pre v } 

1: until all customer orders c in θ v (φ) are planned to tours 
2: for tour in φv do 

3: update all a v tour c according to A v tour and travel times τc c ′ 
4: if a v tour c ≥ t due c for any sampled customer order c in θ v tour 

then 

5: remove c from θ v tour and update all left a v tour c according 

to A v tour and travel times τc c ′ 

6: if a v tour c ≥ t due c for any confirmed customer order c in θ v tour 

then 

7: repeat 

8: remove sampled customer order c with highest t req c 

9: update A v tour according to vehicle availability 

0: update all left a v tour c according to A v tour and travel 

times τc c ′ 
1: until there are no longer any late deliveries 

2: φ ← { φv : v ∈ V} 

ppendix E. Tour-planning decision and post-processing 

lgorithm 2 Tour-planning decision and post-processing. 

1: i ← customer choice 

2: S i 
t+1 

← regarding successor state 

3: φ∗ ← arg max { φω : ω∈ �i 
t } 
˜ V ω (S i 

t+1 
) 

4: 

5: for v ∈ V do 
6: for k ∈ K do 

7: Remove all sampled customers c ∈ θ v k 

8: for remaining customers c ∈ θ k do 

9: Update a v k c according to A v k and travel and service 

times τcc ′ 
0: θ ∗v k ← θ v k 

11: φ∗ ← { θ ∗v k : v ∈ V, k ∈ K} 
2: φt+1 ← φ∗



V. Klein and C. Steinhardt European Journal of Operational Research 307 (2023) 860–886 

A

F

ppendix F. Basic setting - Further numerical results 

1. Mean contribution margins - Boxplots and confidence intervals 
Fig. F1. Mean contribution margins across 300 simulation runs: Boxplots and 95%-confidence intervals. 
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p

F

2. Averaged results on customer segments, purchase choice, and 

rices paid 

3. Offers and choices per customer segment 
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Fig. F2. Offers and choices per customer segment - myopic and anticipatory - 1V_150. 

Fig. F3. Offers and choices per customer segment - myopic and anticipatory - 1V_200. 
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Fig. F4. Offers and choices per customer segment - myopic and anticipatory - 2V_100. 

Fig. F5. Offers and choices per customer segment - myopic and anticipatory - 2V_150. 

882 



V. Klein and C. Steinhardt European Journal of Operational Research 307 (2023) 860–886 

Fig. F6. Offers and choices per customer segment - myopic and anticipatory - 2V_200. 

Fig. F7. Offers and choices per customer segment - myopic and anticipatory - 3V_100. 
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Fig. F8. Offers and choices per customer segment - myopic and anticipatory - 3V_150. 

Fig. F9. Offers and choices per customer segment - myopic and anticipatory - 3V_200. 
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F
4. Rule-based benchmark results 
Fig. F10. Rule-based benchmark. 
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