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Abstract

The interaction between slender fiber- or rod-like components, where one spatial dimension
is much larger than the other two, with three-dimensional structures (solids) is an essential
mechanism of mechanical systems in numerous fields of science, engineering and bio-mechanics.
Examples include reinforced concrete, supported concrete slabs, fiber-reinforced composite
materials and the impact of a tennis ball on the string bed of a tennis racket. Applications can also
be found in medicine, where stent grafts are a commonly used device for endovascular aneurysm
repair, and in many biological systems such as arterial wall tissue with collagen fibers. The
different types of dimensionality of the interacting bodies, i.e., slender, almost one-dimensional
fibers and general three-dimensional solids, pose a significant challenge for typical numerical
simulation methods. Classical modeling techniques usually require a compromise between a
detailed description of the one-dimensional structures and overall model complexity.

The main focus of this work is the development of novel computational approaches to simulate
the interaction between fiber-like structures and three-dimensional solids. The key idea therein is
to explicitly model the slender components as one-dimensional Cosserat continua based on the
geometrically exact beam theory, which allows for an accurate and efficient description of the
slender fibers (beams). Since the dimensions of the coupled differential equations are not equal,
the resulting combined interaction problem is a mixed-dimensional beam-to-solid interaction
problem. Not only the governing equations of the beam but also the developed interaction schemes
are exclusively formulated along the one-dimensional beam centerline. From a mechanical point
of view, the resulting mixed-dimensional interaction of nonlinear geometrically exact beam finite
elements with classical continuum finite elements introduces a singular solution, similar to the
problem of a concentrated line load acting on a three-dimensional continuum. As one of the main
contributions of this thesis, theoretical considerations and numerical examples verify that this
singularity does not affect the usability of the proposed methods within the envisioned application
range.

Based on the considered applications, two different types of interacting geometry pairs can
be identified: line-to-volume, e.g., beams embedded in solid volumes, and line-to-surface, e.g.,
beams tied or in contact with the surface of a solid volume. Within the present work, coupling
(i.e., tying) of the beam centerline position to the underlying solid in line-to-volume problems
is investigated first. As a next step, also the rotations of the Cosserat continua are coupled to
the solid volume. This requires the construction of a suitable rotation (i.e., triad) field inside
the solid (Boltzmann) continuum. For both, positional and rotational coupling, mortar-type
methods, inspired by classical mortar methods from domain decomposition or surface-to-surface
interface problems, are employed to discretize the coupling constraints. A penalty regularization
is performed to eliminate the Lagrange multipliers from the global system of equations, which
results in a robust coupling scheme. This is verified by several numerical examples, in which
consistent spatial convergence behavior can be achieved and potential locking effects can be
avoided. The second half of this thesis extends the previously developed algorithms for line-
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to-volume coupling to line-to-surface coupling. This introduces the additional complexity of
having to account for the surface normal vector in the positional coupling constraints. It is
demonstrated that only a consistent handling of the surface normal vector leads to physically
accurate results and guarantees fundamental mechanical properties such as conservation of angular
momentum. Finally, a Gauss point-to-segment beam-to-solid surface contact scheme that allows
for the modeling of unilateral contact between one-dimensional beams and two-dimensional solid
surfaces is presented.

The previously mentioned building blocks constitute a novel mixed-dimensional beam-to-solid
interaction framework, which is verified by theoretical discussions and numerical examples
throughout this thesis. Possible extensions are outlined in this thesis and propose numerical and
algorithmic improvements as well as the treatment of other physical effects such as delamination
between embedded beams and the surrounding volume. However, already in the present state,
the presented framework is an efficient, robust, and accurate tool for beam-to-solid interaction
problems and can become a valuable tool in science and engineering.
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Zusammenfassung

Die Wechselwirkung zwischen schlanken faser- oder stabartigen Komponenten mit dreidimen-
sionalen Strukturen (Festkorpern) ist ein wesentlicher Mechanismus mechanischer Systeme in
zahlreichen Bereichen der Wissenschaft, des Ingenieurwesens und der Biomechanik. Beispiele
hierfiir sind Stahlbeton, verstirkte Betonplatten, faserverstiarkte Verbundwerkstoffe sowie der
Aufprall eines Tennisballs auf die Schlagfliche eines Tennisschldgers. Anwendungen finden sich
auch in der Medizin, wo Stentgrafts hiufig verwendete Implantate fiir endovaskulédre Aortenre-
peratur sind, und in vielen biologischen Systemen wie zum Beispiel Arterienwandgewebe mit
Kollagenfasern. Die unterschiedliche Dimensionalitét der interagierenden Korper, d. h. schlan-
ke, fast eindimensionale Fasern und allgemeine dreidimensionale Festkorper, stellt eine grofle
Herausforderung fiir typische numerische Simulationsmethoden dar. Klassische Modellierungs-
verfahren erfordern in der Regel einen Kompromiss zwischen einer detaillierten Beschreibung
der eindimensionalen Strukturen und der Gesamtkomplexitit des Modells.

Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung neuartiger Berechnungsansitze
zur Simulation der Wechselwirkung zwischen faserartigen Strukturen und dreidimensionalen
Festkorpern. Die Schliisselidee ist, die schlanken Komponenten basierend auf der geometrisch
exakten Balkentheorie explizit als eindimensionale Cosserat-Kontinua zu modellieren um eine
genaue und effiziente Beschreibung der schlanken Fasern (Balken) zu ermdglichen. Da die Di-
mensionen der gekoppelten Differentialgleichungen nicht identisch sind, ist das resultierende
kombinierte Interaktionsproblem ein gemischt-dimensionales Balken-Festkorper-Interaktions-
problem. Nicht nur die Balken beschreibenden Gleichungen, sondern auch die entwickelten
Interaktionsschemata werden ausschlieBlich entlang der eindimensionalen Balkenmittellinie for-
muliert. Aus mechanischer Sicht fiihrt die gemischt-dimensionale Interaktion von nichtlinearen
geometrisch exakten finiten Balkenelementen mit klassischen finiten Kontinuumselementen zu
einer singuldren Losung, dhnlich dem Problem einer konzentrierten Linienlast, welche auf ein
dreidimensionales Kontinuum wirkt. Als einer der Hauptbeitridge dieser Arbeit wird anhand von
theoretischen Uberlegungen und numerischen Beispielen nachgewiesen, dass diese Singularitt
die Anwendbarkeit der vorgeschlagenen Methoden innerhalb des angestrebten Anwendungsbe-
reichs nicht beeintriachtigt.

Basierend auf den betrachteten Anwendungen konnen zwei verschiedene Arten von intera-
gierenden Geometriepaaren identifiziert werden: Linien-zu-Volumen, z.B. in Festkorpern ein-
gebettete Balken, und Linien-zu-Flichen, z.B. an die Oberfliche eines Festkorpers verbundene
oder mit ihr in Kontakt stehende Balken. Im Rahmen der vorliegenden Arbeit wird zunichst die
fixe Kopplung der Position der Balkenmittellinie an den darunter liegenden Festkorper bei Linie-
zu-Volumen-Problemen untersucht. In einem néchsten Schritt werden auch die Rotationen der
Cosserat-Kontinua an das Festkorpervolumen gekoppelt. Dies erfordert die Konstruktion eines ge-
eigneten Rotationsfeldes innerhalb des festen (Boltzmann-)Kontinuums. Sowohl fiir die Positions-
als auch fiir die Rotationskopplung werden zur Diskretisierung der Kopplungsbedingungen mor-
tarartige Methoden eingesetzt, die sich an den klassischen Mortar Methoden der Gebietszerlegung



oder von Kontaktproblemen orientieren. Es wird eine Strafterm-Regularisierung durchgefiihrt, um
die Lagrange-Multiplikatoren aus dem globalen Gleichungssystem zu eliminieren, was zu einem
robusten Kopplungsschema fiihrt. Dies wird durch mehrere numerische Beispiele verifiziert,
bei denen ein konsistentes raumliches Konvergenzverhalten erreicht und potentielle Verstei-
fungseffekte vermieden werden konnen. In der zweiten Hilfte dieser Arbeit werden die zuvor
entwickelten Algorithmen fiir die Linien-Volumen-Kopplung auf die Linien-Flichen-Kopplung
erweitert. Dies bringt die zusitzliche Komplexitidt mit sich, dass der Oberflaichennormalenvektor
in den Kopplungsbedingungen beriicksichtigt werden muss. Es wird gezeigt, dass nur eine konsis-
tente Behandlung des Oberflichennormalenvektors zu physikalisch verwertbaren Ergebnissen
fiihrt und grundlegende mechanische Eigenschaften wie die Drehimpulserhaltung garantiert.
SchlieBlich wird ein GauB3-Punkt-zu-Segment Linien-zu-Flichen Kontaktschema vorgestellt,
das die Modellierung von Kontakt zwischen eindimensionalen Balken und zweidimensionalen
Festkorperoberflichen ermoglicht.

Die zuvor beschriebenen Bausteine bilden einen neuartigen gemischt-dimensionalen Balken-
Festkorper-Interaktionsansatz, welcher durch theoretische Diskussionen und numerische Beispiele
in dieser Arbeit verifiziert wird. Mogliche Erweiterungen werden skizziert und versprechen nu-
merische und algorithmische Verbesserungen sowie die Behandlung von weiteren physikalischen
Effekten wie z.B. Delamination zwischen den eingebetteten Balken und dem umgebenden Vo-
lumen. Allerdings ist der vorgestellte Ansatz bereits in seinem jetzigen Zustand ein effizientes,
robustes und genaues Werkzeug fiir Balken-Festkorper-Interaktionsprobleme und kann zu einem
wertvollen Werkzeug in Wissenschaft und Technik werden.
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1. Introduction

1.1. Motivation

The interaction of fiber- or rod-like components with three-dimensional structures is omnipresent
in our world. Often, these fiber components crucially determine the overall mechanical character-
istics of the combined problem, such as the strength and stiffness properties. Applications can
be found across several length scales from meters down to the range of nanometers as well as in
various fields, see Figure[I.1|for exemplary illustrations. In civil engineering, steel reinforcements
are embedded into concrete to improve its low tensile strength, or girders are used to support
concrete slabs, cf. [33, 82, [125] and Figure[[.1(a)] In mechanical engineering, fiber-reinforced
composite materials based on carbon, glass, polymer or metal fibers embedded in a plastic, metal
or ceramic matrix, make use of fibers with high stiffness embedded in softer matrix material
for improved mechanical properties. This results in lightweight structures that are used in var-
ious applications, such as spacecrafts, planes, cars or boats [, 74, [149]. Techniques such as
tailored fiber placement, cf. [89, 90, [132], or additively manufactured components, cf. [104],
allow for a very flexible and locally controlled reinforcement of the composite matrix, further
enhancing the properties of the resulting structures [8, [10, 21]. Applications are not limited to
embedded fibers. For example, the impact of a tennis ball on the string bed of a tennis racket,
see Figure [[.1(b)} is an application where the fibers not only improve the mechanical properties
of the combined system but are vital for the functionality itself. In bio-mechanics, stent grafts,
i.e., wire-like stent-structures fused with soft graft material, are a commonly used device for
endovascular aneurysm repair, cf. [23,140,47,56] and Figure At a different length scale,
fiber interactions play a key role for essential processes in countless biological systems, e.g.,
in the form of embedded networks (e.g., cytoskeleton, extracellular matrix, mucus), bundles
(e.g., muscle, tendon, ligament) [4, 52, 188}, [102]], or in arterial wall tissue with collagen fibers,
cf. [61,162] and Figure Computational models predicting the response of such structures
are essential for a time- and cost-efficient design and development of technical products, but also
to gain fundamental understanding of biological systems at length scales that are not accessible
via experiments. In the context of computational modeling, as considered in this thesis, the
embedded 1D structures will be referred to as fibers or beams, respectively, and the 3D structure
as solid.

1.2. Modeling approaches for beam-to-solid interaction
problems

Various modeling techniques exist to create a numerical model of the beam-to-solid (BTS)
problem, almost all of them being based on the finite element method. Figure exemplarily
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(a) (b) (c) (d)

Figure 1.1.: Occurrences of beam-to-solid interaction problems in real life applications and sys-
tems — Steel reinforcements embedded inside a concrete structure [(a)] impact of a
tennis ball on the string bed of a tennis racket [(b)] stent-graft employed for endovas-
cular aneurysm repair [(c)} and collagen fibers inside arterial wall tissue[(d)} Figure[(c)]
is reprinted from [54], permissions granted under the Creative Commons (CC BY) li-
cense. Figure[(d)]is reprinted from [62] by permission from Springer Nature Customer
Service Centre GmbH.

illustrates three different modeling techniques on the basis of the same physical problem of three
fibers being embedded inside a solid material matrix, with the modeling complexity increasing
from left to right.

One common modeling approach is based on homogenized, anisotropic material models for the
combined fiber-matrix structure [1[149], cf. Figure[1.2(a)} This widely used approach is appealing
since, e.g., no additional degrees of freedom are required to model individual fibers, and existing
simulation tools can be used as long as they support anisotropic material laws. However, such
models cannot give detailed information about the interactions between fibers and surrounding
matrix as, e.g., required to study mechanisms of failure. Moreover, the fiber distribution in the
solid has to be sufficiently homogeneous and a separation of scales is required, i.e., the fiber
size has to be sufficiently small as compared to the smallest dimension of the overall structure.

(a) b)

Figure 1.2.: Illustration of various beam-in-solid modeling techniques for the same physical
problem of a material matrix with three straight embedded fibers — homogenized 3D
model [(a)} 1D beams overlapping with 3D volume [(b)| and full 3D model The
modeling complexity increases from left to right. Figure is taken from the author’s
article [135]], permissions granted under the Creative Commons (CC BY) license.



1.2. Modeling approaches for beam-to-solid interaction problems

Eventually, when modeling new fiber arrangements, the homogenization step inherent to these
continuum models requires sub-scale information, e.g., provided by a model with resolved fiber
geometries. The main complexity in this approach lies in the accurate homogenization of the
fibers and the matrix material. As the focus of this thesis lies on the development of BTS coupling
schemes, where the beams are modeled explicitly, the homogenization approach will not be
discussed in more detail.

Another modeling approach consists of fully describing the fibers and surrounding solid
material as 3D continua, cf. Figure This leads to a surface-to-surface coupling problem at
the 2D interface between fiber surface and surrounding solid. In the context of the finite element
method, these surfaces can be tied together by either applying fiber and solid discretizations
that are conforming at the shared interface or via interface coupling schemes accounting for
non-matching meshes, such as the mortar method [[109, (111} 112, [115]. The creation of the finite
element mesh with explicit boundaries at the interface between beam surface and solid can be a
non-trivial task. Alternatively, extended finite element methods (XFEM) [[101] or immersed finite
element methods [86, 87, 120] can be used to represent 2D fiber surfaces embedded in an entirely
independent background solid mesh. Therefore, a very simple, in many cases even structured
Cartesian finite element mesh can be employed. While such fully resolved modeling approaches
allow for studying local effects with high spatial resolution, the significant computational effort
associated with these models prohibits their usage for large-scale systems with a large number of
slender fibers.

The class of applications considered in this thesis typically involves very slender fibers. In
this regime it is well justified, and highly efficient from a computational point of view, to
model individual fibers as beams, e.g., based on the geometrically exact beam theory [[19, 38,
96, 199, [117, 129-131]], which is known to combine high model accuracy and computational
efficiency [14, 119]. Based on the fundamental kinematic assumption of undeformable cross-
sections, such beam models can be identified as 1D Cosserat continua embedded in 3D space with
point-wise six degrees of freedom to describe the cross-section position (three positional degrees
of freedom) and orientation (three rotational degrees of freedom). In some application cases, it can
be beneficiary to impose additional constraints on the local deformation modes of the 1D Cosserat
continua, e.g., vanishing shear or torsion deformations [96,97,99,1145]. Employing such 1D beam
theories to model the fibers interacting with a 3D solid results in a mixed-dimensional interaction
problem between 1D Cosserat continua and a 3D Boltzmann continuum, which is illustrated in
Figure[I.2(b)] A variety of mixed-dimensional interaction approaches exist in the literature, most
of them investigating the application case of embedded fibers inside a solid volume. Early work
on 1D fibers embedded in 3D structures has been carried out in the context of reinforced concrete
in [10S], with the restriction that the reinforcements have to align with a parameter coordinate of
the solid element. In [34], this approach was extended to straight reinforcements with arbitrary
directions relative to the solid elements, and in [44)} |50, [116] also curved reinforcements are
considered. All these works do not introduce additional degrees of freedom for the fibers, but
instead incorporate the fiber stiffness contributions into the stiffness matrices of the solid elements.
Alternatively, each fiber can be described by its own set of degrees of freedom, which introduces
the need for kinematic coupling constraints acting on the fibers and solid. In [[72], a cut finite
element method (CutFEM) approach is employed to embed 1D fiber reinforcements into a 3D
matrix material. All of the previously mentioned works on 1D-3D interaction involve truss /
string models, i.e., 1D structural models accounting only for internal elastic energy contributions
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from axial tension. Work on the mixed-dimensional interaction between beams, i.e., full Cosserat
continua, and solids is much rarer. In [43]], collocation along the beam centerline is applied
to couple beams with a surrounding solid material. In a very recent approach [73], the full
mixed-dimensional BTS coupling problem involving positions and rotations has been addressed
for the first time. In this contribution, the coupling constraints between the 1D beam and the
3D solid volume are formulated on the surface of the beam and are subsequently projected
onto the beam centerline considering a Taylor series expansion of the solid displacement field.
The coupling of the two directors spanning the (undeformable) beam cross-section with the
underlying solid continuum together with the coupling of the cross-section centroids results in a
total of nine coupling constraints. One specific focus of this interesting contribution is a static
condensation strategy, which allows to eliminate the associated Lagrange multipliers and the
beam balance equations from the final, discrete system of equations. The requirement of a C'!-
continuous spatial discretization of the solid domain, as resulting from the proposed condensation
strategy, is satisfied by employing NURBS-based test and trial functions. The approach recently
presented in [85] combines the techniques from Figure and Figure by using a 3D
representation of the beams in zones of interest and 1D structural models otherwise. A 1D beam
to 2D surface contact scheme is presented in [77], however, there the solid surfaces are assumed
to be rigid, which heavily limits the applicability within real life engineering problems. Moreover,
mixed-dimensional coupling can also be found in multi-physics scenarios, e.g., between beams
and a surrounding fluid field, as relevant for fluid-structure-interaction (FSI) problems, which
has been considered in some recent contributions [33) [144]. Another interesting application
for mixed-dimensional coupling has been presented in [79], where vascular tumor growth is
simulated by coupling the 1D vasculature to the surrounding 3D tissue.

1.3. Research objective

Structural beam theories feature very desirable properties for modeling the slender fibers involved
in the typical application cases considered in this thesis. Therefore, this thesis aims at developing
mixed-dimensional finite element interaction schemes for BTS interaction problems, where the
beams are explicitly modeled using 1D beam finite elements, while the solid is modeled using 3D
continuum finite elements. As outlined in Section this topic has been part of scientific and
industrial applications for many years. However, a truly general and robust framework for large
deformation mixed-dimensional BTS interactions is still missing.

1.3.1. Specification of requirements

This section lists the most important requirements for the development of a general BTS interaction
framework, where the beams are modeled using 1D beam finite elements.

Clear definition of the modeling assumptions and application range As with almost
every mathematical model of a physical problem, the modeling assumptions have to be
clearly stated. This is especially important in the considered case of BTS problems, as the
mixed-dimensional nature of the considered interactions between 1D beams and 3D solid
limits the application range compared to a classical full 3D continuum representation for
beams and solid.
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Accuracy The inevitable introduction of modeling errors due to the mixed-dimensional coupling
shall not degrade the ability of the developed finite element schemes to accurately predict
the quantity of interest.

Numerical and model creation efficiency Employing a 1D beam theory increases the nu-
merical efficiency compared to a full 3D description of the beams. The developed BTS
interaction algorithms have to be designed and implemented in such a way that they do not
offset this increased numerical efficiency. Furthermore, efficiency also refers to a drastically
simplified model creation process, compared to full 3D surface coupled models. To allow
for a flexible mesh creation process, the proposed algorithms shall exhibit the capabilities
to deal with general configurations of the beams and solid, i.e., the placement of the beam
finite elements shall not be restricted to align with solid element edges.

Handling of non-matching discretizations The previous requirement already states that
the BTS interaction algorithms have to be able to handle general, i.e., non-matching, dis-
cretizations of the beams and solid. In the case of BTS coupling (mesh tying) applications,
this allows for a flexible mesh creation process. Even more importantly, this is a require-
ment to allow for application cases where the beams are in contact with the solid, i.e., the
configurations change relative to each other over the course of the simulation, thus resulting
in inevitably non-matching grids.

Compatibility The developed BTS interaction methods shall be compatible with various finite
element formulations for the beams and the solid, e.g., mixed / hybrid elements or isogeo-
metric discretizations based on non-uniform rational B-splines (NURBS). This allows for
the employment of modern finite element technologies developed for pure beam or pure
solid problems in combination with each other.

Flexibility The developed finite element procedure and code framework should consist of
clearly distinguishable logical units that can be combined for specific requirements of the
considered applications. This includes that parts of the developed code framework can also
be used for other mixed-dimensional interaction applications, e.g., embedded beams in an
incompressible fluid field.

1.3.2. Proposal for mixed-dimensional beam-to-solid interaction
framework

This thesis describes novel mixed-dimensional interaction schemes between 1D beam finite
elements and 3D solid finite elements, addressing all of the aforementioned requirements. To the
author’s knowledge, this distinguishes the proposed formulations from all existing approaches
available in the literature. The most important novel scientific contributions of the presented
approaches include:

* the first successful implementation of line-to-volume mortar-type coupling approaches for
embedded 1D fibers inside a 3D solid volume.

- See Chapter {]and [[135]] for the positional coupling constraints, i.e., a coupling of the
beam centerline positions to the underlying solid volume.
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— See Chapter 5] and [138] for the positional and rotational coupling constraints, i.e., a
coupling of all deformation modes of the 1D Cosserat continua representing the beam
to the underlying solid volume. This is also the first time, that mortar-type methods
are employed to discretize rotational coupling constraints.

* an elaborate discussion and analysis of the modeling assumptions introduced by a mixed-
dimensional coupling in solid mechanics, see Chapter |3| and [135} [138]. This includes
an analysis of possibly singular solutions as well as a clear definition of the envisioned
application range.

* the first successful implementation of line-to-surface mortar-type coupling approaches for
consistent coupling of 1D fibers to the 2D surface of a 3D volume, see Chapter | This
includes a novel analysis of the conservation of momentum properties for line-to-surface
coupling problems where, in the continuous setting, the line is offset from the surface in
surface normal direction. This can also be easily adapted to similar surface-to-surface mesh
tying problems.

Summing up, the methods proposed in this thesis combine existing finite element discretization
techniques for beam and solid formulations by applying existing ideas from other applications
such as surface-to-surface mesh tying / contact. This allows for a more efficient and general
treatment of a broad range of BTS interaction problems, thus for the first time tapping the full
potential of a truly general mixed-dimensional BTS interaction framework.

1.4. Outline

The methods and algorithms in this thesis are organized in a way to systematically present the
building blocks for a general BTS interaction framework. Thus, the remainder of this thesis is
organized as follows.

In Chapter 2| the relevant governing equation of nonlinear solid mechanics and structural beam
theories are outlined. This includes an overview on the mathematical treatment of finite rotations
as required for the employed beam theories. In addition, the basic concepts of the finite element
method for the considered beam and solid formulations are reviewed in a very general manner.
Furthermore, the general procedure of combining the individual beam and solid problem, by
adding constraints via the Lagrange multiplier method, is presented.

Chapter [3] presents a general classification of BTS interaction problems, which will also be used
to split the presented methods and remaining structure of this thesis. Moreover, an elaborated
discussion regarding the modeling assumptions and envisioned application range of the presented
BTS interaction methods is given.

The application case of fibers embedded inside a solid volume is presented in Chapter 4] In this
chapter only positional coupling between the beam centerline and the solid volume is considered.
The numerical integration procedure (as will also be used for all other presented BTS cases) is
outlined and investigated. Furthermore, some important aspects of parallel evaluation of the BTS
coupling terms are presented. Finally, the proposed methods are validated and illustrated with
several numerical examples.
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Chapter [5| presents an additional building block for BTS coupling problems, the enforcement of
constrained rotations between the beam cross-section and the solid. The theoretical and numerical
considerations in this chapter are presented based on beams embedded inside a solid volume,
1.e., the extension of the previous chapter to couple positions and rotations between the beams
and the surrounding solid. Rotational coupling requires a suitable orthonormal triad field to be
defined within the solid volume. Various variants to construct this triad field are investigated
and compared to each other. Selected numerical examples are presented, to verify the proposed
methods.

In Chapter [6] the case of beams tied to a solid surface is considered. The presented method
employs several of the building blocks presented in the previous two chapters and extends them to
account for the surface normal distance between the beam and the solid surface. Various variants
of the coupling equations are presented and compared by investigating some basic mechanical
principals such as conservation of angular momentum. Furthermore, this chapter includes a
definition of a suitable solid surface triad field to couple rotations of the beam cross-section to the
solid surface. Again, numerical examples are presented to validate the proposed approach and
illustrate its applicability to multi-physics problems.

In Chapter[7] an unilateral contact formulation between 1D beams and 3D solids is presented.
This topic is part of ongoing research, however, the presented examples verify and illustrate a
maturity of the presented BTS contact scheme.

Finally, Chapter [§] concludes this thesis by summarizing the most important results and accom-
plishments. Furthermore, an outlook on extensions and further improvements of the presented
BTS interaction schemes is presented.






2. Governing equations and finite
element formulations

In this chapter, the governing equations for the employed solid and beam formulations are
reviewed. Moreover, a recapitulation of the basics of the finite element discretization of both the
solid formulation and the beam formulation, as well as general interactions between them, is given.
As the focus of this thesis is the development of BTS interaction schemes, the purpose of this
chapter is to give the reader a general understanding of the underlying physics and discretization
techniques and to introduce an appropriate theoretical basis for the proposed BTS interactions.
The references throughout this chapter refer the interested reader to more extensive literature on
the aforementioned topics.

All presented BTS interaction schemes in this thesis are time-independent, i.e., the interaction
conditions and discretized interaction terms are equal for dynamic and quasi-static problems.
Therefore, without loss of generality, only the quasi-static governing equations are stated in this
chapter and throughout this thesis. For the dynamic governing equations of the solid and beam
formulations the interested reader is again referred to the corresponding literature.

2.1. Solid mechanics

A brief introduction to classical continuum solid mechanics is given in this section. This section
is not intended to give an elaborate review of continuum mechanics, but rather give insight to the
necessary theoretical basics for the proposed BTS interaction schemes. The interested reader is
referred to the corresponding literature, e.g., [9, 27,160, 180, [128]].

2.1.1. Kinematics

The basic kinematic relationships describing the deformation of the considered solid bodies are
visualized in Figure A Cartesian frame [e}, e,, e,] is employed as a fixed frame of reference.
The solid is modeled as a 3D Boltzmann continuum, represented by the open set 5 C R?
in the reference (material) configuration and by Q2 C R? in the deformed (current / spatial)
configuration. Throughout this thesis, the subscript (-) indicates a quantity in the reference
configuration. In the reference configuration, a material point on the solid can be identified by its
reference position X° € R3. The current position 25 € R? is related to the reference position
through the displacement field u® € R? via

2% (X°) = X° +u® (X°). 2.1)

The (material) deformation gradient F' € R3*3 serves as a fundamental measure of deformation
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Figure 2.1.: Kinematics of a solid continuum, the reference (left) and current (right) configuration.

and strain in the solid continuum. It is defined as the partial derivative of the current configuration
with respect to the spatial configuration, i.e.,
0x®

F=—"5 2.2)

The deformation gradient is a so-called two-point tensor (or push-forward operator), i.e., it
represents a mapping of the reference configuration to the current configuration. This can be
interpreted in a geometric way: an infinitesimal line element AX® in the reference configuration
corresponds to the current line element Az® via

Az® = FAXS. (2.3)

Assuming bijectivity and smoothness of the deformation, the inverse of the deformation gradi-
ent F~' is well-defined. This guarantees a positive determinant of the deformation gradient,
ie., J = det £ > 0. The determinant of the deformation gradient, also referred to as the Jacobian
determinant of the deformation, represents the relation between an infinitesimal volume element
in the reference and the current configuration, i.e.,

dV =det £ dV = J dVW,. (2.4)
Finally, the mapping between infinitesimal oriented area elements is described by
dA = JF T dA, = cof FdA,. 2.5)

Here, the infinitesimal oriented area elements are interpreted as vectors dA, = dA4yIN and dA =
dAn, where IN and n denote the unit normal vectors of the area element in the reference and
current configuration, respectively. Furthermore, cof F' denotes the cofactor of F'. Equation
is commonly referred to as Nanson’s formula.

The polar decomposition theorem can be applied to split the deformation gradient into a
volume-preserving rigid body motion part and a volume-changing part, i.e.,

F=RU=vR. (2.6)

Here U € R3*3 and v € R3*? are symmetric positive definite second-order tensors also referred
to as the right (material) and left (spatial) stretch tensors, respectively. Furthermore, R € SO3 is

10



2.2. Beam mechanics

a second-order rotation tensor. For a more detailed discussion on the properties of rotation tensors
see Section 2.2.1land the references therein.

In the variational formulation for the solid continuum, the Green—-Lagrange strain tensor £ is
used as strain measure and is defined as

_Lprr_
E=(E'F-1), @.7)

with I € R**3 being the 3D second-order identity tensor. The Green—Lagrange strain tensor is
objective, i.e., it is invariant with respect to an arbitrary rigid body motion.

2.1.2. Variational formulation

The variational formulation of the quasi-static balance equations serves as a basis for the finite
element method, resulting in the solid contribution W to the total virtual work. A Lagrangian
formulation is used, i.e., all field variables refer to the reference configuration. Hence, the
integration of the field variables is performed over the reference volume €25 and its boundary 95
The reference surface 9§25 of the solid volume can be divided into the Dirichlet and Neumann
boundary surfaces, I', and I',, respectively. In the current configuration they are denoted as -,
and y,.. Since the variation along the Dirichlet boundary I', vanishes, the only remaining surface
integral in the variational formulation is over the Neumann boundary I',. The virtual work 6\
of the solid is given by

5W3:/ §:5ﬁdv0—/ b, - ou’ dVj —/ t, - du’dAy, (2.8)
a3 a5

o
(. N

0w oW
where ¢ denotes the variation of a quantity and S € R**3 represents the second Piola-Kirchhoff
stress tensor, which is the energy-conjugate to the Green—Lagrange strain tensor. Contributions
to the external virtual work §WS, result from the prescribed body load b, € R? and surface
traction £, € R3, both defined in the reference configuration. For simplicity, a hyperelastic
material with the strain energy function W(E) is assumed. The strain energy function relates to

the second Piola—Kirchhoff stress tensor as follows:

OV (E)

S= OE

(2.9)

Throughout this thesis a hyperelastic material model is employed for the solid, although this
is not a requirement of the presented BTS interaction schemes. Other material models (e.g.,
elasto-plastic solids) can be directly used in combination with the presented BTS interaction
schemes.

2.2. Beam mechanics

The main aspect of this thesis is to develop interaction algorithms between 3D solid (Boltzmann)
continua and 1D Cosserat continua. A Boltzmann continuum has three local degrees of freedom,

11



2. Governing equations and finite element formulations

i.e., the position of a material point in a suitable 3D coordinate system. Cosserat continua, on
the other hand, have six local degrees of freedom, three positional ones and three rotational ones.
The three positional degrees of freedom can be interpreted similar to the degrees of freedom in a
Boltzmann continuum, as they describe the spatial position of a material point. The additional
three rotational degrees of freedom describe the spatial orientation of a material point. Thin
slender structures, i.e., beams, can be efficiently modeled as Cosserat continua based on structural
beam theories. The considered 3D large deformation beam theories, as well as the BTS rotational
coupling interactions, require a consistent treatment of finite rotations. Therefore, in the next
section a short overview on the theory of large rotations is given. Furthermore, an overview of the
beam theories employed in this thesis is given in Section [2.2.2]

2.2.1. Large rotations

This section gives a brief overview of the mathematical treatment of finite rotations as required by
the employed beam theories and the formulation of rotational coupling constraints in Chapter [5}
For a more comprehensive treatment of this topic, the interested reader is referred to the literature,
e.g., [18, 131,163,168, 99,118, [130].

Let us consider a rotation tensor

A=lg,.9,.9,] € SO’ (2.10)

where SO? is the special orthogonal group and the base vectors g, form an orthonormal triad,
mapping the Cartesian basis vectors e; onto g . In the followmg, a rotation pseudo-vector ¥
is used for its parametrization, i.e., A = A (1,0) The rotation vector describes a rotation by an

angle ¢ = Hg H around the rotation axis e, = 1/ Hg H The parametrization can be given by the
well-known Rodrigues formula [[11]
A(Wp) =exp (S (¥)) = L +sinv'S (e,) + (1 —cost)) S* (ey) , (2.11)

where exp(+) is the exponential map. Furthermore, S € so® is a skew-symmetric tensor, where s0®

represents the set of skew-symmetric tensors with S (a)b=a x bV a,b € R>. The inverse of
the Rodrigues formula (2.11)), i.e., the rotation vector as a function of the rotation tensor, will be
denoted as 1)(A) = rv(A) in the remainder of this thesis. In practice, Spurrier’s algorithm [133]]
can be used for the extraction of the rotation vector.

Two triads A,(%p,) and Ay(9,), with their respective rotation vectors 3, and %, can be
related by the relatlve rotation A21 (1,/) ) The relative rotation is given by

As(h,) = Ay (P, )AL (W) & Ay(¥,) = Ay(h,)A, (Ql)T7 (2.12)

with the identity AT = A7! for all elements of SO3. Thus, the (non-additive) rotation vec-
toryp, =1v (Ayy) # 4, — 9, describes the relative rotation between A, and A,.

In a next step, the infinitesimal variations of the rotation tensor shall be considered, which can
be expressed either by an infinitesimal additive variation 93 of the rotation vector

d
A= G| A ew) ==

5ip, (2.13)

12



2.2. Beam mechanics

or by a infinitesimal multiplicative rotation variation 68, also denoted as the spin vector:

d
A=+ A(00)A () = S(30)A (). (2.14)
€|z - -
While the definition of the multiplicative rotation variation (2.14) can often be found in literature,
e.g., in [38} 168, [131], the notation introduced for the additive rotation variation (2.13)) simply
represents the standard definition of partial differentiation, which is based on additive increments.
With the relation above and the definition of .S, the variations of the triad basis vectors o g, read

5&, =00 x g, (2.15)
The infinitesimal additive and multiplicative rotation vector variations can be related according to
op =T (9)o0, (2.16)

where the transformation matrix T'(+)) [131] is defined as

?MbT -

L ¥
T(y) = pee —38®) + (_ w"w’) (2.17)

Y
2tan (5)
In [94]], the objective variation J, of a spatial quantity defined in a moving frame A, is defined
as the difference between the total variation and the variation of the base vectors of the moving

frame. In the context of rotational coupling constraints this will be required when expressing the
objective variation of a relative rotation vector ¥,

50%21 - 5$21 o 5Q1 X ﬁgl = I(ﬂgl)((SQg - 5Q1) (218)

For a detailed derivation of this expression for the objective variation the interested reader is
referred to [94].

Remark 2.1. Via right-multiplication of (2.17) with the rotation vector 1 it can easily be shown
that 1) is an eigenvector (with eigenvalue 1) of T' and also of T ie., T =1 and Tsz .
This property will be beneficial for derivations presented in subsequent sections. Every vector
parallel to 1) is also an eigenvector of T'. This can be interpreted in a geometrical way: If the
additive increment 0% to a rotation vector ¥ is parallel to the rotation vector, i.e., d3 = dbe,
and ¢ = ¢3¢, the resulting compound rotation ¥ + 09 = (¢ + 1)) e, is still defined around
the rotation axis e,;. In this case, the rotation increment is a plane rotation relative to A (1), and
the multiplicative and additive rotational increments are equal to each other, d3 = 46.

Remark 2.2. In addition to A, the symbol R will also be used in this thesis to represent rotation
tensors.

2.2.2. Geometrically exact beam theory

The beams employed in this thesis are modeled as 1D Cosserat continua embedded in 3D space
based on the so-called geometrically exact beam theory, e.g., [19, 38}, 96, 99, 117, [129-131]],
which in turn builds upon the kinematic assumption of plane, rigid cross-sections. Figure
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2. Governing equations and finite element formulations

Figure 2.2.: Kinematics of a geometrically exact beam. Figure is taken from the author’s arti-
cle [[135], permissions granted under the Creative Commons (CC BY) license.

shows the reference and current configuration of a beam without any additional kinematic
assumptions, i.e., a general shear and torsion deformable beam. For illustration purposes, the
reference configuration shows a straight beam, but unless stated otherwise, the presented beam
theories can also be applied to beams with initial curvature. The complete beam kinematics
can be defined by a centerline curve r(s) € R? connecting the cross-section centroids, and a
field of right-handed orthonormal triads A®(s) := [g%(s), g5(s), g5(s)] = AP(¢°(s)) € SO
defining the orientation of the cross-sections. Here s € [0,L] =: QF C R is the arc-length
along the undeformed beam centerline and A” (gB (s)) is a rotation tensor, which maps the
global Cartesian basis vectors e; onto the local cross-section basis vectors Qf (s) = APe,
for i = 1,2, 3. Therein, 1° € R? is the rotation pseudo-vector chosen as parametrization for
the triad, which defines the triad based on the formula (2.11)). The triad field in the reference
configuration is denoted as A5 (s) := [Qfo(s)’QSO(s)’Q§o<3)] = Ag(gﬂo(s)), and the relative

rotation between the triads in reference and current configuration is denoted as R® := AP(A5)T.
According to the fundamental kinematic assumption of undeformable cross-sections, the kinematic
quantities X7, 2% u? € R3, i.e., reference position, current position and displacement of an
arbitrary point within the cross-section, are functions of the centerline coordinate s as well as the
cross-section coordinates «, § € R:

X5(s, 0, 8) = ro(s) + agy,(s) + Bgy, (s), (2.19)
z8(s,a, B) = r(s) + ag; (s) + Bg} (), (2.20)
(s, 0, 8) = ub(s) +a (g5(s) — g8 () + 8 (¢5(s) — g5, (9)) . @2D)
where gf = r — r, is the displacement of the beam centerline.

In this thesis, three different geometrically exact beam theories are employed: the Simo-—
Reissner beam theory, which describes a general shear and torsion deformable beam, the Kirch-
hoff—-Love beam theory for shear-stiff beams, and a torsion-free beam theory for beams with
negligible shear and torsion. For many envisaged applications the Kirchhoff-Love and torsion-
free beam theories are of particular interest as they are an efficient and accurate model for thin
fibers. However, the torsion-free beam theory can only be applied if the considered beam problem
satisfies certain properties, cf. Section The internal elastic energy Hflt ) for each beam
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2.2. Beam mechanics

theory will be stated in the following subsections. The beam contribution to the global virtual
work reads

OWE = 0115, () =W (2.22)
76Wi§t
Here, the virtual work of external forces and moments is summarized in o Welf( 60" To improve

readability of the following equations, derivatives with respect to the beam centerline coordinate s
will be represented by ()’ := 0(+)/0s throughout this section.

2.2.2.1. Simo—Reissner beam theory

Of the three beam theories considered in this thesis, the Simo—Reissner (SR) beam theory
describes the most general case. It does not introduce additional kinematic constraints on the
beam, besides the assumption of rigid cross-sections. This results in shear-deformable beams
capturing six modes of deformation: axial strain, two bending modes, torsion and two shear modes.
The cross-section kinematics can be described with six degrees of freedom: the spatial position
of the cross-section 7(s) and its rotation vector t°(s). Based on a hyperelastic stored-energy
function according to o

1P sr = / I8 sr ds, (2.23)
0B
with '
M =5 (L'CL+92°C,Q), (2.24)

the material force stress resultants and moment stress resultants can be derived, i.e., F =
8Hf]tvsR /OL and M = OIIS /0. Axial tension and shear strains are represented by the

material deformation measure I' := L(z,bB ,r') = AP Tz’ — e, € R3. Torsion and bending strains
are represented by the material curvature vector Q € R?, which in turn follows from Q x a =
AB'AP'a Y a € R3. This implies that AB'AB" ¢ 503 which holds true for all A® € SO3.
For a more detailed derivation of the strain resultants within the Simo—Reissner beam theory
the interested reader is referred to [93],99]]. Using the rotation vector parameterization of the
triad field A®(1)®(s)), as discussed above, the resulting curvature vector can be formulated

as a function of 9" and gB/, ie, Q = Q(gﬁglg/). The constitutive matrices C. € R3*3
and C,, € R3*3 are defined as

EA 0 0 Gl 0 0
C.=|0 GA, 0 and C,,=| 0 EL 0|, (2.25)
0 0 GAy 0 0 EI

where EP is the Young’s modulus, G the shear modulus, A the cross-section area, A, and As the
effective shear areas, and I, I5, I3 are the polar and planar second moments of area, respectively.

2.2.2.2. Kirchhoff-Love beam theory

The Kirchhoff-Love (KL) theory introduces an additional kinematic constraint, restraining the
shear deformation of the beam. This is equivalent to the requirement that the first cross-section
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2. Governing equations and finite element formulations

basis vector gf is parallel to the centerline tangent r’/, or

go-r'=0 A gi-r'=0 (2.26)
While the position of the cross-section is described in the same manner as for the Simo—Reissner
beam, the additional constraints reduce the number of independent rotations to one, thus a
total of four degrees of freedom remain to fully describe the cross-section. The sole remaining
rotational degree of freedom ¢(s) € R describes the twist rotation of the cross-section around
the tangent vector 7' measured with respect to a properly defined reference triad A ¢ iy, (7).
such that the cross-section triad can be described as a function of the centerline tangent and the
twist, AP(s) = AP(r/(s), o(s)). A detailed overview of parametrization techniques for the twist
degree of freedom can be found in [99]. The curvature of the beam centerline is described with
the Frenet—Serret vector .

e

which only depends on the beam centerline. The definition of the curvature contains second
derivatives of the beam centerline, therefore resulting in the smoothness requirement of C'*-
continuous beam centerlines. Defining the material curvature vector 2 identical to the Simo—
Reissner case above, it can be formulated as a function of ¢, ¢/, ' and k for the Kirchhoff-Love
case [99], i.e., 2 = Q(¢, ¢, r’, k). The internal energy for the Kirchhoff-Love beam is

= (2.27)

1
Mok = 5 /Q JFAC +97°CQds. (2.28)
0
Therein, e = ||7/|| — 1 is the axial tension of the beam.

2.2.2.3. Torsion-free beam theory

The torsion-free (TF) beam formulation considered in this thesis was first proposed in [97] and
extended in [98]. It represents a special case of the Kirchhoff-Love beam theory. For certain
properties of the problem, i.e., straight undeformed beams with axisymmetric cross-sections and
no external torsional moments, it can be shown that the static equilibrium configurations resulting
from the Kirchhoff-Love beam theory are characterized by (exactly) vanishing torsion [97].
The application of this type of beam element formulation is justified and motivated as these
requirements are fulfilled in many practically relevant systems, as well as many of the examples
considered in this thesis. Compared to the Kirchhoff-Love beam, the twist degree of freedom is
no longer present and the beam can be completely described by its centerline position, i.e., three
degrees of freedom per cross-section. Since the discrete representation and algorithmic treatment
of large rotations remains the main complexity of geometrically nonlinear beam theories, the
employed torsion-free beam theory is particularly appealing and easy to handle, as it completely
abstains from any rotational degrees of freedom. The internal energy of the torsion-free beam
reads

1
8, o = 3 / EAe + Elr*ds, (2.29)
af

with the scalar curvature k = ||k]|.
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2.3. Finite element formulations

In this thesis, spatial discretization of the beam, solid and interaction terms will be exclusively
based on the finite element method. As was the case with the previous sections, this section is not
intended to give a detailed introduction to all aspects and mathematical properties of the finite
element method. Only the basic ideas and notations needed for the presented discretized BTS
interaction problem are given here. For a more detailed survey of the finite element method in solid
mechanics the reader is referred to the corresponding literature, e.g., 13,116, 36,164, 153, [155]].
These references are mostly concerned with general 3D solid mechanics, for detailed literature on
the finite element method for structural beam theory the reader is referred to, e.g., [69, 199, 126,
130, 1131} 1145].

2.3.1. Solid mechanics

The basic concept of the finite element method is to find a numerical solution of the variational
formulation (or weak form) of the balance equations (2.8) based on discrete points, so-called
nodes. The finite elements connect the nodes to approximate the solid domain S, spanning a
so-called mesh. The solid reference position is approximated by

nS
XS = X5 =) N (5.0°,¢°) X3 (2.30)
k=1

Here, n° is the total number of solid finite element nodes, N, € R and X f € R3 are the
finite element shape function and reference position of the solid node k, respectively. Further-
more, £°,1°,(S € R are the 3D coordinates of the solid finite element parameter space. In
the following and throughout this thesis, a subscript (-),, refers to an interpolated field quantity.
It is assumed, without loss of generality, that the solid parameter coordinates are chosen such
that the third parameter coordinate ( S is constant at the solid surface, i.e., the discretized solid
surface 89‘& , can be parameterized with only the first two solid parameter coordinates £ and 7°.
The solid domain is discretized with an isoparametric finite element approach, i.e., position,
displacement and virtual displacement field are discretized with the same interpolation, i.e.,
spatial interpolation of the solid displacement and virtual displacement fields is given by

nS
u’ ruy =Y N (65,1°,¢%) df, (2.31)
k=1
and
n‘S
ous ~ ouil =y N (65.9°,¢%) 0d. (2:32)
k=1

Here, d‘,f € R3 and 5@‘,5 € R3 are the reference displacement and virtual displacement of node £,
respectively. According to the current position of a solid node evaluates to &5 = X O+ Q‘,f

Inserting the finite element approximations into the variational formulation of the equilibrium
equations yields the discretized virtual work of the solid, which now only depends on the
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2. Governing equations and finite element formulations

(unknown) nodal displacements and nodal variations, i.e.,
SWS ~ oW (dS, 6d%). (2.33)

Here, d® € R3"° is the global displacement vector, which contains all nodal displacements,
ie., d’ = [(d)", (@), .., (d5)"] . Similarly, dd° € R*" is the global vector of virtual
displacements. With the chosen finite element approximation, (2.33)) can be reformulated as

SWS(dS,5d%) = 6d " ¥5 (d°), (2.34)

with the solid residual vector rS € R?"’ . To illustrate the meaning of this residual vector, let us
consider a pure solid problem. In this case the virtual work of the solid domain has to vanish,
i.e., 0W? = 0. Since (2.34) has to hold for arbitrary non-zero virtual displacements dd°, the only
way to fulfill condition is by solving the system of non-linear equations r°(d®) = 0. In
other words, r® represents the non-linear equilibrium equations of the discretized solid problem.

Remark 2.3. In this section classical node-based finite element discretizations for the solid
domain are presented. The shape functions N, are typically Lagrange polynomials. However,
all presented BTS interaction schemes are also directly compatible with other discretization
schemes, such as C''-continuous (or higher) isogeometric solid discretizations based on non-
uniform rational B-splines (NURBS), cf. [37, 165, [106]. Due to the higher order continuity
provided by such discretization techniques, the evaluation of the BTS interaction terms simplifies
in beam-to-solid surface (coupling and contact) problems, as no averaged surface normal field
has to be constructed.

2.3.2. Beam mechanics

As presented in Section the beam centerline position r and the cross-section orientation A”
arise as the two primary fields of unknowns in the beam domain. In this thesis, the employed finite
element methods for the Simo—Reissner, Kirchhoff-Love and torsion-free beam theories use the
same spatial discretization of the beam centerline. The interpolation of the beam triad field only
influences the rotational BTS coupling, cf. Chapter[5] which is only considered in combination
with the Simo—Reissner beam theory. Therefore, the triad interpolation is only stated for the
Simo—Reissner beam theory. For details on the triad interpolation within the Kirchhoff—Love
beam theory, the reader is referred to the literature, e.g., [93} 196} 97, 145]]. There is no triad field
in the torsion-free beam theory, therefore, there is also no need for a rotational interpolation.

2.3.2.1. Centerline interpolation

Kirchhoff-Love and torsion-free beam elements require a C''-continuous centerline interpolation
in order to represent the Frenet—Serret vector (2.27)), which is realized with third-order Hermite
polynomials [99, 145]]. Due to its superior numerical properties, this discretization scheme is also
used for the Simo—Reissner beam element, as derived in [95]]. Each beam centerline node [ holds
six local degrees of freedom, i.e., the nodal position 7, € R3 and the nodal centerline tangent
vector iz € R3. The resulting beam finite elements have two centerline nodes each, cf. Figure
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[+1

LIA]

Figure 2.3.: Centerline degrees of freedom for a single beam element used in this thesis. The
element exemplarily connects the centerline nodes [ and [ + 1.

The beam centerline position is interpolated by

B

rer, = Z le(fB)fz + Hlt(fg)iz- (2.35)

=1

Here, n® is the number of beam centerline nodes, H; € R and H} € R denote the Hermite shape
functions for the positional and tangential degrees of freedom for the beam node [. Both shape
functions are a function of the scalar beam centerline parameter coordinate 2. At this point it is
important to note that the positional Hermite shape functions fulfill the partition of unity property,
ie., Zl"fl H] = 1. The tangential Hermite shape functions H] contain a scaling factor dependent
on the reference geometry of the element. For more details on the definition of this factor the
reader is referred to the literature, e.g., [93]].
The beam centerline displacement and variation are interpolated by

nB
uP ~ul, =Y H(F)dE + HI(EP)d, (2.36)
=1

and
B

or = 6ul ~or, =Y Hj(€%)6ds, + H}(£P)ody, (2.37)
=1
where the discrete vectors, df’:l and Qfl, are the nodal displacements and tangent increments,

respectively. Furthermore, d df , and & dfl are the respective variations. To improve readability of
the beam centerline interpolations, (2.35]) to (2.37) are redefined in the following way

nB

r, = > Hi(&)%7, (2.38)
=1
nB

uly =Y H (65)d?, (2.39)
=1
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A(PF,)

A(B )

Figure 2.4.: Rotational degrees of freedom for a single beam element used in this thesis. The
element exemplarily connects the rotational nodes [, [ + 1 and [ + 2.

and
nB
or, =Y H (£5)od?, (2.40)
=1
with
H, = [H[1©P° HIIPP) e RO, (2.41)
oB fl 6 a8 _ df,l 6 a8 _ (@f,z 6
X —L}ER, d _[dfz cR and od; —lddfl € R". (2.42)

Here, H; is the matrix with the node-wise assembled beam centerline shape functions, and x>, EIZB
and 0dP are the corresponding generalized nodal vectors for position, displacement and virtual
displacement, respectively.

Remark 2.4. The Simo—Reissner beam theory only requires a C°-continuous centerline interpo-
lation. Employing C*-continuous centerline interpolations for the Simo—Reissner beam elements
constrains the solution space and prohibits kinks in the beam centerline. Kinks occur when
concentrated loads act on the beam centerline. For the considered BTS interaction problems,
the interaction forces are smooth along the beam centerline, thus resulting in a C''-continuous
centerline solution and justifying the employed C'-continuous centerline interpolation also for
the Simo—Reissner beam theory.

Remark 2.5. All presented examples in this thesis employ a C'*-continuous centerline representa-
tion for the beam elements. However, this is not a restriction of the presented BTS interaction
methods, which can also directly be applied to C°-continuous centerline interpolation.

2.3.2.2. Interpolation of the triad field

A triad interpolation scheme based on nodal rotation vectors @B is utilized, cf. [38]]. Each beam
finite element contains three nodes carrying rotational degrees of freedom, i.e., the third node is
located in between the two centerline nodes of the element and carries no positional degrees of
freedom, only rotational ones, cf. Figure [2.4] The nodal rotation vectors serve as primal degrees
of freedom for the interpolated rotation field along the beam centerline. Each rotation vector has
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three degrees of freedom, thus resulting in a total of 9 rotational degrees of freedom per beam
finite element.

The interpolation of the beam cross-section triad along the beam centerline is a non-trivial task
and requires an orthonormal interpolation scheme for the interpolated triad Af (€8) to guarantee
that the interpolated triad field is still a member of the rotational group SO3. Furthermore,
objectivity of the discrete beam deformation measures has to be preserved by the interpolation,
which is a challenging task if rotational degrees of freedom are involved. In this thesis the
interpolated triad field will be referred to as an abstract nonlinear function of the beam parameter
coordinate and the nodal rotation vectors, i.e., AP (£8) = nl(fB, ;IB ) ;g, N %53), where n5 is
the total number of beam nodes carrying rotational degrees of freedom. The disci‘etized rotation
vector of a beam cross-section is calculated via yf (€8) = rv(AF(€B)). The corresponding

interpolated field of multiplicative rotation vector increments A@% (¢5) has been consistently

derived in [38]] and reads:
B

g
AQE = Z I,(6%)A0,. (2.43)
Therein, j eR¥>3forl=1,. nlg are generahzed shape function matrices for the multiplica-

tive nodal rotation increments AOZ It should be pointed out that I I, are nonlinear functions of
the beam parameter coordinate and the nodal rotation vectors of the beam element, i.e., these
rotational shape functions are deformation-dependent. The beam finite elements employed in this
thesis follow a Petrov—Galerkin discretization approach as suggested in [71], i.e., the interpolation
of the spin vector differs from the interpolation of the multiplicative rotation vector increments.
Standard Lagrange shape functions are used to interpolate the discretized nodal spin vectors:

505 = Z Li(€5)580,. (2.44)

Here, L; € R for [ = 1,...,n5 are standard second-order Lagrange polynomials, and (5Ql are
the nodal spin vectors. For a more detailed discussion on the rotational interpolation and the
Petrov—Galerkin discretization of the employed Simo—Reissner beam finite elements the interested
reader is referred to [71} 93, [99]]. In Chapter [5|the rotational BTS coupling terms are derived on
element pair level. It is advantageous to reformulate (2.43) and (2.44)) in an element-wise manner,
ie.,

NGB = (§B)A96 (2.45)
605 = LW (£8)565). (2.46)

Here, AQS (/) is the multiplicative rotation vector increment field in the beam element (f).
Accordingly, ) € R3%? and AGP() € R? are the corresponding element-wise assembled shape
functions and nodal values, respectively. Furthermore, LY) € R3%9 and 60%) € R are the
element-wise assembled quantities for the spin vector field.

2.3.2.3. Beam residual vectors

In this paragraph, the residual contributions of the geometrically exact beam theory are stated
in abstract form, based on the previously introduced beam finite element interpolations. For
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2. Governing equations and finite element formulations

the detailed derivation in the context of the employed geometrically exact beam theories, the
reader is referred to the aforementioned literature. Similar to the procedure in the solid domain,
cf. Section the beam finite element approximations (2.35)) to can be inserted into the
weak form of the beam balance equations and written in general form as

OWE = WE,, = oW, (d°,6d°, 4°, 66°) . (2.47)

Here, d® € R is the global beam centerline displacement vector which simply contains all

discrete positional beam degrees of freedom, i.e., d® = [(d?)T, (d5)7, ..., (d5)*] T, and PP =

(5T, (5T, ..., ({pr)T] T ¢ R34 s the global vector containing all nodal rotation vectors.
- - —]

Furthermore, dd® and §6° are the global virtual displacement vector and global spin vector,
respectively. Equation (2.47)) can be rewritten as

SWE,, (d2,6d% 4P, 665) = 6d® % (d°, F) + 665 15 (d, ") , (2.48)

where r? € R and r§ € R3% are the beam residual vectors for the positional and rotational
beam degrees of freedom, respectively.

2.4. Uncoupled beam and solid problem

In the previous sections the individual discretizations of the beam and solid domain are presented.
For the BTS interaction problems considered in this thesis, the balance equations for beam and
solid have to be united. This is done by adding the virtual work contributions of the individual
beam and solid problem together, yielding the variational formulation of the (uncoupled) beam

and solid problem, i.e.,
WS + W = 0. (2.49)

With (2.34) and (2.48), the residual of the combined problem reads

rS(d®)
(d®,4")| =0. (2.50)
(d%, %)

Here, the solid residuum r* is independent of the beam residuals rf and rg , 1.e., the two domains
are uncoupled. This can be seen even more clearly in the linearized system of the nonlinear
equilibrium equations (2.50),

B
rT’
B
0

-

S

K, 0 07 [Aad® —rS
0 KB K5| |AdP| = |-rB]|, (2.51)
0 K5 K5 | |A° —r5

as there are no coupling terms between the beam and solid degrees of freedom. In (2.51)), A
represents an increment to the state vectors, K, € R37°x37° {5 the solid tangent stiffness
matrix and KB e ROx6n® KB ¢ Ron®x3ng KB o Ringx6n® anq KB < R376 %3 are the
beam tangent stiffness matrices. The discrete rotational degrees of freedom are multiplicative
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2.5. Constrained beam-to-solid interaction problem

increments, therefore, the update of the rotation state has to be preformed according accordingly,
cf. [99]. This system serves as a starting point for all considered BTS interaction problems, as
the interaction terms are simply added to this uncoupled system. The theoretical background of
discretizing and solving the constrained system, i.e., the beam-to-solid system, is outlined in the
following section.

Remark 2.6. It should be mentioned, that due to the Petrov—Galerkin finite element discretization
of the beams rotational degrees of freedom, the corresponding tangent stiffness matrices are
non-symmetric in general, i.e., K5, # (K5 )T and K5, # (K5)T.

2.5. Constrained beam-to-solid interaction problem

The main focus of this thesis is the development of BTS interaction methods, i.e., the addition
of coupling constraints between the beam and the solid finite element formulations. For the
considerations in this section, the strong form of the coupling constraints can be written in abstract
form as

g=g(x° r,A°)=0 on I. (2.52)

Here, g is a (pseudo) tensor-valued function of the kinematic beam and solid fields, and I',. is the
coupling domain. In the following, the general procedure of adding constraints to the variational
formulation, based on the Lagrange multiplier method, is presented, as is a penalty regularization
of the resulting system of equations.

2.5.1. Lagrange multiplier method

The Lagrange multiplier method introduces an additional field of unknowns A, the so-called
Lagrange multiplier field, defined on the coupling domain I'.. The dimension of the Lagrange
multiplier field is the same as the dimension of the coupling constraints, i.e., dim(g) = dim().
A global Lagrange multiplier potential is defined as B

I, = / Algds. (2.53)
Fc

Variation of the global Lagrange multiplier potential leads to the coupling contributions to the
variational formulation, i.e.,

Sl = [ 6ATgds + / Aégds, (2.54)
e - e -
Sy —oW.

where W, and WV, are the variational form of the coupling constraints and the virtual work
of the generalized coupling forces, respectively. The resulting variational formulation of the
constrained BTS coupling problem, the so-called mixed formulation, reads:

SWS 4+ W + Wy — W, = 0. (2.55)
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2. Governing equations and finite element formulations

Throughout this thesis a mortar-type approach for discretizing the Lagrange multiplier field is
employed. A more detailed explanation on this topic is given in the respective sections, e.g.,
Sections [4.2.2] [5.3.2]and [6.3.2] or in the literature, e.g., [109} 112} [150]. For the purpose of this
section, it is sufficient to consider a general form of the discretized variational formulation, i.e.,

0 =6dS" rS(dS) 4 6" ¢F (dB, %) + 667 ¢5 (d®, ")
+6XTg (d°,d%, ¢°)
5W>;,h

+6d5" Quy (d,d% %) A+ 6d°" Q, (d°,d5, 46%) A+ 565" Qpy (05, d, 45) A

J/

-~
—6We

(2.56)

Here, g € R is the global discretized constraint vector and A € R™ is the global vector
of discrete Lagrange multiplier unknowns with n.q, being the number of discretized constraint
equations. Furthermore, Q;,, Q) and Q) are the coupling matrices that project the global La-
grange multiplier vector onto the nodal force contributions for solid degrees of freedom, positional
beam degrees of freedom and rotational beam degrees of freedom, respectively. For improved
readability, the explicit dependency of the residual contributions on the discrete unknowns will
be omitted going further. From (2.56)) follows the vector with the constrained nonlinear balance
equations of the BTS interaction problem as

r° + QoA

5+ QA

5 + QoA
g

=0. (2.57)

Employing a Newton—Raphson algorithm, the residual vector is linearized with respect to the
solid and beam degrees of freedom, thus resulting in the global linear system of equations

KS,+Q. Q. Qu  Qu] [Ad® —rS
Qrs Kfr + er ng + Qr@ Qr)\ AdB _ —I’E (2 58)
Qo5 Kéi + Qo ng +Qp Qon| [2O°]  |—rg | .
Qs Q. Qo 0 A -8

Here, Q. are the coupling matrices, representing the coupling between the beam, solid and
Lagrange multiplier degrees of freedom.

Directly solving the linearized system (2.58) results in an exact fulfillment of the constraint
equations g = 0. However, some drawbacks occur when (2.58)) is solved directly. Compared to
the uncoupled system, the coupled system has an increased system size, because the Lagrange
multipliers are introduced as additional unknowns. Furthermore, the linearized system (2.58))
shows a zero matrix block on the diagonal, i.e., the system exhibits a saddle point structure. This
limits the applicability of some linear solvers. These drawbacks can be at least partially overcome
by various approaches, e.g., by the augmented Lagrangian method, cf. [3], or the so-called dual
Lagrange multiplier approach, cf. [[108}110.[150]. The augmented Lagrangian method allows for
an exact enforcement of the constraint equations in combination with a penalty-like regularization
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2.5. Constrained beam-to-solid interaction problem

of (2.58) for an easier numerical treatment. The resulting linear system still exhibits a saddle
point structure, which can be overcome by employing the well-known Uzawa algorithm. The
main idea behind the dual Lagrange multiplier approach is the definition of the discrete coupling
variables based on a biorthogonality condition with the primary unknowns. This allows for a
trivial condensation of the Lagrange multipliers (and their primal counterparts) from the linear
system of equations, eliminating its saddle point structure. However, as argued in Section 4.2.3]
an exact fulfillment of the BTS constraint equations is not required from a physical point of view.
Therefore, (2.58)) will not be solved directly to obtain solutions to the coupled BTS problem.
Instead, a penalty regularization is employed to obtain approximate solutions of (2.58].

2.5.2. Penalty regularization

In this thesis, the discretized coupled BTS problems such as (2.58)) will be exclusively solved
using a penalty regularization. The main idea behind the employed penalty regularization is
to remove the constraint equations from the discretized system of equations, i.e., the last row
in (2.58)), and instead penalize violations of the constraint equations. In other words, the spatial
discretization of the constraint equations is performed before the penalty regularization. The
resulting formulation is purely based on beam and solid degrees of freedom and does not contain
any additional variables.

It is important to note that the employed penalty regularization is not a penalty method in
the classical sense. In classical penalty methods a space continuous penalty potential is defined
as Il = 5 fl“c ng ds, cf. [152]. The constraint equations g = 0 are no longer fulfilled exactly,
but are approximated by penalizing constraint violations with the scalar penalty parameter ¢ € R*.
Variation of the penalty potential yields the coupling contributions to the total weak form. In the
space continuous setting, the solution of the penalty method converges towards the solution of the
Lagrange multiplier method for e — co. However, in the discretized setting this is no longer the
case. Common discretization strategies for the penalty method are the node-to-segment (NTS) and
the Gauss point-to-segment (GPTS) scheme. In both cases, the variation of the penalty potential
is evaluated at discrete points (i.e., the finite element nodes or the Gauss points) on one of the
coupling interfaces. This local characteristic of the penalty method is fundamentally different from
the employed penalty regularized Lagrange multiplier method, where the constraint equations are
formulated in a weighted sense. Therefore, the discrete solutions of the two approaches will not
match.

The relaxation of the discretized coupling constraints g = 0 can be stated in the general form
of

A=eVig (2.59)

Herein, the Lagrange multipliers are no longer independent variables, but well-defined functions
of the beam and solid displacements. They can subsequently be removed from the global system
of equations. Again, ¢ € R is the scalar penalty parameter and it is clear that for e — oo,
becomes equivalent to the last row in (2.57)). Furthermore, V € R"omt*"eonst jg g gcaling matrix to
account for different weighting of the individual constraint equations. An adequately scaling of
the constraint equations in the penalty relaxation is required to pass basic consistency tests, see
Sections4.4.1},[5.4.4]and [6.4.1] Inserting (2.39)) into (2.58)), and eliminating all dependent degrees
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of freedom, yields the penalty regularized global system of equations:

K, +Q.s  Qu Q. Q. [vi 0 0
Qs K +Q, KE+Qu| +¢€|Qn 0 V' 0|[Qs Q. Qu
Qos Kgr + Qor ng + Qoo Qo 0 0 v
Ad® —rS —eQuV'g
AdP| = |- —eQ,,V'g
AG® —r5 —eQpV'g

Here, the number of global unknowns is the same as in the uncoupled case, i.e., the system is only
solved for the solid and beam degrees of freedom. An additional effect of the penalty-regularized
version of (2.58)) is the elimination of the saddle point structure in the stiffness matrix. However,
there are some drawbacks of the penalty approach. The constraint equations are violated by
definition, which can only be reduced with higher penalty parameters. This in turn leads to an
ill-conditioned tangential system matrix. Therefore, it is desirable to choose a penalty parameter
that results in a sufficiently accurate solution of the constraint equations, but also limits unwanted
numerical effects.

Remark 2.7. For the penalty regularization, an inversion of the (global) scaling matrix V is
required, which is not feasible for a general structure of the scaling matrix. In practice, the scaling
matrix is defined in such a way, that it is diagonal, which allows for a trivial inversion and the
passing of basic consistency tests, e.g., constant stress transfer tests.

Remark 2.8. The presented derivation of the penalty regularized global system of equations can
also be interpreted in an algebraic way, cf. [155], by adding the term 5)\T%V)\ to the variational
formulation (2.56)), which obviously vanishes for ¢ — oo. By adding this term, the Lagrange
multipliers can be condensed from the last row of yielding (2.60).
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3. Mixed-dimensional beam-to-solid
interaction

This chapter gives an overview over some of the most important aspects to consider when devel-
oping a general mixed-dimensional BTS interaction framework. It is not intended as a complete
summary of all the complex details of mixed-dimensional interactions. The goal is to provide the
reader with a general understanding of the important classifications and methodological building
blocks before the detailed investigations are presented in the subsequent chapters.

3.1. Classification of beam-to-solid interaction problems

The general classification of BTS interaction problems, within this thesis is illustrated in Figure|3.1
This classification is based on the type of interaction and the interacting geometries. Based
on the two possible geometry pairings, i.e., line-to-volume and line-to-surface, and the two
considered interaction types, i.e., coupling and contact, three different categories can be identified.
Figure illustrates the first main category of considered cases, a beam embedded inside a
solid volume. From a geometric point of view this is a line-to-volume (1D-3D) problem. The
embedded beam is fixed relative to the solid, i.e., this will be referred to as a 1D-3D beam-to-solid
volume (BTSV) coupling problem. The next considered case is visualized in Figure where
the beam is also coupled to the solid, however, instead of being embedded inside the solid volume,
the beam is coupled to the surface of the solid volume. Geometrically, this is a line-to-surface
(1D-2D) problem and will be referred to as a 1D-2D beam-to-solid surface (BTSS) coupling
problem. Finally, Figure illustrates the third category considered in this thesis, a beam in
unilateral contact with the surface of a solid volume. The involved geometries are the same as in
the BTSS coupling problem. However, in this case the interactions between the beam and the
surface are described by unilateral contact constants instead of tied coupling constraints. This
will be referred to as 1D-2D beam-to-solid contact (BTSSC) in this thesis.

Remark 3.1. In this thesis, the term coupling denotes a tie between the beams and the solid.
The equivalent in surface-to-surface problems is commonly referred to as mesh tying or tied
contact. Since the interacting finite element meshes in BTS problems are not equidimensional,
the term mesh tying is slightly misleading as the procedure can more accurately be described as
the embedding of a mesh in a higher dimensional background mesh. The term tied contact can
also be confusing since there is no ’untied” contact in BTSV problems.
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3. Mixed-dimensional beam-to-solid interaction

beam-to-solid interaction

interaction - -

line-to-volume line-to-surface
geometry
interaction type Coupling Coupling contact

1D-3D beam-to-solid | | 1D-2D beam-to-solid | [1D-2D beam-to-solid
volume coupling surface coupling surface contact

Figure 3.1.: Classification of BTS interaction problems based on the interacting geometries and
the type of interaction.

(b) ()

Figure 3.2.: Illustration of the considered classes of BTS interaction problems — beam embedded
inside a solid volume|(a), beam coupled to the surface of a solid volume|(b)|and beam
in contact with the surface of a solid volume
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3.2. Modeling assumptions underlying mixed-dimensional models

3.2. Modeling assumptions underlying
mixed-dimensional models

In this section, the main modeling assumptions generally underlying the considered mixed-
dimensional interaction schemes will be discussed.

3.2.1. Beam-to-solid volume coupling

The considered class of BTSV coupling schemes is based on the assumption that the fiber
material is stiff compared to the solid material, and local fiber cross-section dimensions are
small compared to the global solid dimensions. Thus, the solid may be discretized without
subtracting the fiber volume, formally resulting in overlapping solid and fiber domains. This
introduces a modeling error, since in the physical problem no two material points can share
the same spatial position. This modeling error is proportional to the fiber volume fraction as
well as the stiffness ratio of fiber and matrix. The high fiber stiffness compared to the matrix
stiffness in the considered cases reduces the influence of this modeling error. Furthermore, in
cases with a high fiber volume fraction, the modeling error can be counteracted by scaling the
stiffness of the matrix material to account for the missing volume occupied by the fibers. Based
on the assumption of overlapping volumes, two different types of coupling are possible: a truly
1D-3D coupling approach, where the coupling conditions are exclusively defined along the beam
centerline, thus preserving the computational advantages of the dimensionally reduced beam
models, cf. Figure And secondly, 2D-3D coupling of the fiber surface (described by a
1D centerline) with the solid volume, cf. Figure Consistent 2D-3D coupling on the fiber
surface would allow for high-resolution stress field predictions in the direct vicinity of the 2D
fiber-solid interface. However, such approaches require an evaluation of coupling constraints on a
2D interface and a sufficient discretization resolution of the solid with mesh sizes smaller than
the fiber cross-section dimensions, thus in large parts deteriorating the advantages provided by a
reduced dimensional description of the fibers. Therefore, the developed BTSV coupling schemes
in this thesis are based on truly 1D-3D coupling, i.e., a line-to-volume coupling problem. For
comparison and verification purposes of the 1D-3D coupling method, a 2D-3D coupling scheme
is also presented.

Truly 1D-3D coupling approaches inevitably introduce a modeling error as compared to the
2D-3D coupling, i.e., the surface tractions on the 2D beam-solid interface are approximated by
localized resultant /ine forces and moments acting on the beam centerline. Therefore, from a
mechanical point of view, the line-to-volume coupling is equivalent to a line load acting on an
3D solid continuum. This is a generalized version of the Kelvin problem, cf. [46,[107,141]] and
Figure which consists of an infinite solid loaded with an embedded line load. It is well
known and studied, that the analytical solutions to the Kelvin problem contain singularities in
the stress and displacement fields close to the point of action of the line load, cf. [46, 107, 141].
This is schematically visualized in Figure where the analytical solid displacement field is
plotted along the indicated line. The far-field displacements of the 1D-3D and 2D-3D coupling
approaches are very similar. The difference between the two displacement fields can be observed
close to the singularity. This singularity in the analytical solution prevents the finite element
discretization of the truly 1D-3D coupling method to achieve spatial mesh convergence in the fine
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(@) (b)

Figure 3.3.: Two different types of mixed-dimensional coupling for an embedded fiber in an
infinite solid. Truly 1D-3D coupling [(a)] and 2D-3D coupling [(b)l Figure [(a)| is
adapted from the author’s article [135]], permissions granted under the Creative
Commons (CC BY) license.

(b)

Figure 3.4.: Schematic illustration of the solid displacement field for an embedded fiber in an
infinite solid — truly 1D-3D coupling|(a) and 2D-3D coupling

mesh limit. However, for mesh sizes in the range of the beam cross-section dimensions or larger,
which are well within the range of real life engineering applications, the presented positional
and rotational coupling methods converge towards the exact solution, i.e., the one if the beam
were modeled with continuum elements. This is a crucial property for the applicability of the
considered mixed-dimensional BTS coupling problems.

To verify this statement, a plane problem of a loaded beam cross-section coupled to a solid
finite element is considered as depicted in Figure[3.5] As long as the cross-section diameter is
smaller than the solid finite element mesh size, the resulting discrete nodal forces Fls acting on the
solid are independent of the employed coupling approach, i.e., either truly 1D-3D coupling with
the associated force F'® (Figure left) or 2D-3D coupling with associated coupling surface
load f5 (Figure right). Obviously this is an idealized setting, but this still underlines and
nicely illustrates the validity of a 1D-3D coupling approach down to a solid element size of about
the cross-section diameter. For more practical discussion of this topic the reader is referred to

Section

In the presented BTS coupling methods, the solid and beam domains can be discretized
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3.2. Modeling assumptions underlying mixed-dimensional models

Fs1 IFS

Figure 3.5.: Plane coupling problem of a single fiber with a solid finite element mesh — 1D-3D
coupling (left), 2D-3D coupling (right). Figure is taken from the author’s article [[133]],
permissions granted under the Creative Commons (CC BY) license.

independently from each other. It is important to note that the two finite element meshes have
to satisfy certain conditions relative to each other. Throughout this thesis, embedded fibers with
relatively high slenderness ratios Cuver := lfiver/ Dfiver => 1 are considered. Herein, lgp.e, iS the
physical length of a fiber and Dgy,, 1S a representative cross-section dimension. Moreover, a
powerful third-order geometrically exact beam finite element formulation is employed, which
typically allows to achieve practically relevant discretization error levels at comparatively coarse
spatial discretizations, thus leading to large beam element slenderness ratios (% := h?/ Dgper > 1.
Herein, h” is a characteristic beam finite element length. Due to the previously discussed
singularities, the beam cross-section dimensions should be smaller than the characteristic solid
finite element size h°. Based on these consideration, the following two assumptions are made
with respect to beam and solid finite element size: (i) h° > Dy and (ii) h° < hB. These
requirements arise from basic considerations concerning the envisaged applications and the
employed finite element methods. As seen in the numerical examples, these assumptions prevent
a potential deterioration of spatial convergence rates either due to force localization effects (i) or
due to contact locking (ii).

Remark 3.2. The mechanical considerations in the previous section show that the exact analytical
solution of the 1D-3D line-to-volume problem has a singularity and is therefore not relevant
for the BTSV coupling methods developed in this thesis. The 1D-3D BTSV coupling methods
in this thesis are based upon either a zero-order (Chapter ) or first-order (Chapter [5) Taylor
series expansion of the 2D-3D coupling constraints around the beam centerline. If higher-order
Taylor series expansions are considered, as is done in [73], second gradient coupling terms are
introduced in the solid volume and the solid can be interpreted as a higher gradient material. In
such a case, the previously discussed singularity does not occur. However, from a mathematical
point of view, the existence of such a solution is still not guaranteed. A detailed mathematical
analysis of this topic is part of ongoing research and beyond the scope of the present thesis. The
interested reader is referred to [81]], which is one of the few works in literature that discusses the
existence of solutions for higher gradient materials.
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3. Mixed-dimensional beam-to-solid interaction

Figure 3.6.: Truly 1D-2D coupling for BTSS coupling problems.

3.2.2. Beam-to-solid surface coupling

The BTSS coupling schemes considered in this thesis are based on the assumption that the beam
material is relatively stiff compared to the solid material and the beam cross-section dimensions
are small compared to the overall solid dimensions. Furthermore, the connection between
the beam and the solid surface is assumed to be sufficiently stiff, so that it can be modeled
as a rigid connection. Therefore, the solid may be discretized without exactly modeling the
connection between the beam and the solid, thus resulting in a smooth representation of the solid
surface. Based on this assumption, only a truly 1D-2D coupling approach is possible for the
considered BTSS coupling schemes, i.e., geometrically they all can be classified as line-to-surface
coupling schemes, cf. Figure This again has a significant impact on the analytical solution
of the problem. In an idealized setting, the truly 1D-2D BTSS coupling problem is equal to
the Flamant problem of a line load acting on an infinite half space, cf. Figure [3.6) which is
well known to exhibit singular stress and displacement fields, cf. [46,[107]. Thus, convergence
of the 1D-2D solution towards the exact solution is not expected. However, in regard of the
envisioned applications, the primary interest is in global system responses rather than in local
stress distributions in the direct vicinity of the fibers. Thus, practically relevant solid element
sizes are considered that are larger than the fiber cross-section dimensions. This is illustrated in
Figure As long as the cross-section diameter is smaller than the solid finite element mesh
size, the resulting solid surface nodal forces are independent of the employed coupling approach,
as well as the exact geometry of the connection between the solid surface and the fiber. In this
regime of mesh resolutions, the inherent modeling error of truly 1D-2D approaches can typically
be neglected. Furthermore, the considerations regarding the BTS finite element length ratio for
BTSV coupling also hold in the case of BTSS coupling, i.e., the characteristic solid finite element
length should be smaller than the beam finite element length.

3.2.3. Beam-to-solid surface contact

The presented BTSSC scheme is based on the assumption that the beam material is relatively
stiff compared to the solid material and that all considered beams have circular cross-sections.
Furthermore, it is assumed that the thickness of the contact area is small compared to the beam
cross-section dimensions. Therefore, contact between the solid surface and a single beam cross-
section can be modeled via one point-wise contact condition, cf. Figure [3.8] According to this
assumption, the contact area can be accurately represented as a 1D line running along the surface
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~\ ~\

Figure 3.7.: Plane coupling problem of a single fiber with a solid finite element surface — 1D-
2D coupling with idealized surface geometry (left), exact coupling interactions and
geometry (right).

& W

Figure 3.8.: Modeling assumptions for BTSSC — exact contact pressure p between beam cross-
section and solid surface (left) and idealized concentrated point-wise contact force F’
between beam cross-section and solid surface (right).

of the beam. The BTSSC conditions can be formulated along the beam centerline when the radius
of the rigid beam cross-section is taken into account. The resulting truly 1D-2D contact approach
shows close similarities with the previously discussed BTSS coupling scheme. This introduces
a singular analytical solution to the 1D-2D contact problem. As long as the solid element sizes
are large enough not to fully resolve the contact area, the modeling error due to the truly 1D-2D
contact can typically be neglected. Contrary to the BTSS coupling case, where the interaction
between beam and solid surface occurs over the whole beam cross-section, in the case of BTSSC
the assumed contact area is small compared to the beam cross-section dimensions. Therefore, also
solid element discretizations with element sizes smaller than the beam cross-section dimensions
can be employed.

3.3. Positional and rotational coupling

The primary interest of this thesis lies in the development of truly 1D-2D and 1D-3D coupling
schemes, i.e., coupling schemes where the coupling conditions are exclusively defined along
the 1D beam centerline. The formulation of the constraint equations along the beam centerline
brings about an advantageous property of the developed methods: the coupling constraints of the
positional and rotational fields along the 1D Cosserat continua (representing the beams) can be
formulated completely independent of each other. This finding has several important implications
for the proposed coupling schemes, as well as the structure of this thesis. First, positional and
rotational coupling can be viewed as separate building blocks in the developed BTS framework.
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This allows to employ a single positional coupling scheme for different types of considered
beam theories. For example, the same positional coupling scheme can be employed for the
torsion-free beam theory as well as Simo—Reissner beam theory, even though the former carries
three (positional) point-wise degrees of freedom, while the latter carries six (three positional and
three rotational) point-wise degrees of freedom. Furthermore, a rotational coupling scheme can be
employed in combination with a positional coupling scheme to couple all six point-wise degrees
of freedom along the Simo—Reissner centerline. The combination of positional and rotational
coupling will be referred to as full coupling throughout this thesis. For didactic purposes, the
positional and rotational coupling constraints will be presented in individual chapters of this
thesis. This allows for a thorough analysis of some important mechanical and algorithmic aspects
of positional BTS coupling without having to deal with the complexity of finite rotations right
away. Moreover, the derivation of the rotational coupling constraints can be presented with some
prior knowledge on the mechanical and algorithmic aspects of mixed-dimensional coupling. All
presented rotational interaction schemes in this thesis are developed for BTS coupling problems.
A detailed investigation of contact interactions between cross-section rotations and the contacting
solid surface is beyond the scope of this thesis as this inherently requires frictional contact. An
outlook on the basic steps towards frictional BTSSC is given in Remark[7.3]

To differentiate the scope of validity of purely positional coupling and full coupling (positional
and rotational), two application scenarios are discussed.

(1) First, systems are considered that contain only transversely isotropic fibers (e.g., circular
cross-section shape and initially straight) and whose global system response is dominated
by the axial and bending stiffness of the fibers, i.e., the torsional contribution is negligible.
Positional BTS coupling schemes can be considered as a reasonable mechanical model in
this case, since local (twist / torsional) rotations of the fibers with respect to their straight
axes will rarely influence the global system response. Torsion-free beam models [97]
represent an elegant mechanical description of the fibers for such applications.

(i1) Second, systems are considered that contain transversely anisotropic fibers (e.g., non-circular
cross-section shape or initially curved). It is clear that twist rotations of the fiber cross-
sections with respect to the centerline tangent (even if not possible in their simplest form
as rigid body rotations) will change the global system response, since such fibers exhibit
distinct directions of maximal / minimal bending stiffness or initial curvature. Additionally,
due to the inherent two-way coupling of bending and torsion in initially curved beams [97]],
bending deformation will inevitably induce torsion in such application scenarios, i.e., the
global system stiffness is approximated as too soft if these torsional rotations are not
transferred to the matrix by a proper coupling scheme. Thus, a unique and consistent
mechanical solution for this scenario can only be guaranteed by full BTS coupling schemes.

Remark 3.3. Both aforementioned application scenarios might lead to non-unique static solutions
if rotational coupling is neglected. For transversely isotropic fibers the non-uniqueness only
occurs at the local fiber level, i.e., the twist orientation of the fibers is not uniquely defined,
which does not influence the global system response. The locally non-unique fiber orientation is
typically only an issue from a numerical point of view (e.g., linear solvers), and can be effectively
circumvented by employing, e.g., torsion-free beam models not exhibiting the relevant rotational
degrees of freedom. For transversely anisotropic fibers, such local twist rotations will change
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the global system response. This gives rise to non-unique static solutions on the global level and,
thus, has significant implications from a physical point of view.

3.4. Discretization strategies for beam-to-solid
interaction problems

Spatial discretization of the investigated BTS interaction problems results in inevitably non-
matching grids, thus requiring an interaction discretization strategy for non-matching grids. This
is a well studied topic for 2D-2D surface-to-surface mesh tying and contact interaction between
3D bodies [[152]. One general approach are Gauss point-to-segment (GPTS) methods, where the
coupling constraints are enforced strongly, i.e., point-wise, at designated points. An elaborate
overview of this topic can be found in [151]. Recently, penalty based GPTS schemes have been
employed successfully for beam-to-beam contact, cf. [95, 98]]. In this thesis, 1D-2D and 1D-3D
GPTS schemes are developed to discretize the mixed-dimensional BTS interaction problems.
Furthermore, a 2D-3D GPTS method is developed to generate reference solutions for comparison
purposes, cf. Appendix [A]

A conceptually alternative approach is the so-called mortar finite element method, which can be
interpreted as a special kind of segment-to-segment method, cf. [57-59,1109, 111-115,150]. The
mortar finite element approach was originally introduced in the context of discretization schemes
based on the domain decomposition techniques for non-matching grids. The main feature of the
mortar method is the formulation of the interaction constraints in a weak (weighted) sense. In
classical computational mechanics, mortar methods refer to discretization techniques between
interface conforming, i.e., non-overlapping and non-immersed, domains. This also implies, that
the dimensions of the interfaces are the same. Additionally, the discretization of the Lagrange
multiplier field has to match one of the two interface discretizations, i.e., the Lagrange multiplier
field is discretized equal to one of the interface displacement fields. Obviously, these aspects
are not fulfilled by the considered mixed-dimensional BTS interaction problems. Since there is
a close resemblance of the presented methods to classical mortar methods in solid mechanics,
e.g., [112-114]], the term mortar-type will be used for the developed weak constraint enforcement
methods in this thesis. The mortar method defines a Lagrange multiplier field on one of the
interacting surfaces, which can be identified as the surface tractions between the interfaces. The
weighted nature of the mortar methods has been proven to be preferable over GPTS methods. In
recent years, mortar methods have become well established and the preferred choice for robust
finite element discretization in domain decomposition and computational contact mechanics. This
thesis proposes mortar-type approaches to model embedded 1D-3D BTSV coupling and 1D-2D
BTSS coupling problems between beam and solid finite elements. A line load represented by a
Lagrange multiplier field is defined along the beam centerline to enforce the coupling constraints,
thus resulting in a constraint formulation in a weak variational sense.

3.5. Overview

To conclude this chapter, Table [3.1| presents an overview over the investigated BTS interaction
variants in this thesis. Not all combinations of the various topics discussed in this chapter are
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3. Mixed-dimensional beam-to-solid interaction

Table 3.1.: Overview over the investigated BTS interaction schemes in this thesis.

BTS interaction type BTS discretization BTS dimension coupled fields chapter
beam-to-volume coupling mortar-type 1D-3D pos E
(BTSV) pos + rot 5
GPTS 1D-3D pos 4
pos + rot S
2D-3D pos 4
pos + rot 5
beam-to-surface coupling mortar-type 1D-2D pos + rot @

(BTSS)

beam-to-surface contact ~ GPTS 1D-2D pos

(BTSSC)

investigated. The ordering of the chapters in this thesis is chosen such that the interested reader
(with certain prior knowledge on computational mechanics) is able to comprehend the individual
presented building blocks as part of a general mixed-dimensional BTS interaction framework.
For example, the rotational coupling constraints are presented and analyzed in combination with
BTSV coupling problems. However, the findings are almost directly applicable to rotational
coupling for BTSS coupling problems as well, and therefore, will not be presented again.
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4. Positional beam-to-solid volume
coupling

In this chapter, positional beam-to-solid volume (BTSV-POS) coupling is presented as a first
building block towards a general BTS interaction framework. The coupling terms are exclusively
formulated as line-to-volume interactions through the beam centerline position, which decouples
the beam cross-section orientations (rotations) from the solid deformations, thus resulting in a
purely positional coupling of the beam centerline to the underling solid. At first glance, not
coupling the beam cross-section rotations might be considered as a rather coarse approximation
for certain physical systems such as fiber-reinforced composite materials, where fibers are e.g.,
molded / glued into a matrix such that all modes of relative motion are blocked. However, the
BTSV-POS coupling scheme presented in this chapter can still be applied to applications, where
the main contributions to the internal energy of the beams and the mechanical resistance of
the overall structure stem from bending and axial tension of the fibers, therefore justifying the
choice to neglect the coupling of cross-section rotations. In such applications, it is desirable to
employ a torsion-free beam theory, which does not carry any rotational degrees of freedom, and
therefore, can only be used in combination with the purely positional BTSV-POS coupling scheme.
Moreover, apart from being considered as a standalone coupling scheme, the presented BTSV-
POS coupling formulation will be used in combination with rotational coupling to formulate a full
consistent coupling of positions and rotations, cf. Chapter[5] Most of the content of this chapter
has previously been published in the author’s article [135]].

4.1. Problem formulation

In this chapter a 3D finite deformation BTSV-POS problem, as shown in Figure is considered.
The principle of virtual work serves as basis for the employed finite element method. Contributions
to the total virtual work of the system can be split into solid, beam and coupling terms, where
the solid and beam terms are independent of the coupling constraint. Therefore, well-established
formulations for the solid as well as the beam can be used without modifications. Without loss
of generality, only quasi-static problems are considered in this thesis. This only impacts the
virtual work contributions from the solid and the beam, but the coupling terms for the BTSV-POS
problem hold also for time-dependent problems.

In the BTSV-POS problem shown in Figure the beam is embedded inside the solid volume.
The solid volume overlapping with the beam volume is not subtracted from the solid volume, thus
resulting in overlapping volumes. However, the numerical examples in Section .4] demonstrate
that this does not impact the accuracy of the presented method.

If the embedded beam is considered as a 3D body, the most natural choice for the coupling
conditions is to couple the beam surface to the solid volume. However, there is no explicit surface
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4. Positional beam-to-solid volume coupling

Figure 4.1.: Notation of the finite deformation BTSV-POS coupling problem. Figure is taken from
the author’s article [135], permissions granted under the Creative Commons (CC BY)
license.

in the solid domain, to define the coupling conditions on. Therefore, this is a surface-to-volume
(2D-3D) coupling problem, i.e., the beam surface is embedded into the background solid volume.
The coupling constraints read

28 —z°=0 on T.upap, (4.1)

where I'. »p.3p is the 2D-3D coupling surface, i.e., the part of the beam surface that lies within the
solid volume. The Lagrange multiplier method is employed to impose the coupling constraint.
Therefore, a Lagrange multiplier vector field Ay 3p (s, a, 3) € R? is defined on T'..;p 3p, which
can be interpreted as the negative interface tractions acting on the beam surface. The total
Lagrange multiplier potential reads

My apa — / AL o (28 — 2°) dAo. 42)
I'c2p3p

In the following, let % denote the line of material solid points that coincide with the beam
centerline in the current configuration, i.e., & = r. The 2D-3D coupling conditions (#.1)) can

now be expanded via a Taylor series around the beam centerline, i.e.,
r—z + O(R) = 0. (4.3)

The 1D-3D coupling strategy underlying the proposed BTSV-POS scheme relies on the basic
assumption of slender beams, i.e., R < L, where R is a characteristic cross-section dimension
(e.g., the radius of circular cross-sections). In this chapter the Taylor series is truncated after
the constant term. The remaining terms only depend on the positional degrees of freedom of
the beam and solid at the beam centerline. The error introduced by this approximation is of
order O(R). Moreover, the approximation changes the physical coupling dimensionality applied
to the BTSV-POS model from surface-to-volume (2D-3D) to a line-to-volume (1D-3D) coupling.
This is a significant change in the mathematical description of the mechanical model, cf. Chapter [3]
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4.2. Spatial discretization

In Chapter [5the linear term of the Taylor series will also be considered, thus resulting in positional
and rotational coupling. The approximation (4.3) inserted in the coupling potential (4.2)) gives

T
I\ 2p3p ~ HK,ID%D = / Aopap (E - Qf) dAo . (4.4)
¢ op3p
The surface integral in (4.4) can be split up in an integral along the part of the beam centerline
that lies within the solid volume, i.e., I'; jp.3p = Qg N QOB , and an integral over the circumference

of the cross-section I'cg. This yields

H}\},lDGD = / / AZTD-3D (f - Qf) dl'cs ds. 4.5)
Peipap Y Tes

The positions 7 and z° can be extracted from the inner integral because they are only dependent
on the beam parameter coordinate s. The remaining integral over the circumference of the
cross-section only contains the Lagrange multiplier field, and the following abbreviation is
introduced

Aipap(s) _/ Aopap(s, @, B)dlcs . (4.6)
Tcs

Here, Ap sp(s) € R3 represents the resultants of the 2D-3D Lagrange multiplier field acting on a
single cross-section. It is important to point out that A, 5 and A, sp have different physical
dimensionality and, accordingly, also different units: the first one is a surface load, while the
latter one represents a line load. The final approximated total Lagrange multiplier potential can
be stated as

HK]DSD = / A]TD-3D (Z - Qf) ds. 4.7)
[C¢ipap

Variation of this Lagrange multiplier potential yields the coupling contributions to the total virtual
work
5HK1D-3D = / Aipap (5f - 5§f) ds +/ 0Aipap (f - Q}S) ds, (4.8)
¢ ipap r

¢,1D-3D

J/

-~

SWY

Vv
1A%
oW, X,1D-3D

¢,1D-3D

with the coupling interface contributions (SW;’lD_m and the variational form of the coupling
constraints o W/{’ \pap- This leads to the final saddle point-type weak formulation of the 1D-3D
BTSV-POS problem:

For improved readability, the subscript 1D-3D for the line-to-volume coupling terms will be
omitted from now on. Furthermore, the positional 1D-3D Lagrange multiplier field will be
referred to as AV,

4.2. Spatial discretization

4.2.1. Mortar-type coupling of positions

Employing a mortar-type coupling approach, the Lagrange multipliers are approximated with a
finite element interpolation [17,[110,150]. The continuous Lagrange multiplier field A" is defined
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4. Positional beam-to-solid volume coupling

along the beam centerline. Therefore, the Lagrange multiplier interpolation is defined along the
1D beam elements. All subsequent integration is performed on the coupling domain I'. ;,, which is
the projection of the continuous coupling domain I', onto the beam finite element function space.
In the nomenclature of classical computational contact mechanics, the beam would be considered
the slave side, and the solid the master side. The approximated Lagrange multiplier field reads

A =D 0Y(ER)A, (4.10)

j=1

where @}? € R is the shape function for the discrete Lagrange multiplier vector 3}} € R3 atnode j.
The total number of discrete Lagrange multiplier nodes is n¥, which is not necessarily equal to n5.
The shape functions CID}’ are a function of the scalar beam centerline parameter coordinate £5.
Note that even though the Lagrange multipliers are defined along the beam centerline domain,
the beam centerline shape functions H] and H} will not be used to interpolate the Lagrange
multiplier field. An adequate choice of Lagrange multiplier shape functions will be discussed
in Section The nodal discrete Lagrange multiplier unknowns é}’ are assembled into the

global vector A”.

In what follows, all coupling terms are evaluated on the beam centerline. This requires the
projection of points along the beam centerline parameter space into the solid element parameter
space, all in the reference configuration, which in turn is achieved by solving the set of nonlinear
equations X5, (£5,15,¢5) =1y, (€7), for a given €. Going further, the mapping operator yj,
will be used to represent this projection from a point on the beam centerline to the corresponding
point in the solid volume. To improve readability, the dependency on parameter coordinates will
not be stated explicitly. Insertion of the finite element approximations (2.3, and
into the variational form of the coupling constraints (4.8) gives

’VLB nV
-5

=1 j=1

(ID})Hld8> 5d? — ZZéé}/T </r <I>}} (Ng o xn) ds) ds.
h c,h

k=1 j=1
4.11)
In the previous equation, two local matrices with mass matrix-like structure can be identified:

¢,

DVI = / ®YH;ds € R¥C, (4.12)
1—‘c,h

MY — / Y (Ni o ya) ds I3 € R, (4.13)
Fch

There, DYV describes the coupling between the Lagrange multiplier node j and the beam
node [ and MYV* describes the coupling between the Lagrange multiplier node j and the
solid node k. They can be assembled into global, so-called mortar matrices DY & [R3nY x6n”
and MY € R3""*3n° which are in general both rectangular. A similar expression containing D
and MY can also be derived for the virtual work 5W(}f ;, of the coupling forces. All in all, the
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coupling contributions to the weak form can now be stated in global matrix form

—WY, = 6d® DVIAY —6dST MV XY, (4.14)
rY(AY) —rY(\Y)
3, VIV 4B VT Ay 1S yT V y d®
OWy) = 0AY " DYd” — GAY"MYd” = oA"" [-M" D"] | 15 . (4.15)
g"(;‘g,ds)

Here, rY and rY are the vectors with the discretized coupling forces acting on the solid and
positional beam degrees of freedom, respectively. The vector g” contains the discretized constraint
equations and its entries can be interpreted as the relative displacement between beam centerline
and solid weighted with the Lagrange multiplier shape functions. Inserting all discretized variables
into (4.9) gives the discrete nonlinear system of equations for the quasi-static BTSV-POS problem:

r¥(d°) +rY(\Y) =0, (4.16)
rB(d®) +rV(A\Y) =0, (4.17)
g¥(d®,d%) = 0. (4.18)

Here, r® and r? are the solid and beam residual vectors, respectively. The Newton—Raphson algo-
rithm is used to obtain solutions to the system of nonlinear equations. Therefore, a linearization
of equations to with respect to the global unknowns d® and d® has to be derived.
The linearized system of equations with saddle point structure reads:

KS 0 —-MV'| [AdS —rS
0 K5 DY | |Ad|=|-F|, (4.19)
~M¥ DY 0 AV —g”

where K, and KZ are the tangent stiffness matrices associated with the solid degrees of freedom
and positional beam degrees of freedom, respectively.

Remark 4.1. For BTSV-POS problems, the coupling matrices D¥ and MY only depend on the
reference configuration, i.e., they are evaluated once at the beginning of the simulation and are
stored for further load steps.

Remark 4.2. As a consequence of purely positional coupling, no coupling terms arise between
the beams rotational degree of freedom and the rest of the BTS system. Thus, the rotation of
beam fibers around their centerline might be unconstrained, possibly yielding a singular linear
system to solve. As a remedy, one can impose Dirichlet boundary conditions on at least one
of the twist degrees of freedom. This discussion also underlines an advantage coming with the
torsion-free beam theory: the corresponding beam finite elements do not have any rotational
degrees of freedom, and consequently, such rigid body modes cannot occur.

4.2.2. Discrete Lagrange multiplier spaces

The choice of discrete Lagrange multiplier spaces and associated shape functions is important for
the mathematical properties of the discretized system, since the discrete Lagrange multiplier shape
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4. Positional beam-to-solid volume coupling

functions, must fulfill an inf-sup condition with the displacement field [24]]. In the context of
surface-to-surface contact or mesh tying in solid mechanics, this is a well studied-topic. However,
in the considered mixed-dimensional BTSV-POS problem, Hermite polynomials are employed
as primary shape functions for the slave side, i.e., the beam, which is unusual compared to
the standard surface-to-surface case. Additionally, BTSV-POS coupling is an embedded 1D-
3D coupling problem, i.e., there is no explicit curve representation in the solid mesh to match
the beam centerline, which can lead to stability issues [122]. The numerical experiments in
Section 4.4.2| and [4.4.3| carefully evaluate the influence of different Lagrange multiplier bases on
the numerical properties of the BTSV-POS problem.

Since the Lagrange multipliers are defined on the beam centerline, a natural choice in the
spirit of the mortar method would be to use the same shape functions as for the beam elements,
i.e., third-order C''-continuous Hermite polynomials. However, the integral over the Hermite
shape functions associated with the tangential degrees of freedom becomes zero for neighboring
beam elements with equal length. This can lead to numerical difficulties in the penalty-based
constraint enforcement. Therefore, in this thesis, standard Lagrangian shape functions are used
to interpolate the Lagrange multiplier field. Three different types of shape functions will be
compared: linear, quadratic and cubic. In surface-to-surface mortar methods, the use of stable
lower order interpolations for the Lagrange multipliers compared to the displacement interpolation
order was already successfully explored in [[111}[115]].

From a mathematical point of view, the BTSV-POS problem is an embedded mesh problem
and the discrete multiplier space must satisfy a uniform inf-sup condition to guarantee stability.
In the literature some appealing approaches are available together with a deep mathematical
analysis. For example, in [15] the so-called vital vertex method is introduced, which defines
Lagrange multipliers at the intersections between the coupled meshes, i.e., at the intersections
between the beam centerline and the solid elements in the BTSV-POS problem considered here.
Another interesting approach, the so-called MorteX method, is presented in [2]. The MorteX
method was developed for mesh tying along embedded interfaces, and introduces a coarse-
grained interpolation of the Lagrange multipliers. This coarsening is an approach to overcome
spurious mesh locking effects, which are a known issue of mixed formulations. Other approaches
include Nitsche’s method [42, 55 [123]] or discontinuous Galerkin formulations [55,1122]. A deep
mathematical analysis is beyond the scope of the present thesis, but it is important to point out that
in this thesis the mixed formulation, i.e., the saddle-point system, is exclusively solved using a
penalty regularization, thus circumventing the inf-sup condition. In principle this is similar to how
Nitsche’s method sidesteps possible inf-sup stability issues. The penalty regularization of a not
inf-sup stable system might lead to locking phenomena, i.e., the coupling discretization becomes
to stiff. However, the examples presented in Section [4.4] show that the presented BTSV-POS
method with a linear interpolation of the Lagrange multipliers is locking-free for typical BTS
length ratios and penalty parameters. This is also confirmed by other numerical investigations on
embedded mesh methods, cf. [122]], where classical mortar-type Lagrange multiplier ideas are
also formally unstable, but only cause locking problems in certain situations (i.e. if the embedded
mesh is finer than the background mesh).

Remark 4.3. The previous derivations are given for the case, where the constraint equations
are fulfilled in a truly weak (variational) sense. In Section 4.4] this mortar-type coupling will
be compared to a classical Gauss point-to-segment (GPTS) coupling approach. In the GPTS
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coupling, the strong form of the constraint equations (4.1)) is fulfilled at each Gauss point along
the beam, i.e., a discrete Lagrange multiplier vector igpﬂ- € R? is defined at each Gauss point in
the sense of a collocation method. However, GPTS coupling can also be interpreted as a special
case of the mortar-type coupling, namely if the Lagrange multiplier field is interpolated as

%
ngp

AVGP,h = ' w;0 (EZB - 58> AEPJ'

Here, 4 is the Dirac delta distribution with the property [;. 0 (o — &%) f (¢%) ds = f (a). The

position and weight of the i-th Gauss point are denoted with élB and w;, respectively.

4.2.3. Penalty regularization

The constraint equations (4.1)) are discretized with a mortar coupling approach using Lagrange
multipliers, thus resulting in a mixed formulation. However, due to certain drawbacks, e.g., an
increased system size compared to the uncoupled problem and a saddle point structure, (.19)
will not be solved directly to obtain solutions to the BTSV-POS problem. Instead, a penalty
regularization is used to obtain approximate solutions of (4.19)). This results in a formulation that
is purely displacement-based and does not contain any additional variables, cf. Section[2.5.2] The
main idea is to allow a relaxation of the discretized coupling constraints g” = 0 in the form

A = (V) g¥(dd, db). (4.20)

Herein, ¢V € R* is the penalty parameter and it is clear that for ¢V — oo, (#.20) becomes
equivalent to (#.18). The entries in the weighted relative displacement vector g are proportional
to the support of the corresponding Lagrange multiplier shape function, i.e., they depend on
the beam element length. If unaccounted for, this dependency would result in a violation of the
basic consistency tests presented in Section To resolve this problem, the relaxation of
the constraints in (4.20)) is additionally multiplied with the inverse of the diagonal nodal scaling
matrix VY, similar to the approach in [154]]. The local scaling matrix for the Lagrange multiplier
node j is defined by

v

V. / DY ds 17 (4.21)
1—‘c,h

and is assembled into the global scaling matrix VY. It is important to note, that V¥ is a diagonal
matrix and its inversion is therefore trivial. With the penalty regularization, the coupling residual
contributions r” and rY can be stated as,

T -1 d°
—r/(d®,d%) ="MV (VY) " [-MY DV] { dlg} (4.22)
VidS 48 vpvT (yv) ! y o [d°
ry(d%,d%) =¢’DY (VY)  [-MY DY] {dlg}. (4.23)

With this the final global system of equations (4.19) becomes:
KS + MY (W) 'MY —ePMYT (VY) T DY | [AdS] | [—rS(dS) — rV(d%, d°)
—D” (V) T'MY KB 4DV (V)T DY| [Ad®] | P (d®) - rY(d®, df)
(4.24)

ITe
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4. Positional beam-to-solid volume coupling

The penalty regularization introduces an additional system parameter ¢”. This leaves the important
question on how to chose that parameter. Obviously, choosing too high penalty parameters can
lead to an ill-conditioned system matrix and subsequent issues with the numerical solution
procedure, as well as to contact locking effects, cf. Section Moreover, also from a
mechanical point of view, an infinitely large penalty parameter is not desirable. This is because in
the real physical problem the beam cross-section itself is flexible, however, the employed beam
theories introduce the assumption of rigid cross-sections. Therefore, the penalty parameter is no
longer a pure mathematical tool of constraint enforcement, but it also has a physical meaning,
representing the beam cross-section stiffness. Similar observations can be made in the case of
beam-to-beam contact, cf. [98]. Going further, one could define the penalty parameter based on
continuum mechanical analysis of the cross-section deformation and stiffness. However, since
the primary interest is the regularization of (4.19), the following rule of thumb for choosing the
penalty parameter can be given: the positional penalty parameter should be in the range of the
beams’ Young’s modulus, i.e., €’ ~ EP. In practice this does not lead to an unphysically large
violation of the positional coupling constraints, and contact locking has not been observed in
combination with a linear interpolation of the Lagrange multiplier field.

4.2.4. Numerical integration

The BTSV-POS contributions to the global system of equations are all calculated via integration
over the beam domain in the reference configuration, cf. (4.12)) and (4.13)). Numerical integration,
namely a Gauss—Legendre quadrature, is used to evaluate the coupling matrices D¥ and MY and
the scaling matrix V" during the finite element simulation. An accurate numerical evaluation
of the coupling integrals is absolutely essential to pass basic consistency tests, cf. Section 4.4.1]
The integrands in DY and V" solely contain fields defined along the beam centerline, namely the
beam displacements and the Lagrange multipliers. If the Jacobian HaﬁO, n/ 85“ along the beam
element is constant, the integrand is of polynomial form and the numerical integration is exact, if
enough quadrature points are used. In the cases considered in this thesis, the maximal polynomial
degree of the integrand in DY and VV is 6, i.e., third-order beam shape functions and third-order
Lagrange multiplier shape functions. Therefore, 4 Gauss—Legendre points are needed for the
numerical integration to be exact. The integrand of MY contains fields defined along the beam
centerline as well as the solid volume. In Figure [4.2] it can be seen that the evaluation of the
solid shape functions along the beam centerline results in a general nonlinear function which
contains so-called weak discontinuities, i.e., kinks at the points where the beam crosses between
solid elements, and strong discontinuities, i.e., jumps at points where the beam sticks out of
the solid volume. Moreover, the continuous parts of the integrand in MY are not of polynomial
degree. To still guarantee high accuracy of numerical integration for the integrand in MY, two
different algorithms will be investigated and compared, cf. Figure .3] Element-based integration
uses a fixed number of Gauss points per beam element. The only exception occurs at strong
discontinuities, where the integration is only performed for the part of the beam element inside
the solid volume. In segment-based integration, the integration domain along the beam element is
split into multiple segments, such that the integrand in the individual segments does not contain
any kinks. Each segment is then integrated with a fixed number of Gauss points.

The global coupling matrices only depend on the initial configuration of the BTSV-POS
problem, i.e., they remain constant over the course of the simulation. From a computational point
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Figure 4.2.: Illustration of weak and strong discontinuities — patch of two solid elements and one
beam element with a weak discontinuity at &, and a strong discontinuity at &, (left)
and the projection of selected solid shape functions onto the beam centerline (right).

Figure is taken from the author’s article [135], permissions granted under the Creative
Commons (CC BY) license.

of view, it makes sense to evaluate the coupling matrices D¥, MY and V" once and store them for
subsequent Newton iterations and time steps. Nevertheless, it is important to address the impact
of the two different numerical integration schemes with regard to computational performance
and accuracy. Independent of the integration scheme used, each Gauss point evaluation requires
the solution of a local nonlinear system of equations, i.e., the projection of the point on the
beam centerline into the solid finite element parameter space. For element-based integration, the
evaluation time for the coupling terms is more or less proportional to the number of Gauss points
used. Since the integrand contains kinks, a relatively high number of Gauss points is necessary to
obtain a sufficiently accurate numerical integration. On the other hand, segment-based integration
requires calculation of the intersections of the beam elements with the solid surfaces. This
intersection operation also requires the solution of local nonlinear systems. The total number
of intersections, which have to be calculated, depends on the mesh configuration and cannot
be quantified in a general manner. The advantage of the segment-based integration is that the
integrands over a segment are smooth, see the left part of Figure d.2] and an acceptable integration
error can be obtained with a reasonable number of Gauss points. Unless stated otherwise, all
the examples in this thesis use 6 Gauss points per integration segment. A direct comparison
of the two integration schemes regarding evaluation time is difficult, as the times depend on
the mesh configuration of the individual problem. In [45]], an elaborate comparison of various
numerical integration algorithms for mortar methods is given. It should be stated that, in general,
due to the non-polynomial integrand in MY both integration schemes cannot integrate MY exactly.
Nevertheless, the segment-based integration has clear advantages: the accuracy of its numerical
integration is independent of the BTS element length ratio and a higher accuracy can be achieved
with the same global number of Gauss points.

4.3. Parallel evaluation of beam-to-solid pairs

A detailed analysis of the implementation and software design associated with the proposed BTS
finite element methods is not the main focus of this thesis. Nevertheless, a short discussion of
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element-based integration segment-based integration

o beam node O segmentation point x Gauss point

Figure 4.3.: Illustration of element-based and segment-based integration. Figure is taken from the
author’s article [[135]], permissions granted under the Creative Commons (CC BY)
license.

the broad aspects regarding the parallel implementation of the presented beam-to-solid (BTS)
interaction algorithms is given in the following section.

All examples considered in this thesis are simulated with the in-house parallel finite element
solver BACI [12], which heavily relies on the Trilinos software package [143]. The BTS coupling
algorithms in this thesis are designed to be used on modern many core computer systems (clusters)
with distributed memory. Without going into too much detail concerning the specific hardware
configuration, the term processor referrers to a single processing unit in the remainder of this thesis.
In most cases, the number of processors is equal to the number of central processing units (CPUs)
assigned to a specific simulation. To efficiently run large finite element simulations a distribution
of the global problem, i.e., nodes and finite elements, but also global vectors and matrices, to the
individual processors is required. Within BACI, the standard domain decomposition functionality
for uncoupled beam and solid problems is provided by the third-party library Zoltan [25]]. Therein,
a graph based parallel distribution, based on the nodal connectivity of the finite element mesh,
is performed. This allows for an efficient evaluation of the tangent stiffness and internal force
vectors of the beam and solid finite elements. However, in the case of coupled BTS problems,
this graph-based parallel distribution can lead to a significant performance bottleneck. Consider
a BTSV coupling problem of a thin plate modeled with 81,000 eight-noded hexahedral finite
elements and 65 x 41 unconnected fiber-reinforcements consisting of a total of 8480 beam finite
elements. Figure 4.4|illustrates the parallel partitioning of the problem for eight processors. It can
be seen that the solid elements are distributed on seven different processors, while one processor
mainly carries all the beam finite elements. This is because the graph-based partitioning algorithm
does not have any information about the connectivity between the beam and solid elements. Since
all BTS coupling terms are defined along the beam centerline, it makes sense that the processor
owing a specific beam element also performs the evaluation of the corresponding BTS pairs.
The term beam-to-solid pair refers to the pairing of a single beam and a single solid element
interacting with each other. With the parallel distribution shown in Figure one processor
would carry almost the entire workload regarding the BTS coupling evaluation, i.e., search of
possible BTS coupling pairs and the numerical integration of the coupling terms. Obviously,
this would result in a considerable decrease of parallel efficiency. Additional, in this case the
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4.3. Parallel evaluation of beam-to-solid pairs

Figure 4.4.: Graph-based parallel distribution of a BTSV coupling problem — Coloring indicates
the owning processor identification number (PID).

evaluating processor requires information of the entire solid mesh, resulting in a massive amount
of (expensive) parallel communication and possibly one might also run into memory issues as a
copy of the entire solid mesh has to be stored for each processor.

To circumvent the previously described issues, in this thesis, the parallel evaluation of the BTS
pairs is exclusively based on a so-called binning strategy. Therein, the parallel distribution of the
global finite element problem is not performed on a graph-based method but rather a geometrically
inspired method. The procedure is exemplary illustrated in Figure 4.5] First, the domain of the
BTS problem, cf. Figure is divided into axis aligned bins, cf. Figure[#.5(b)] In a next step,
a weighted parallel distribution of the bins is performed, exemplary shown in Figure for
two processors. Therein, also the ghosted, i.e., not locally owned but locally available bins, are
illustrated. The parallel distribution of the finite element mesh is then performed accordingly,
cf. Figure 4.5(d)} Finally, the evaluation of the BTS pairs is illustrated in Figure It can
be seen that all information required to evaluate the pairs is already locally available, i.e., no
additional parallel communication for the pair evaluation is required. However, in some cases
a pair provides contributions to two processors, i.e., if the beam element and solid element are
not owned by the same processor, cf. the interaction of beams with ghosted solid elements in
Figure In such cases, the so-called off processor terms are stored locally and their parallel
communication to the other processors is performed once at the end of the pair evaluation phase.
Figure [.6] illustrates the binning strategy applied to the plate example. Now the geometric
distribution of the beam and solid elements is geometrically motivated, which reduces the
inter-processor communication and provides parallel scalability. The quality of the resulting
parallel distribution obtained with the binning strategy obviously depends on the considered
problem. However, for all numerical examples considered in this thesis, a binning-based parallel
distribution has proven to be sufficient in order to avoid drastic performance bottlenecks during
the pair evaluation stage.

Remark 4.4. The BTSV-POS method presented in this chapter yields constant coupling matrices
which are only evaluated once at the beginning of the simulation and stored for all subsequent load
steps. Therefore, the binning-based parallel distribution is only performed once at the beginning
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4. Positional beam-to-solid volume coupling

(a) Problem setup (b) Spatial distribution of
bins

(e) Beam-to-solid coupling pair evaluation

Figure 4.5.: Binning-based parallel distribution for the evaluation of BTS pairs, involving two
independent processors. Bins and elements owned by processor 1 and proces-
sor 2 are shown in cyan and magenta, respectively. Furthermore, gray colored
bins or elements are ghosted by the respective processor. Figure is adapted from
the author’s article [136], permissions granted under the Creative Commons non-
commercial (CC BY-NC) license.
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Figure 4.6.: Binning-based parallel distribution of a BTSV coupling problem — Coloring indicates
the owning processor identification number (PID).

of the simulation. The BTS coupling methods presented in Chapters[5]and [fresult in deformation
dependent coupling terms, i.e., they have to be reevaluated in each Newton—Raphson iteration.
There, a parallel redistribution is also not required since all coupling integrals are evaluated on
the fixed coupling domain in the reference configuration. In other words, coupling (mesh tying)
problems do not necessitate a parallel redistribution over the course of the simulation. However,
in the case of BTS contact problems parallel redistributions are required over the course of the
simulation. This ensures that, even for large relative motions, all relevant contact pairs are found
by the contact algorithm. The recurring parallel redistributions also result in a better distribution
of the evaluation workload over the individual processors. In [92] an elaborate discussion on this
topic, in the case of surface-to-surface contact problems, is given.

4.4. Examples

The following examples are chosen to evaluate the various BTSV-POS methods proposed in this
chapter, cf. Table [4.1] and to demonstrate their accuracy and robustness for the simulation of
challenging engineering applications. All numerical examples are set up using the open source
beam finite element pre-processor MeshPy and are simulated with the in-house parallel
multi-physics research code BACI [[12]].

4.4.1. Constant stress transfer

The first examples serve as basic consistency tests of the BTSV-POS coupling methods and their
ability to transfer constant stress states. The examples are inspired by classical patch tests, which
are a well-established tool to investigate the consistency of finite element formulations .
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4. Positional beam-to-solid volume coupling

Table 4.1.: Listing of the various coupling methods investigated in this chapter. Table is taken from
the author’s article [1335]], permissions granted under the Creative Commons (CC BY)
license.

coupling discretization coupling type Lagrange multiplier numerical integration
shape function

GPTS 1D-3D - element + segment based
2D-3D - element based
mortar 1D-3D linear element + segment based
quadratic element + segment based
cubic element + segment based
|
Qs
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Figure 4.7.: Constant stress transfer test — problem setup. Both beams Q% and Q5 occupy the
same spatial position. Figure is taken from the author’s article [[135]], permissions
granted under the Creative Commons (CC BY) license.

4.4.1.1. Beams inside a solid volume

Figure shows the first constant stress transfer test presented here. It consists of a solid
cuboid Q° with two embedded straight beams B1 and B2, where ¥ and 05, i.e., the domains of
the two beams, occupy the same spatial position. No surface loads or body forces are applied on
the solid, while constant line loads with a magnitude ¢ act in opposite directions =e5 on the beams.
Therefore, the opposing loads on the two beams cancel each other out and in sum the two beams
transfer no loads to the solid. This gives the trivial solution for the solid displacement field u$=0
and the constant solution —u¥ = u5 = e,t/¢” for the beam displacements, where €” is the
penalty parameter, cf. (4.20). This test uses the proposed BTSV-POS method to couple both
beams to the solid. By doing so, all interactions between the beams are transferred via the solid
domain. This test case will be used to assess the influence of discretization and integration error
on the performance of the proposed BTSV-POS method.

The dimensions of the cube are 1 m X 1 m x 2m and a compressible Neo-Hookean material law
with Young’s modulus £° = 10 N/m? and Possion’s ratio v° = 0.3 is employed as constitutive
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model. The penalty stiffness of the BTSV-POS is ¢” = 10* N/m?2. Both beams align along the
space diagonal of the cuboid and have a length of 0.7+/5 m. Their cross-sections are circular with
a radius of 0.05m and the constitutive parameters are £ = 100 N/m? % = 0. The solid is
discretized with 4 x 4 x 7 eight-noded, first-order hexahedral elements (hex8). Simo—Reissner
beam elements are used to represent both beams 51 and B2, which are discretized with 5 and 7
equidistant elements, respectively. Mortar coupling is applied between the beam centerline and
the solid, with a linear interpolation of the Lagrange multiplier field A¥ along the beam elements.
To circumvent numerical problems in the solution of the resulting linear system of equations, the
solid is constrained such that all six rigid body modes of the system are eliminated. Additionally,
any rotation of the first nodes of the two beams is constrained to prevent a rigid body rotation of
the beams around their axes. The magnitude of the line loads on the beams is ¢ = 5 N/m.

For the given geometry, there is no discretization error, since the chosen shape functions for
the beams and the solid are able to exactly represent both geometry and numerical solution. To
assess the numerical integration error, the problem is solved once with element-based integration
of the mortar coupling terms and once with segment-based integration. Figure shows the
result obtained with element-based integration and 6 Gauss points per beam element. Clearly,
the solution is not exact, as the solid is not stress-free and the deformation of the beams is
not constant, thus resulting in non-vanishing curvatures along the beams. Figure shows
the results obtained with segment-based integration of the mortar coupling terms, where each
segment is integrated with 6 Gauss points. In this case, the numerical results exactly match the
analytical solution up to machine precision, which confirms the vanishing integration error for
segment-based integration.

A second constant stress transfer test is set up similar to the first one, with the straight beams
being replaced by two helix-shaped beams. The helix has the following geometrical parameters:
a radius of 0.45 m, three turns with a pitch of 9/5 m and a right handed screw type. In this case,
the beams B1 and B2 are discretized with 23 and 31 elements, respectively. The employed C'-
continuous Hermite polynomials used for the beam centerline interpolation can not represent
the helix geometry exactly, which results in two slightly different geometries of the beams and
different arc lengths of the two helices, thus introducing a discretization error. In order for the
two beams to be in equilibrium, the load ¢ on beam B2 is scaled with a factor of 0.999318, to
correct for the different beam lengths. In this case, the beams can not perform a rigid body
motion when coupled to the solid. Therefore, only the six rigid body modes of the solid are
constrained. All other parameters are equal to the previously described example. Figure
shows the results with element-based integration of the mortar coupling terms. Similar to the
previous scenario, one can see non-vanishing stresses in the solid and curvature oscillations in
the beams. In this case, also the result with segment-based integration, shown in Figure
does not match the analytical results up to machine precision, because of the previously described
discretization error. However, when comparing the quantitative results, one can see that the
influence of the numerical integration error for element-based integration is about one order of
magnitude larger than the discretization error, which confirms that element-based integration
introduces a significant additional integration error.

The presented results were all calculated with the mortar-type BTSV-POS coupling approach
and first-order interpolation of the Lagrange multipliers. Quantitatively, the results change only
slightly if a GPTS (1D-3D) approach is used or if a different interpolation scheme for the Lagrange
multipliers is applied. Therefore, the conclusions obtained from the shown examples, i.e., the
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Figure 4.8.: Constant stress transfer test — results for overlapping straight beams. Deformed
configurations are shown for element-based integration [(a)] and segment-based in-
tegration The second Piola-Kirchhoff stress S33 is shown in the solid and the
curvature ~ at the middle of each beam element. Displacements of beams and solid
are scaled with a factor of 100. Note that both beams Q% and Q5 occupy the same
spatial domain in the undeformed reference configuration. Figure is taken from the
author’s article [[135]], permissions granted under the Creative Commons (CC BY)
license.

importance of an accurate numerical integration of the BTSV-POS terms and the superiority of
segment- over element-based integration, can be applied to all aforementioned cases.

4.4.1.2. Strong discontinuities

To check the ability of the proposed methods to handle strong discontinuities, i.e., a beam sticking
out of a solid domain, two more consistency tests are introduced. Both problems consist of a solid
cube and a straight beam which starts inside of the cube and ends outside of it. In the first case,
the beam intersects a face of the solid, in the second one it intersects an edge. All solid degrees of
freedom are constrained and a constant line load —te; = —1 N/m e, is applied only to the part
of the beam inside of the cube. Similar to the previous consistency test the analytical solution
for the beam displacement is u® = —t/€” e,. Furthermore, the beam can only be in equilibrium
if the coupling interface traction is A = te; = 1 N/m e,. For reasons of simplicity, the solid
cube is discretized with a single hex8 element, the beam with a single Simo—Reissner element. In
this case, segment- and element-based integration are identical to each other, as both schemes
will result in the same integration points and weights. Segmentation has to be performed at the
point where the beam exits the solid volume. The consistency tests are analyzed once with a
GPTS approach and once with mortar-type coupling using a linear interpolation of the Lagrange
multipliers. Figure #.10[shows the results. For the Gauss point-to-segment method, the coupling
forces at the integration points are illustrated and it can be observed that they are exact up to
machine precision. The same holds true for the Lagrange multiplier interface tractions in the
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Figure 4.9.: Constant stress transfer test — results for overlapping helix-shaped beams. Deformed
configurations are shown for element-based integration [(a)] and segment-based in-
tegration [(b)l The second Piola-Kirchhoff stress S33 is shown in the solid and the
curvature ~ at the middle of each beam element. Displacements of beams and solid
are scaled with a factor of 50. Note that both beams Q¥ and Q5 occupy the same
spatial domain in the undeformed reference configuration. Figure is taken from the
author’s article [[135]], permissions granted under the Creative Commons (CC BY)
license.

mortar case. The discrete Lagrange multipliers should not be confused with discrete nodal loads
on the beam element, as the Lagrange multiplier field is only integrated on the beam segment that
resides inside the solid. This underlines the importance of segmentation at solid surfaces, i.e.,
proper treatment of strong discontinuities.

4.4.2. Spatial convergence

The following numerical example investigates the spatial convergence properties of the BTSV-
POS method as well the validity of the evaluation of the coupling terms along the beam centerline
instead of the beam surface, i.e., the fundamental mixed-dimensional 1D-3D modeling assumption.
The considered problem is shown in Figure 4.T1] It consists of a solid block with the dimen-
sions 5m x 1 m x 1 m and a hyperelastic Saint Venant—Kirchhoff material model (E° = 10 N /m?,
v° = 0.0). Embedded inside the solid block is a rod with the length 5 m. The beam is modeled as
a torsion-free beam (E? = 4346 N /m?) with circular cross-section (radius R = 0.125m). The
parameters are chosen such that the rod and solid have the same bending stiffness around the e,
and e, axes. At the left end surface of the solid block, displacements are fixed as are the rod dis-
placements and rotations. At the right end, the rod is loaded with a moment M = —0.025 Nm e,.
No external loads are applied to the solid block.

The spatial convergence behavior of the various coupling methods will be analyzed with respect
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Figure 4.10.: Strong discontinuities — Gauss point-to-segment and mortar-type approach. Gauss
point-to-segment approach with the negative coupling forces at the integration
points [(a)] and mortar-type coupling with the negative discrete Lagrange multiplier
traction vectors [(b)l Figure is taken from the author’s article [135]], permissions
granted under the Creative Commons (CC BY) license.

Figure 4.11.: Spatial convergence — problem setup of a coupled beam and solid structure. Figure
is taken from the author’s article [135]], permissions granted under the Creative
Commons (CC BY) license.
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to the L, displacement error

1 1
lell, = 7\// s —usS® dVy + Z\// [uf, — B || ds. (4.25)
0 Qs QB

Here, Vi = 5m? is the solid volume in the reference configuration and L = 5m is the reference
length of the beam. The error is computed relative to a reference finite element solution obtained
with 2D-3D (surface-to-volume) coupling, cf. Appendix[A] In all of the following results obtained
with 2D-3D coupling, 6 Gauss—Legendre point in axial direction and 128 integration points in
circumferential direction are used. This ensures a sufficiently accurate numerical evaluation of the
2D-3D coupling terms in order to hold as reference solution, and the chosen penalty parameter
does not lead to unwanted stiffening effects. Since the derivations presented in Appendix [A]are
stated for the general case of a Simo—Reissner beam, a slight modification has to be applied
to deal with the torsion-free beam theory employed in this example, as the torsion-free beam
theory inherently does not provide a unique beam cross-section triad. Considering that the present
example exhibits a symmetry around the e, — e, plane, a unique beam triad can be constructed in
a straight forward manner via AP = [t, et x 92} , where t is the normalized beam centerline
tangent, i.e., t = '/ |||

The solid block is meshed with first-order ex8 solid elements, with an element size h°. The
rod is discretized with torsion-free beam finite elements with a length of h® = 2.5h5. The
penalty parameter for all 1D-3D coupling methods is 100 N/m?, for 2D-3D GPTS coupling it
is 100 N/m3. Additionally to the previously described integration rule for 2D-3D coupling, all
1D-3D coupling schemes in this example are evaluated with segment-based integration and 6
Gauss points per segment. The penalty parameter and the number of Gauss points are chosen
according to Section 4.4.3|in order to avoid unwanted contact locking effects. For models purely
consisting of either first-order solid or third-order beam elements, the expected convergence rate
of the Ly-error is O(h?) and O(h*), respectively. The expected optimal convergence rate for the
coupled problem is thus the lower of the two, i.e., O(h?). Figure shows the convergence
plot of the coupled structure with various coupling methods. The 2D-3D GPTS coupling scheme
exhibits the expected optimal convergence rate of O(h?) for the entire dataset. All 1D-3D coupling
schemes behave very similar to each other. For coarse meshes, the expected optimal convergence
order O(h?) can be observed. At around h® = 0.12m the convergence behavior of all 1D-3D
coupling methods has a kink, and for smaller element sizes the error does not decrease any further,
it even slightly increases. The bottom right part of Figure illustrates the solid mesh size
compared to the beam cross-section at three different points in the convergence plot. In the case
of a coupling along the beam surface (2D-3D), the beam interacts with all solid elements along
its surface. In truly 1D-3D BTSV coupling, the beam only interacts with the solid elements along
its centerline. For finer discretizations, the influence of the different interaction types becomes
more evident, which materializes in the kink in the convergence plot. This behavior is expected,
as the coupling interactions in the 1D-3D scheme represent a singular line load, which results
in non-converging solutions for spatial mesh refinement [[155]]. This result gives rise to a very
important finding, namely that the 1D-3D BTSV-POS coupling scheme is valid down to a certain
element size, i.e., up to the kink in the convergence plot. Exemplarily, the beam tip displacement
of the 2D-3D reference solution is 0.19009 m. With the 1D-3D BTSV-POS coupling method the
tip displacement at the kink in the convergence plot (mesh B from Figure 1s 0.18895 m,
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Figure 4.12.: Spatial convergence — error plots for various coupling methods. The details A-C
illustrate the solid element size compared to the beam cross-section diameter at
certain data points. Figure is taken from the author’s article [[135], permissions
granted under the Creative Commons (CC BY) license.

which amounts to a relative error of approximately 0.5%. The coupling interactions of the 2D-3D
and 1D-3D schemes are shown in Figure @ The critical solid element size, i.e., up to which
the 1D-3D coupling is accurate, depends on a number of different parameters and can not be
given in closed form. However, for the problems considered in this work, i.e., rather stiff beams
and soft solids, a rule of thumb can be given: the solid element size should not be smaller than
the beam cross-section diameter, cf. Section Keeping in mind the envisaged applications, one
can conclude that this does not pose any restrictions on the BTSV-POS methods, but is perfectly
in line with their modeling goal.

4.4.3. Influence of the penalty parameter

In this example the analyzed problem is the same as in Section §.4.2] now with a fixed solid
element length ~° = 0.25m. The model is simulated with various penalty parameters and
BTS element length ratios. To quantify the differences between results obtained with various
parameters, the Lo-errors relative to the same reference solution as used in Section 4.4.2] are
compared. The results are shown in Figure 4.14] Each of the four plots represents a fixed
BTS element length ratio. The penalty parameter is plotted on the abscissa. The line style
identifies the employed coupling scheme. For both element and segment-based integration, 6
integration points are used per element and segment, respectively. The desired behavior for an
increasing penalty parameter is a convergence towards the exact fulfillment of the constraint
equations, i.e., the solution of (#.19). In the presented plots, this corresponds to a horizontal line
for high penalty parameters. For all element length ratios, the GPTS scheme with segment-based
integration exhibits an increasing error for increasing penalty parameters. The GPTS scheme with
element-based integration behaves better for high element length ratios, but as the beam length
gets closer to the solid element size, the same behavior can be observed. This effect is sometimes
referred to as contact locking and occurs due to an over-constraining of the system, i.e., too many
discrete coupling constraints are enforced, and as a result, the coupling discretization becomes
too stiff. Mathematically, this is related to a violation of the discrete inf-sup condition [24]]. This
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Figure 4.13.: Spatial convergence — coupling interactions. Gauss point coupling forces are shown
for 2D-3D coupling [(a)] and the negative Lagrange multiplier field is shown for
1D-3D mortar-type (linear interpolation) coupling|(b)l The shown plots are for h¥ =
0.14 m. Figure is taken from the author’s article [135]], permissions granted under
the Creative Commons (CC BY) license.

effect is especially distinct for GPTS schemes, where each Gauss point represents three coupling
constraints, i.e., the number of discrete coupling constraints depends on the integration scheme
used. A smaller number of Gauss points can usually improve the contact locking properties for
GPTS schemes, but this in turn can lead to the non-fulfillment of the basic consistency tests given
in Section [4.4.1] The BTSV-POS mortar schemes behave better: for element length ratios of
10 and 5 no locking can be observed at all. For smaller element length ratios the schemes with
quadratic and cubic interpolation also show signs of contact locking. Linear interpolations of the
Lagrange multipliers do not show such behavior for the considered element length ratios. By
using a lower order interpolation of the Lagrange multipliers, the number of constraints is reduced,
which explains the better behavior of the lower-order Lagrange multiplier interpolations regarding
contact locking. The employed numerical integration scheme does not affect the contact locking
behavior of mortar-type BTSV-POS coupling methods, as the number of coupling constraints is
independent of the number of Gauss points used.

The results show that a GPTS-based coupling discretization tends to be prone to spurious
contact locking effects. A linear interpolation of the Lagrange multipliers within a mortar-based
coupling discretization, as suggested in this contribution, is the most robust coupling scheme
regarding the choice of the penalty parameter.

4.4.4. Beam-to-solid element length ratio

In this example, the influence of the BTS element length ratio is investigated. Again, the
analyzed problem setup is the same as in Section 4.4.2] but now with a fixed solid element
length h¥ = 0.14m. The penalty parameter is 1000 N/m?, which, in combination with the linear
interpolation of the Lagrange multipliers along the beam elements, does not lead to unwanted
locking effects, cf. Section [#.4.3] The Ls-error is computed compared to the same reference
solution as used in Section4.4.2] Figure d.15|depicts the Lo-error for various BTS element length
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Figure 4.14.: Beam-to-solid element length ratio — Ly-error for various parameter combinations
and coupling schemes. Figure is taken from the author’s article [1335]], permissions
granted under the Creative Commons (CC BY) license.
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Figure 4.15.: Beam-to-solid element length ratio — Ly-error for varying BTS element length
ratios and linear interpolation of the Lagrange multipliers (h® = 0.14 m). Figure
is taken from the author’s article [135]], permissions granted under the Creative
Commons (CC BY) license.

ratios, and it can be seen that the error decreases for decreasing BTS element length ratios of
about 5. For smaller ratios, 1.e., even more beam elements, the error does not decrease any further.
Thus, h%/hS = 5 can be interpreted as the tipping point, where the beam mesh is fine enough
and the solid mesh has to be refined to further improve the solution. Moreover, this example
illustrates the remarkable robustness of a linear interpolation of the Lagrange multipliers, since
even for small BTS element length ratios, i.e., more constraint equations, no spurious locking can
be observed. Obviously, this result is problem-dependent, nevertheless it allows for giving a first
meaningful recommendation regarding the range of desirable BTS element length ratios for the
BTSV-POS method, which should approximately be h*/h® € [2.5, 5.0].

4.4.5. Fiber-reinforced composite plate

In this final numerical example, a fiber-reinforced composite plate is modeled with the proposed
BTSV-POS method and the results are compared to a homogenized approach, which employs a
transversely isotropic material law as is common for laminate theory, cf. [149]]. Figure[4.16|shows
the problem setup of a two-layer composite plate. The plate has a length and width of 2m and 1 m,
respectively. The layer buildup is asymmetric: it consists of two layers with fiber directions of 45°
and —45°, each with a thickness of 0.02m. A hyperelastic Saint Venant—Kirchhoff material
model (ES = 10 N/m?, v° = 0.3) is used to model the matrix material. The fibers are modeled
as torsion-free beams (E® = 1000 N/m?) with circular cross-sections (radius R = 0.045m).
Figure .16 shows the fiber placement in the layers, which results in a fiber volume ratio of 0.25.
At one of its short ends the plate is clamped in e, and e; direction, and a surface Neumann load p
in e, direction of 2.5N/m? is applied at the other short end. The matrix is modeled with 288
eight-noded solid-shell elements [20, [147] and the fibers with 1498 torsion-free beam elements,
respectively. On average, the BTS element length ratio is about 2.5. Mortar coupling with linear
interpolation of the Lagrange multiplier shape functions and a penalty parameter of 1000 N /m is
used to couple the beams to the solid. Segment-based integration is used to evaluate the coupling
terms. All boundary conditions are exclusively applied to the solid-shell elements.
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Figure 4.16.: Fiber-reinforced composite plate — problem setup. Figure is taken from the author’s
article [135]], permissions granted under the Creative Commons (CC BY) license.

(a) b)

Figure 4.17.: Fiber-reinforced composite plate — deformed configuration |(a)| and negative discrete
mortar coupling tractions [(b)] Figure is taken from the author’s article [133], permis-
sions granted under the Creative Commons (CC BY) license.

Figure shows the deformed plate, where for illustration purposes only three quarters of
the solid elements are visualized. Due to its asymmetric layer buildup, the plate deforms out of
the e, — e, plane, even tough all applied loads and boundary conditions are exclusively in-plane.
Figure shows only the beam elements and a vector plot of the negative discrete nodal
values of the coupling tractions calculated with (4.20). The largest coupling tractions occur at
the boundary of the plate, especially at the corners. These coupling tractions will be used to
gain insight on fiber pull-out and related composite damage phenomena in future research. Such
information cannot be obtained at all from a homogenized theory.

The same plate is also modeled using a homogenized approach. Each layer is modeled with a
transversely isotropic material, thus representing a homogenization of the fibers and matrix in
that layer. As is common practice, the material properties for the transversely isotropic material
are calculated according to a homogenization approach for linear strains, cf. [149]. For the
nonlinear simulation of the plate, a combination of a purely isotropic hyperelastic material and
a transversely orthotropic hyperelastic material is employed, cf. [26]. Each layer is modeled
with 288 eight-noded solid-shell elements, thus resulting in a total of 576 finite elements for the
homogenized model. In Figure.18] the deformations of the mid-plane at the right end (e, = 2m)
are compared to the results obtained with the BTSV-POS method. Only for larger loads, there is a
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4.4. Examples

tiny discrepancy between the various methods, which can be attributed to a number of factors,
e.g., the different strain measurements used in the beam and the homogenized solid, or small
scale effects in the composite that can not be resolved by the continuum model. Nevertheless, the
results are in excellent agreement with each other, which underlines the general applicability of
the BTSV-POS method to fiber-reinforced composites.

Remark 4.5. The presented BTSV-POS model of the composite plate consists of 1,950 solid
degrees of freedom and 10,992 (torsion-free) beam finite element degrees of freedom. This
example can also be modeled with Kirchhoff-Love beam elements, which yields the same
numerical results up to machine precision, due to exactly vanishing torsion [97]. However, the
number of beam degrees of freedom for the Kirchhoff-Love model increases by about 30% to
14,322, thus justifying and encouraging the application of torsion-free beam element formulations
if the underlying assumptions are met.
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4. Positional beam-to-solid volume coupling
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Figure 4.18.: Fiber-reinforced composite plate — deformed configurations of the mid-plane of
the plate at various load values and for various modeling techniques. Figure is
taken from the author’s article [135], permissions granted under the Creative Com-
mons (CC BY) license.
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5. Rotational beam-to-solid volume
coupling

The class of applications considered in this thesis typically involves very slender fibers, which
are modeled using the geometrically exact beam theory. Based on the fundamental kinematic
assumption of undeformable cross-sections, such beam models can be identified as 1D Cosserat
continua with six degrees of freedom defined at each centerline point to describe the cross-section
position (three positional degrees of freedom) and orientation (three rotational degrees of freedom).
In this chapter, the importance of rotational coupling, i.e., coupling between the orientation of
a beam cross-section and the solid continuum, will be motivated. In the previous chapter the
positional 1D-3D coupling (BTSV-POS) coupling scheme is presented, where only the beam
centerline positions, but not the cross-section orientations, are coupled to the solid. In such models,
an embedded fiber can still perform local twist/torsional rotations, i.e., cross-section rotations
with respect to its centerline tangent vector, relative to the solid. While this simplified coupling
procedure can reasonably describe the mechanics of certain problem classes where such relative
rotations will rarely influence the global system response, e.g., embedding of straight fibers with
circular cross-section shape, for many practical applications a more realistic description of the
physical problem requires to also couple the rotations of beam and solid. The present chapter
proposes a full 1D-3D beam-to-solid volume (BTSV-FULL) coupling approach, based on six,
1.e., three positional and three rotational, coupling constraints between the cross-sections of 1D
beams and a 3D solid. Most of the content of this chapter has previously been published in the
author’s article [[138]].

Consistently deriving the full 1D-3D coupling on the beam centerline from a 2D-3D coupling
formulation on the beam surface via a first-order Taylor series expansion of the solid displacement
field would require to fully couple the two orthonormal directors spanning the (undeformable)
beam cross-section with the (in-plane projection of the) solid deformation gradient evaluated at
the cross-section centroid position. It is demonstrated that such an approach, which suppresses
all in-plane deformation modes of the solid at the coupling point, might result in severe locking
effects in the practically relevant regime of coarse solid mesh sizes. Therefore, various definitions
of orthonormal triads are proposed that are representative for the orientation of material directions
of the 3D continuum in an average sense, without additionally constraining in-plane deformation
modes when coupled to the beam cross-section. It is shown that the rotation tensor defined by the
polar decomposition of the (in-plane projection of the) deformation gradient appears as a natural
choice for this purpose, which even represents the average orientation of material directions of
the 3D continuum in a Lo-optimal manner. Moreover, several alternative solid triad definitions
are investigated that potentially allow for a more efficient numerical evaluation. Once these
solid triads have been defined, objective (i.e., frame-invariant) rotational coupling constraints in
the form of relative rotations are formulated for each pair of triads representing the beam and
solid orientation. Their variationally consistent enforcement either based on a penalty potential
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5. Rotational beam-to-solid volume coupling

Figure 5.1.: Employed notations and relevant kinematic quantities defining the 3D finite deforma-
tion BTSV-FULL coupling problem. Figure is taken from the author’s article [[138]],
permissions granted under the Creative Commons (CC BY) license.

or a Lagrange multiplier potential, with an associated Lagrange multiplier field representing a
distributed coupling moment along the beam centerline, is shown.

From a mechanical point of view, it is not desirable to only couple the beam cross-section
orientations, i.e., for almost all types of applications, rotational coupling only makes sense in
combination with positional coupling. In this thesis, rotational coupling is applied for beam-
to-solid volume (BTSV) and beam-to-solid surface (BTSS) coupling problems. Without loss
of generality, this chapter only considers BTSV coupling problems. However, the presented
rotational coupling constraints can also be directly used in combination with positional BTSS
coupling presented in the next chapter. Therein a modified construction of the solid triad field,
taking advantage of the kinematic description of the solid surface, is advantageous and is resented
in Section

5.1. Problem formulation

We consider a 3D finite deformation full beam-to-solid volume (BTSV-FULL) coupling problem
as shown in Figure In the proposed BTSV-FULL method, the point-wise six degrees of
freedom associated with the beam centerline positions and cross-section triads are coupled to the
surrounding solid, i.e.,

r—z’ =0 on I, (5.1)
%B:Q on I.. 5.2)

Herein, I'. = Q5 N QF is the one-dimensional coupling domain between the beam centerline and
the solid volume, i.e., the part of the beam centerline that lies within the solid. Furthermore, let us
recall the definition of 7 from the previous chapter, which denotes the line of material solid points

that coincide with the beam centerline in the current configuration, i.e., g‘f = r. The rotational
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5.1. Problem formulation

coupling between beam cross-section and solid as presented in this section is in close analogy
to the generalized cross-section interaction laws proposed in [94]. The rotation vector ¢,
describes the relative rotation between a beam cross-section triad A® and a corresponding
triad A® associated with the current solid configuration,

gy = v (ASAST). (5.3)
Opposite to AB, which is well defined along the beam centerline, there is no obvious or unique
definition for AS in the solid domain. In Section various definitions of the solid triad As are
presented and investigated. However, for the derivation of the coupling equations, it is sufficient
to assume the general form AS = A° (F), i.e., formulating the solid triad as a general function of
the solid deformation gradient in the current configuration.

The formulation of the constraint equations along the beam centerline brings about an advan-
tageous property of the BTSV-FULL method: the positional and rotational coupling
constraints are completely decoupled. Therefore, the rotational coupling equations (5.2)) can
be interpreted as a direct extension to the BTSV-POS method, which only couples the beam
centerline positions to the solid as derived and thoroughly discussed in Chapter ] Thus, the total
virtual work of the BTSV-FULL problem is

SWS + 0Wg, + 611 + 6117 = 0, (5.4)

where 6WS and §WE, are the virtual work of the solid domain and beam domain, respectively. It
1s important to point out, that in this thesis only the Simo—Reissner beam theory is considered
in combination with rotational coupling. The positional coupling constraints are added to the
total virtual work via the variation of the positional Lagrange multiplier potential 511, cf. (4.8).
Finally, (51'[??) is the virtual work contribution of the rotational coupling constraints. In what
follows, two different constraint enforcement strategies for the rotational coupling conditions will
be presented.

5.1.1. Penalty potential

Let us consider a quadratic space-continuous penalty potential between beam cross-section triads
and solid triads defined along the beam centerline:

- 1
nr = /F [*ds = /F §£§ngwds, (5.5)

with the cross-section coupling potential flf = ﬁ?(s) and the symmetric penalty tensor ¢ € R3*3,
Variation of the penalty potential leads to the following contribution to the weak form:

HITR T
5utp gy ds = /F (6otbes) Ctbysds. (5.6)

Le aﬂss
Thf.:re.in, 50%3 is the objec‘tive variation of the rotation vector ﬁs ” Making use of (2.18)), the
variation of the total potential becomes, cf. [94],

SIIF =

SIIE = [ (06% — 06%) T (g et . 5.7)
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5. Rotational beam-to-solid volume coupling

where §0° and 660° are multiplicative variations associated with the solid and beam triad, re-
spectively. In this section, penalty tensors of the form ¢ = €~I with a scalar penalty param-
eter ¢€® € RT with physical unit Nm/m are considered. With this definition and the iden-
tity T'" (1)) = P (cf. Remark the variation of the penalty potential simplifies to

STIR = €7 / (66 —56°)" 9, ds. (5.8)
re

It is well-known from the geometrically exact beam theory that the (multiplicative) virtual
rotations 08° are work-conjugated to the moment stress resultants. Therefore, eR_SB can be
directly interpreted as the (negative) coupling moment acting on the beam cross-section.

5.1.2. Lagrange multiplier potential

Alternatively, the Lagrange multiplier method can be employed to impose the rotational coupling
constraints. A Lagrange multiplier field A® = AR(S) € R3 is therefore defined on the coupling
curve ['.. For now, this field is a purely mathematical construct in the sense of generalized
coupling forces associated with the coupling conditions (5.2)). The Lagrange multiplier potential
for the rotational coupling is

IR = /F ART%Bds. (5.9)

Variation of the Lagrange multiplier potential again leads to a constraint contribution to the weak
form, i.e.,

STIR = / QRT%B ds + / ART&,%B ds . (5.10)
FC Fc

J/

Vv Vv
SWR —SWR

Therein, W and WX are the variational form of the coupling constraints and the virtual
work of the generalized coupling forces A™, respectively. With (Z.18) the virtual work of the
generalized coupling forces becomes

—WF = / (605 — 66°)" T () AR ds. (5.11)

Since the multiplicative rotation variations 66° are work-conjugated to the moment stress resul-
tants of the beam, the term —T'" (ﬁs ) A" can be interpreted as a distributed coupling moment
acting along the beam centerline.

Remark 5.1. For a vanishing relative rotation ﬁss = 0, as enforced in the space-continuous
problem setting according to (5.2), the identity —T"* (¥5;) = I holds true and the rotational
Lagrange multipliers exactly represent the coupling moments along the beam centerline. However,
for the discretized problem this is only an approximation.
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5.2. Definition of solid triad field

5.1.3. Objectivity of full beam-to-solid volume coupling

As indicated above, the solid triad field depends on the solid deformation gradient F'. It can
easily be shown, that the presented solid triad definitions STR-POL, STR-AVG and STR-ORT,
in Section [5.2| are objective with respect to an arbitrary rigid body rotation R* € SO?, i.e.,

AS* = AS(R'F) = R'AS(F). (5.12)
The geometrically exact beam model employed in this thesis is also objective [96,199], i.e.,
A% = R'A". (5.13)

Equations (5.12) and (5.13) inserted into the definition of the relative beam-to-solid rotation
vector according to (5.3) gives the rotated relative rotation vector,

¥, =v(R'ASAP R = R* (5.14)

L
where the identity rv(R*AR*") = R*rv(A) has been used. Thus, the rotational coupling
conditions (5.2 in combination with the proposed solid triad definitions and the employed
geometrically exact beam models are objective. As shown in [94]], in this case also an associated
penalty potential of type (5.3) or an associated Lagrange multiplier potential of type is
objective.

The previous considerations show objectivity of the proposed (space-continuous) 1D-3D
coupling approaches. However, in the realm of the finite element method, cf. Section [5.3] it is
important to demonstrate that objectivity is preserved also in the discrete problem setting. It is well
known that the discretized deformation gradient, as required for the definition of solid triads, is
objective as long as standard discretization schemes (e.g., via Lagrange polynomials) are applied
to the displacement field of the solid. Also the employed beam finite element formulation based
on the geometrically exact beam theory is objective, even though this topic is not trivial and the
interested reader is referred to [96, 99]. Therefore, it can be concluded that the proposed 1D-3D
coupling schemes are objective for the space-continuous as well as for the spatially discretized
problem setting.

Remark 5.2. Objectivity is the main reason for formulating the rotational coupling constraints
in based on the relative rotation vector, i.e., %B = 0, cf. [94]. As alternative choice for the
rotational coupling constraints the difference between the beam and solid triad rotation vectors,
i.e., 9% —° = 0, could be considered. However, such coupling constraints would result in a
non-objective coupling formulation [94]].

5.2. Definition of solid triad field

One of the main aspects of the present chapter is the definition of a suitable right-handed
orthonormal triad field A® in the solid, which is required for the coupling constraint (5.2). This
is by no means a straightforward choice, and different triad definitions will lead to different
properties of the resulting numerical coupling scheme. In the following, a brief motivation will
be given for the concept of solid triads before various solid triad definitions will be proposed.
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5. Rotational beam-to-solid volume coupling

5.2.1. Motivation of the solid triad concept

If the embedded beam is considered as a 3D body, a consistent 2D-3D coupling constraint between
the 2D beam surface and the surrounding 3D solid can be formulated as

¥ —2°=0 on T.opsp. (5.15)

Therein, I'. 5p-3p is the 2D-3D coupling surface, i.e., the part of the beam surface that lies withing
the solid volume. In the following, A§ = [g¥, g5, g5 ] shall represent material directions of
the solid that coincide with the beam triad in the reference configuration according to

A§ = Ag. (5.16)

The corresponding triad in the deformed configuration is denoted as AS. Let us now expand the
position field in the solid as Taylor series around @f ,1.e.,

z° =z’ + F AX + O(R?), (5.17)

where F is the deformation gradient of the solid according to (2.2). The 1D-3D coupling strategy
underlying the proposed BTSV-FULL scheme relies on the basic assumption of slender beams,
ie., R < L, where R is a characteristic cross-section dimension (e.g., the radius of circular
cross-sections). Therefore, it only small increments AX = ozg‘;” o+ ngo, with o, f < R, are
considered: B B

z° ~ z + ags + Bgs. (5.18)

Here, the directors g‘g and g‘g, which are not orthonormal in general, represent the push-forward
of the solid directions g3, and g3, i.e.,

g’ =F g3, for i=23, (5.19)
In the previous chapter, the Taylor expansion of is truncated after the constant term, thus
resulting in purely positional coupling. In this chapter, the Taylor series is truncated after the
linear term which results in an error of order O(R?). It follows from (2.20)) and (5.18) that the
2D-3D coupling conditions (5.13) between the beam surface and the expanded solid position field
are exactly fulfilled if the following 1D-3D coupling constraints are satisfied:

xS =7r (5.20)
g =95, g5=g°. (5.21)

Coupling constraints of the form (5.21)) enforce that the material fibers g5 and g3 of the solid
remain orthonormal during deformation, thus enforcing vanishing in-plane strains of the solid at
the coupling point & = 7. In Section it will be demonstrated that constraints of this type lead
to severe locking effects when applied to finite element discretizations that are relevant for the
proposed BTSV-FULL scheme, i.e., solid mesh sizes that are larger than the beam cross-section
dimensions. It will be demonstrated that such locking effects can be avoided if the solid triad
field is defined in a manner that only captures the purely rotational contributions to the local
solid deformation at ¥ = 7 without additionally constraining the solid directors in the deformed
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5.2. Definition of solid triad field

Table 5.1.: Listing of the various solid triad variants presented in this chapter.

solid triad  description

STR-POL  obtained from the polar decomposition of the solid deformation gradient
STR-DIR,;; fix one chosen solid material direction to the solid triad

STR-AVG fix average of two solid material directions to the solid triad

STR-ORT  orthogonal solid material directions stay orthogonal

configuration. As will be demonstrated in the next sections, the rotation tensor defined by the
polar decomposition of the deformation gradient is an obvious choice for this purpose, but also
alternative solid triad definitions are possible. Table [5.1] gives an overview of the solid triad
variants proposed in the following.

All of these solid triad definitions A® = [g‘f , Q‘QS , gg ] will be a function of the solid deformation
gradient F, i.e., AS = A° (F). Moreover, all solid triad definitions will be constructed in a
manner such that the associated orthonormal base vectors g:;‘ and g;;f represent the effective
rotation of the non-orthonormal directors g‘g and gg in an average sense. Thus, it will be required
that g5 and g3 lie within a plane defined by the normal vector

g5 X g5

n=-———z=m (5.22
Y )

in the following denoted as the n-plane. Eventually, in the examples in Section[5.4] two desirable
properties of the solid triad field for the proposed BTSV-FULL method are identified:

(1) The solid triad should be invariant, i.e., symmetric / unbiased with respect to the reference
in-plane beam cross-section basis vectors QQB , and Q? o

(i1) The resulting BTSV-FULL method should not lead to locking effects in the spatially
discretized coupled problem.

These properties will be investigated for the following solid triad definitions.

5.2.2. Polar decomposition of the deformation gradient

In [[127], variational formulations for classical non-linear elasticity are presented, where the rota-
tional field is considered as an independent variable. For three-dimensional solids, the rotational
field is defined as the rotation tensor from the polar decomposition of the solid deformation
gradient. Based on polar decomposition (2.6), the deformation gradient of the solid problem
can be split into a product F = vR® = R°U consisting of a rotation tensor RS € SO?and a
(spatial or material) positive definite symmetric tensor v or U, respectively, which describes the
stretch. An explicit calculation rule for the rotation tensor, e.g., based on v, can be stated as:

v’ =FF" (5.23)
R°=v'F. (5.24)
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5. Rotational beam-to-solid volume coupling

As mentioned above, it is desirable that the orthonormal base vectors g‘; and gg of the solid
triad A® lie in a plane with normal vector n according to (5.22). 1t can easily be verified that the
rotation tensor R® associated with the total deformation gradient F' according to will in
general not satisfy this requirement. Thus, a modification will be presented in the following to
preserve this property.

5.2.2.1. Construction of polar decomposition-based solid triad

Since the sought-after solid triad shall be uniquely defined already by the two in-plane directors g‘g
and g3, a modified version of the deformation gradient will be considered,

F,=n®gl,+g5®g5,+95 @930 (5.25)

which consists of the projection of the total deformation gradient F into the n-plane extended by
the additional term n ® gf ;. This modified deformation gradient ensures that the two relevant
in-plane basis vectors are correctly mapped, i.e., g5 = Engi , and g5 = Enggo, while the
third basis vector, which is not relevant for the proposed coupling procedure, is mapped onto the
normal vector of the n-plane, i.e., n = Eng‘i o- This specific definition of a deformation gradient
allows for the following multiplicative split:

F,=F,)R,, (5.26)

where R,, describes the (pure) rotation from the initial solid triad Ag onto a (still to be defined)
orthonormal intermediate triad A = g 9,9 3], whose base vectors g, and g, lie within the 7-

plane, and F',, represents a (quasi-2D) in-plane deformation between g, and g, and the non-

orthonormal base vectors g‘; and g‘g . Now, by applying the polar decomposition only to the
in-plane deformation, i.e.,

Fop, = vop R, (5.27)
a solid triad can be defined from the initial triad AJ as:
ApoL = B R, A7, (5.28)

Once an intermediate triad A is defined, the required rotation tensors E}SD and R,, can be
calculated as follows:

1. R, = A (A9,

2' EZD = E@(EE)Ts
3. (QzD)2 = EZD(EZD)T’
4. EéSD = (vyp) ' Fyp.

The last remaining question is the definition of the triad A. It can be shown that the choice of
this triad is arbitrary and does not influence the result, since a corresponding in-plane rotation
offset would be automatically considered/compensated (in the sense of a superposed rigid body
rotation) via the rotational part RS, of the in-plane polar decomposition (5.27). For example, a
simple choice is given by g, = n, g, = g5/ ||g5|| and g, = n x g,, which coincides with the
solid triad definition later discussed in Section
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5.2. Definition of solid triad field

Remark 5.3. It can be verified that RS = }_E‘ED}_ZQ is fulfilled for quasi-2D deformation states, e.g.,
for pure torsion load cases where the beam axis remains straight during the entire deformation (see

example in Section[5.4.5). In this case, the (simpler) polar decomposition of the total deformation
gradient F' according to (5.24) can exploited.

5.2.2.2. Properties of polar decomposition-based solid triad

In contrast to alternative solid triad definitions that will be investigated in the following sections,
the definition according to (5.28)), referred to as STR-POL or by the subscript (+)por, is not biased
by an ad-hoc choice of material directors in the solid that are coupled to the beam. Instead, the
rotation tensor R° describes the rotation of material directions coinciding with the principle axes
of the deformation (i.e., it maps the principle axes from the reference to the spatial configuration),
which has two important implications. First, the choice of material directions that are coupled
depend on the current deformation state and will in general vary in time. Second, the principle
axes represent an orthonormal triad per definition, and, thus the coupling to the beam triad will
not impose any constraints on the local in-plane deformation of the solid. Consequently, this solid
triad variant fulfills both requirements (1)) and (1) as stated above.

Eventually, a further appealing property of the STR-POL triad shall be highlighted. Let 6,
[—m, 7] represent the orientation of arbitrary in-plane directors in the reference configuration
defined to coincide for solid and beam according to g (60) = g& (o) = cos (6) 226, o sin (6o) gs o
Their push-forward is given by g°(6°(6y)) = F,g5(6) for the solid and g®(6%(6y)) =
RPg5(6,) for the beam, where the angles ¢° € [—m, 7] and 0% € [—m, 7] represent the cor-
responding in-plane orientations in the deformed configuration (see Appendix [B]for a detailed
definition). Since in-plane shear deformation is permissible for the solid but not for the beam, the
orientations #°(6y) and 6% (6,) cannot be identical for all #, € [—, 7| and arbitrary deformation
states. However, as demonstrated in Appendix |B], when coupling the beam triad to the STR-POL
triad according to (5.28)), the beam directors QB(QB(QO) represent the orientation of the solid
directors 25 (65(6y) in an average sense such that the following Lo-norm is minimized:

/(9‘5(90) — 05(6,))*d0y — min. for AP=A%, . (5.29)

—T

In conclusion, STR-POL is an obvious choice for the solid triad with many favorable properties,
e.g., it represents the average orientation of material solid directions in a Ly-optimal manner.
However, it requires the calculation of the square root of a tensor, and more importantly, for latter
variation and linearization procedures also the first and second derivatives of the tensor square
root with respect to the solid degrees of freedom. This results in considerable computational costs,
since this operation has to be performed at local Gauss point level. Therefore, alternative solid
triad definitions will be proposed in the following that can be computed more efficiently, while
still being able to represent global system responses with sufficient accuracy.
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5. Rotational beam-to-solid volume coupling

5.2.3. Alternative solid triad definitions

All solid triad variants considered in the following rely on the non-orthonormal solid directors g‘g
and g3 according to (5.19), their normalized counterparts

g2
= lg?

%

for +=2,3 (5.30)

Q

and the corresponding normal vector n according to (5.22)). Based on these definitions, three
different variants will be exemplified in the following.

5.2.3.1. Fixed single solid director

In the first variant, denoted as STR-DIR, the orientation of one single solid director, either g
or g is fixed to the solid triad, cf. Figure|5.2(b). The choice which solid material direction to
couple is arbitrary. Therefore, two variants will be distinguished:

A, = [n.9),n x g!] (5.31)
Adw, = [, g, x 0. g] | (5.32)

Since the variant STR-DIR;/; does not fulfill the requirement (i) as stated above, it will only be
considered for comparison reasons in the 2D verification examples in Section

5.2.3.2. Fixed average solid director

In order to solve this problem, i.e., to define a solid triad that is symmetric with respect to the
base vectors le and 2;,’ an alternative variant denoted as STR-AVG is proposed, which relies on

the average of the directors g and .2;,’ cf. Figure |5.2(c);

/ !/
v = SRS : (5.33)
] g9, +9;
With this average vector the solid triad can be constructed as:
AiVG =R <_%ﬂ> Aivqref (5.34)
with
AlGrer = [ G5 P X O] - (5.35)

The rotation tensor R (—(7/4)n) in (5.34) represents a “back-rotation” of the constructed ref-
erence triad Aivqref by an angle of —x /4 to ensure that the resulting solid triad aligns with the
beam triad in the reference configuration according to (5.16). In Section[5.4] it will be shown nu-
merically that the variant STR-AVG, similar to the variant STR-POL, fulfills both requirements
and ({i) stated above.

Remark 5.4. Theoretically, an additive director averaging procedure such as (5.33)) can result
in a singularity if the underlying vectors are anti-parallel, i.e., g’ g, g However, since the
associated material directors are orthogonal in the reference conﬁguratlon ie., gl 950950 = =0, and

shear angles smaller than 7 /2 can be assumed, this singularity will not be relevant for practical
applications.
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5.2. Definition of solid triad field

(b) (d)

Figure 5.2.: Illustration of various solid triad definitions for an exemplary 2D problem setting.
For simplicity it is assumed that the beam reference triad aligns with the Carte-
sian frame e, e,, €5, i.e., A(lf = I. Reference configuration STR-DIR,
STR-AVG and STR-ORT Figure is taken from the author’s article [[138]],
permissions granted under the Creative Commons (CC BY) license.

5.2.3.3. Fixed orthogonal solid material directions

In the last considered solid triad definition, both material directors g and g are coupled to the
solid triad simultaneously. This variant enforces that the directors g and g remain orthogonal to
each other, and thus it is denoted as STR-ORT, indicated by a subscrlpt ( Jort. The STR-ORT
variant is realized by applying the rotational coupling constraints (5.2)) twice, once with Agm
according to (5.31) and once with A, according to (5.32).

Opposed to the other triad definitions in this section, this version additionally imposes a
constraint on the solid displacement field by enforcing all in-plane shear strain components to
vanish at the coupling point. In Section[5.4] it will be demonstrated that this over-constrained solid
triad definition can lead to severe shear locking effects, i.e., requirement from Section @ is
not satisfied. Thus, also this variant will only be considered for comparison reasons in the 2D
verification examples in Section

5.2.4. Variation of the solid rotation vector

In the coupling contributions to the weak form (5.8)) and (5.10) the multiplicative rotation vector
variation @ (spin vector) of a solid rotation vector t° arises. The spin vector is work-conjugated
with the coupling moments, i.e., it is required to calculate the virtual work of a moment acting
on the solid in a variationally consistent manner. In contrast to the beam spin vector 66°,
which represents the multiplicative variation of primal degrees of freedom in the finite element
discretization of the geometrically exact Simo—Reissner beam theory and is discretized directly,
no such counterpart exists for the solid field. Therefore, it is assumed that the solid spin vector
can be stated as a function of a set of generalized solid degrees of freedom d (which will later
be identified as nodal position vectors in the context of a finite element discretization) and their
variations 0d. The additive variation of the solid rotation vector gs(d) then reads

0°(d
op® = ———4d. (5.36)
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5. Rotational beam-to-solid volume coupling

The multiplicative and additive variations are related via (2.16), which gives the spin vector
associated with the solid triad as a function of the generalized solid degrees of freedom:

04 (d)
od

Remark 5.5. Alternatively, the solid spin vector can be expressed by the variations of the
corresponding solid triad basis vectors gf and their variations 5@5 , cf. [96, 199]:

00° =T (4°(d)) od. (5.37)

00° = (3g5"g5) g7+ (095" af ) g5+ (99795 ) 05
dg5 g3 ogs
((91 ®93) od +(92 ®91) aj+(g§®g) 8(]1 od.

This formulation for the solid spin vector is equivalent to the one in (5.37)), but only contains the
solid triad basis vectors and their variations. Therefore, this definition of the solid spin vector is
better suited for solid triads constructed via their basis vector. Especially in the implementation
of the finite element formulation, it is advantageous to avoid the computation and inversion of
the transformation matrix in (5.37). Nonetheless, in the remainder of this chapter, the solid spin
vector as defined in is used to improve readability of the equations.

5.3. Spatial discretization

In this section, two different methods to discretize the rotational coupling terms are presented.
For the rotational coupling terms it is advantageous to derive the discretized coupling terms on
element pair level, i.e., the rotational coupling terms arising from the interaction of a single beam
element (f) and a single solid element (e). In the following, the superscript (e, f) represents
a quantity defined on element pair level. The total contribution to the weak form can then be
calculated as the sum of all individual pair contributions, i.e.,

S, = Z Z ot o, (5.38)

e=1 f=1

Here, n5 and n§ are the number of beam and solid elements, respectively. Furthermore, all
1ntegrat10n is performed over F = QB N QF©, which is the discretized coupling domain
between a single beam and solid ﬁmte element. With the employed beam finite element interpola-
tion, each beam element carries 9 rotational degrees of freedom, cf. Section @ The number
of solid degrees of freedom per solid element depends on the chosen element type and will be
denoted by n((f))f To improve readability, any dependency on element parameter coordinates will

not be stated explicitly.

5.3.1. Gauss point-to-segment coupling of cross-section rotations

Evaluating the variation of the total coupling potential (5.8]) based on the discretized solid position
field and beam cross-section rotation field as presented in the last section yields the discrete
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variation of the coupling potential:

T

STTRES) — (R ) 9 Se) _ (598

Mo = | T @) 5@ ;0d% —LUs6 Py, ds. (5.39)
I ’

This integral is evaluated numerically via a Gauss—Legendre quadrature, resulting in a Gauss point-
to-segment (GPTS) coupling scheme. From a mechanical point of view this can be interpreted as
a weighted enforcement of the rotational constraints at each integration point along the beam, i.e.,
a Gauss point-to-segment type coupling:

(e RHGP a‘p}f s) 1 () spBU) '
=&Y oL R Ll BT 840
£B:§i

where nJ; is the number of Gauss—Legendre points, ng is the beam element parameter coordinate
for Gauss—Legendre point ¢ with the corresponding weight w;. Again, in order to improve the
readability of the remaining equations in this subsection, the explicit indication of the evaluation
at the Gauss—Legendre points will be omitted in the following. The previous equation can now be
stated in matrix form as

Re,f) T e [ 1 [¢Ren
6, ~ [505(f) 5dS© ]sz fe o | = [5960 5d5© } r%?‘z B (5.41)
i=1 s,GP s,GP

. _ (e) . .
Therein, the abbreviations f?ée};f ) € R? and ffgi;f ) € Rt for the generalized Gauss point
coupling forces on the rotational beam element degrees of freedom and the generalized solid
element degrees of freedom, respectively, have been introduced:

T
faéﬁf) *LY) 1!’537,1
T
OupS (5.42)
Rie.f) _ R h I
foap =¢ <ad3(e)> T (yh)lp.st%,h'

Furthermore, r, ép ) € R% and rs GP ) € Rl are the beam and solid coupling residual vectors.

Employing a Newton—Raphson algorlthm to solve the global system of nonlinear equations, a
linearization of the residual vectors with respect to the element degrees of freedom is required,
which reads:

nR of (e f) - ofFR(eh)
Are (e.f) o ;«JG)I% I@S)ﬁf) | TAgBW)
ArR ef) w; aflz*éiin Byil) o) | | AdS© (5.43)
s,GP i=1 o I(gh)l st

Therein, the transformation matrix I(Qf ) appears, since the linearization is performed with

respect to the multiplicative rotation increments AGP) . Furthermore, the generalized shape
function matrix 1¢) follows from the interpolation of the multiplicative rotation increments,
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5. Rotational beam-to-solid volume coupling

cf. (2.43). The previously derived matrices and vectors are all defined on beam-to-solid element
pair level. Since no additional degrees of freedom are introduced, the pair-wise contributions can
simply be assembled and added to the global linear system of equations. The Gauss point-to-
segment coupling approach is presented here to illustrate how the rotational coupling conditions
can be enforced in a point-wise manner. However, in Chapter ] it is shown that a Gauss point-
to-segment coupling approach leads to spurious contact locking for embedded one-dimensional
beams in three-dimensional solid volumes. Therefore, this approach will not be investigated
further in the remainder of this thesis, but a mortar-type coupling is proposed instead.

5.3.2. Mortar-type coupling of cross-section rotations

Employing a mortar-type coupling approach, the rotational Lagrange multiplier field A™ intro-
duced in Section @ is also approximated with a finite element interpolation, cf. [17, 110, [150].
The rotational Lagrange multiplier field is defined along the beam centerline and accordingly its
finite element approximation is defined along the beam finite element and reads as follows:

WR(

)
Jj=1

R(f)
J
/) ¢ R3 is the rotational Lagrange multiplier at

where n*(f) is the number of Lagrange multiplier nodes on beam element (f), ® is the

shape function for the local node j and é;z

node j. Furthermore, ®*) ¢ R3*30™Y i< the element-wise assembled Lagrange multiplier
shape function matrix for a beam element and AR € R3™ is the vector with all corresponding
discrete rotational Lagrange multiplier values per beam element. As indicated by the dependency
on beam parameter coordinate £Z, the Lagrange multiplier field is defined along the beam
centerline. However, there is no requirement that the Lagrange multiplier shape functions are
identical to the beam centerline shape functions, or even that the number of beam nodes matches
the number of Lagrange multiplier nodes. A more thorough discussion on the choice of Lagrange
multiplier shape functions is given at the end of this section.

When inserting the finite element interpolations, the discretized variation of the coupling
constraints (5.10) reads

e ~ssen? [ gt

- ds = SARM "gRE)| (5.45)
L)

Pspn

Re.f)
f/\

Therein, the abbreviations fx“/) € R3™ and gR(f) ¢ R3™ represent the integrand of the

pair constraint equations and the residual of the pair constraints equations, respectively. The
discretized virtual work of the coupling forces (5.11)) reads

—5W§f,’;’:)= 5657 5d3(e>T} oh . _ (5.46)
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Therein, the abbreviations f (©f) ¢ RY and fR @f) ¢ Rt represent the integrand of the beam

and solid element coupling forces ie.,

R(e,f T N
fe( ) LD IT(%B,h)(DR(f))‘R(f)

e (5.47)

Rie,f) — ~Lh =T (,,S\T R(f) NR(f)
fs - adS(e) I (%h)z (%B,h)(b A ’

Furthermore, r;z(e’f ) € RY and rF) ¢ R"4! are the beam and solid coupling residual vectors,
respectively. Again, a linearization of the residual contributions with respect to the discrete
beam-to-solid pair degrees of freedom is required for the Newton—Raphson algorithm. The
linearization reads:

Lin rl?’(@,f) — 0 + QGS eyf ;?é(e f) Q;?;\(e,f) AdS(e) . (5_48)
e R(e, e, i\
g gRed) QRN QRN g AR

Therein, the abbreviations Q( )(( ) 7 for the stiffness matrices of the pair-wise coupling terms have

been introduced, i.e.,

8fR< ) 8(;3(5»” 8f§(evf)

ads©) AAR(S)
R(e,f) R(e,f)
By ok L ds. (5.49)

QRN Q% Re,f) QR(e,f) T( )|(f)

>\ h
QR QR(ef) QRN | — 8fR‘E” T(
%} % oA - ) T oyB )b 5dS© OAR()
ka(e,f) QY (e.f) 0 en | ofR(ED (Ib )I() o) 0
oyl adS(®)

¥,
b,

As in the GPTS case, the previously derived vectors and matrices are all defined on beam-to-
solid element pair level. However, in this case additional unknowns have been introduced, i.e.,
the rotational Lagrange multipliers AR( In practice, all derivatives explicitly stated in
and (5.48)) are evaluated using forward automatic differentiation (FAD), cf. [78], using the Sacado
software package [121]], which is part of the Trilinos project [[143]].

The local pair—wise residuum vectors 5(6 f) rR(e D and g™(©f) are assembled into the global
residuum vectors ¥} € R3% , r® € R3"* and gR € R3", respectively. The linearization of the
global rotational couphng terms reads

r 0 Q% Q% QK] [a6”
Lin [ [fF] ] =10+ [QF QF QX| [Ad°], (5.50)
g" g" QY Q% 0] [A®

where Q ) are the globally assembled pair-wise stiffness matrices Q 00 (e:f) ,and AR € R?"

the vector contalmng the globally assembled rotational Lagrange multipliers AR

At this point it should be pointed out that all coupling integrals are evaluated numerically
using so-called segment-based integration, cf. Section #.2.4] Therein, the beam finite element
parameter space is divided into subsegments at points where the beam crosses a solid finite
element face. Each subsegment is subsequently integrated using a Gauss—Legendre quadrature
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5. Rotational beam-to-solid volume coupling

with a fixed number of integration points. This leads to a highly accurate numerical integration
procedure and allows for the resulting finite element coupling method to pass classical patch tests
in surface-to-surface problems as well as constant stress transfer tests in beam-to-solid problems,
cf. [45] and Section|4.2.4

The choice of proper Lagrange multiplier basis functions is important for the mathematical
properties of the resulting finite element discretization. The Lagrange multiplier shape functions
must fulfill an inf-sup condition to guarantee stability of the mixed finite element method. This is
a well-studied topic in the context of classical surface-to-surface mesh tying or contact. However,
as pointed out in Section beam-to-solid coupling problems diverge from the standard
surface-to-surface case in some aspects. First, the discretization along the beam centerline with
Hermite polynomials is unusual compared to standard (i.e., Lagrange polynomial-based) finite
element discretizations. Also, the coupling can be classified as a mixed-dimensional embedded
mesh problem, since there is no explicit curve in the solid domain to match the beam centerline,
which can lead to stability issues [122]. Additionally, the rotational coupling considered in
this chapter also differs from the standard displacement-based surface-to-surface case. A deep
mathematical analysis of these properties is beyond the scope of the present thesis. However, this
chapter builds upon the extensive studies and findings from Section4.4.3] where it has been shown
that a linear interpolation of the Lagrange multipliers combined with a penalty regularization
leads to a stable finite element formulation of the coupled problem. Instabilities might only occur
if the beam finite elements become shorter than the solid finite elements. However, this is not a
mesh size relation that is within the envisioned applications for the BTSV-FULL method.

5.3.3. Combined mortar-type coupling of positions and rotations

Inserting all discretized variables into (5.4) gives the discrete nonlinear system of equations for
the quasi-static BTSV-FULL problem:

rS(d%) + PV (AY) + ¢ X (d®, B, AR) = 0, (5.51)
rB(d®, P + /() =0, (5.52)

rg(d°, F) + rif(d°, 9%, A%) = 0, (5.53)
g"(d%,d%) =0, (5.54)

g"(d® %) =0 (5.55)

Here, the dependency of the residual contributions on the discrete unknowns is stated to illustrate
the coupling connectivity introduced by each residuum vector. For improved readability, the
explicit dependency of the residual contributions on the discrete unknowns will be omitted going
further. The resulting BTSV-FULL global system of equations with saddle point structure reads:

KS.+Q% 0 B MY Q| rad] [
0 KE KB D' 0 | |Ad° —r5
QF  K; K5 +QF o RIJAO%| = | —rF | . (5.56)
-M¥ DY 0 0o o ||\ —g¥
Q} 0 Q} 0 0| LA" —g"
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It becomes clear that the global system of equations for the BTSV-FULL method is the combina-
tion of the BTSV-POS problem (#.19) and the mortar-type coupling of the beam cross-section
rotations (5.50). The size of the global system of equations of the uncoupled system is extended by
the total number of positional and rotational Lagrange multipliers. At this point it should be noted
that due to the employed Petrov—Galerkin method the beam stiffness matrices are non-symmetric,
as is the case for the rotational coupling contributions to the global stiffness matrix.

Remark 5.6. The structure of the global system of equations for BTSV-FULL (5.56) illustrates
the direct coupling of the rotational degrees of freedom of the beam with the solid degrees of
freedom, i.e., ng/\ and QZ\%. Disregarding all other advantages of the BTSV-FULL method, this
motivates it from a pure numerical point of view, as possible rigid body rotations of straight
embedded fibers around their centerline are constrained, which is not the case for the BTSV-POS

method (@.19).

Remark 5.7. In the BTSV-POS method, the mortar-type coupling matrices DY and MY only
depend on the reference configuration, i.e., they only have to be calculated once and can be stored
for the entire simulation. In the BTSV-FULL method, the (rotational) coupling terms Qz_z)(_)
depend on the current configuration, i.e., the coupling terms have to be re-evaluated in each
Newton-Raphson step. However, this should not be viewed as a drawback of BTSV-FULL
scheme, rather as a simplification of the BTSV-POS variant, which results from neglecting the
rotational coupling terms.

5.3.4. Penalty regularization

In the present mortar-type coupling case (BTSV-FULL) the constraint equations are enforced
with the Lagrange multiplier method, thus resulting in a mixed formulation. However, a direct
solution of the global system (5.56) might introduce certain drawbacks, such as an increased
system size compared to the uncoupled system and a generalized saddle point structure, cf. Sec-
tion In Chapter [ the constraint equations have therefore been enforced using a well-known
penalty regularization, which means that a relaxation of the positional coupling constraints
gV = —MVd® 4+ DYd® = 0 in the form of \Y = ¢”(VY)~'g" is introduced. Therein, ¢V € R*
is a scalar penalty parameter and V" is a scaling matrix to account for non-uniform weighting of
the constraint equations, cf. Section #.2.3|and [154]. The numerical examples in Section 4.4 show
that for reasonably chosen penalty parameters the resulting violation of the constraint equations
due to their relaxation does not have any impact on the accuracy of the BTSV-POS method.
Therefore, the constraint enforcement of the rotational coupling equations (5.45)) is also carried
out with a penalty regularization. The constraint relaxation is achieved through

AR = R (VR) T gR, (5.57)
again with a scalar penalty parameter ¢ € R™ and a global scaling matrix for the rotational

Lagrange multipliers V7. The global scaling matrix is assembled from the nodal scaling matri-
ces VR for the Lagrange multiplier node j, i.e.,

VRET = / R ds 1P, (5.58)
Fc,h
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5. Rotational beam-to-solid volume coupling

With the introduction of the constraint relaxation (5.57), the Lagrange multipliers A% are no
longer independent degrees of freedom of the system, but a function of the beam rotations and
solid displacements. Therefore, they can be eliminated from the global system of equations (5.56),
which results in the condensed linear system of equations

AR AR AR [Ad® b*

AR AR AR | AdP| = |bR . (5.59)
AY AY AY| |A6° by

Therein, the following abbreviations have been introduced for improved readability:
AR — K5 + QR + VMY (V)T MY 4+ €RQR (VY) T QT

AR - _ VMVT (VV)_l DV

AR = Q% + RQR (v") 'Q%,

AR — —'DV" (V)T MY

A% = K5
ro ro (560)
AT = Qf + QS (V')
Aj = Kg,
AT = KB@ +Qf + Qg5 (V) Q,
bR = — oMVt (VV) g’ — *QR (VV) gR
bR vaT (VV) -1 gV

B _

’f‘
by = rg —RQR (VY) ‘gR.
As is the case in the BTSV-POS case, the penalty regularization introduces €” as an additional
system parameter. This leaves the important question on how to chose this parameter. Choosing
too high penalty parameters can lead to an ill-conditioned system matrix, as well as to contact
locking effects, as shown in Section #.4.3] As already discussed in Section 4.2.3] from a
mechanical point of view, it is desirable to chose penalty parameters as a function of the beam
cross-section properties. The following rule of thumb can be given: the rotational parameter
should be in the range of the beams Young’s modulus scaled with the square of the cross-section
radius, i.e., €® ~ EBR?. In practice this does not lead to an unphysically large violation of the
rotational coupling constraints, and contact locking has not been observed in combination with a
linear interpolation of the Lagrange multiplier field.

5.4. Examples

The following numerical examples are set up using the open source beam finite element pre-
processor MeshPy [[137] and are simulated with the in-house parallel multi-physics research code
BACI [12].
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Figure 5.3.: Single element moment test — problem setup. Figure is taken from the author’s
article [138]], permissions granted under the Creative Commons (CC BY) license.

5.4.1. Single element moment test

The first problem setup is depicted in Figure[5.3] A straight beam is embedded inside a solid cube
(ES=1N /m?, v° = 0) and the beam is loaded with a distributed torsion moment in e, direction,
which is constant along the beam centerline. This example is used to investigate how a moment
on a beam is transferred to solid nodal forces. The cube is modeled with a single eight-noded
hexahedral element and all solid degrees of freedom are fixed. A single Simo—Reissner beam
finite element is used to discretize the beam. No Dirichlet boundary conditions are applied
on the beam and the coupling between the beam and the solid is realized with the mortar-type
BTSV-FULL method. Thus, the only interaction between the beam and the solid is the transfer of
the external moment. The resulting nodal reaction forces for the various solid triad definitions
introduced in Section are depicted in Figure Therein, the results for the STR-POL,
STR-AVG and STR-ORT variants, cf. Figures [5.4(a)| [5.4(d)| and [5.4(e), match up to machine
precision. In general, however, the solid coupling reaction forces may differ for the various
definitions of the solid triad, as visible for the variants STR-DIR,/3 in Figures [5.4(b)| and [5.4(c)]
This observation can be explained by the fact that the representation of a moment via nodal forces
is non-unique, i.e., there is an infinite number of possible force pair combinations to achieve
this. However, from a mechanical point of view, the force pairs resulting from the STR-POL,
STR-AVG and STR-ORT variants seem more natural than the ones for the STR-DIR,/; variants.
Moreover, the former three variants result in the (unique) force pair solution if the moment is
applied as a constant shear stress on the beam surface, cf. Section Additionally, it can be
observed for the STR-DIR,/; variants that the choice which local solid direction is coupled to the
solid triad drastically affects the result for the nodal forces.

5.4.2. Shear test

The next elementary test case is illustrated in Figure[5.5] The problem geometry is the same as
in the previous example. The cube (side length h = 1 m) is fixed at two bottom corner points
to constrain all rigid body modes. A constant surface load 7 = 0.001 N/mm? is applied to the
surfaces of the cube, as depicted in Figure[5.5] No boundary conditions are applied to the beam.
This problem illustrates how the specific solid triads affect the shear stiffness of the solid element
and will be studied in two steps.
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(d) STR-AVG (e) STR-ORT

Figure 5.4.: Single element moment test — resulting nodal loads for various solid triads. Figure
is taken from the author’s article [138]], permissions granted under the Creative
Commons (CC BY) license.

Figure 5.5.: Shear test — problem setup. Figure is taken from the author’s article [[138]], permissions
granted under the Creative Commons (CC BY) license.
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Figure 5.6.: Shear test — deformed configurations. The left figure illustrates the solution of a solid
without a beam and the right figure illustrates the solution of a solid with an embedded
beam (2D-3D coupling), & = 0.1 m. The second Piola-Kirchhoff stress Sz is shown
in the solid. Displacements are scaled by a factor of 100. Figure is taken from the
author’s article [138]], permissions granted under the Creative Commons (CC BY)
license.

In a first step, the impact of the local stiffening effect the beam cross-section has on the
surrounding solid material is investigated. To do so, a reference solution is created by applying a
full 2D-3D beam-to-solid coupling scheme, i.e., the coupling conditions are enforced on the beam
surface, cf. Appendix[A] For comparison purposes, a variant of this problem is simulated without
the embedded beam, i.e., the pure solid shear problem. Figure[5.6]illustrates the shear stress in
the solid, with and without the embedded beam, for an exemplary beam radius £ = 0.1 m. As
expected, the solution is uniform in the entire solid volume for the pure solid variant. In the 2D-3D
beam-to-solid coupling variant, the embedded beam affects the solid stress and displacement
fields. The overall displacement of the solid is smaller than for the variant without a beam, thus
demonstrating the stiffening effects of the beam cross-section. In agreement with the fundamental
modeling assumption of overlapping beam and solid domains (see Section [3.2)), the solid shear
stress inside the beam domain is zero. Outside of the beam domain, the solid shear stress field
shows slight fluctuations due to the local constraints enforcing the 2D-3D coupling at the beam
surface. However, close to the boundaries of the cube, these fluctuations become negligible and
the shear stress field is quite homogeneous and therefore very similar to the pure solid shear
problem.

In a second step, this problem is simulated with one single solid finite element to investigate
potential shear locking effects. The coupling between beam and solid is now realized with the
BTSV-FULL method and a rotational penalty parameter of €® = 100 Nm/m. In Figure the
deformed solid element and the resulting coupling reaction forces on the solid nodes are depicted
for the various solid triad definitions and again for the problem without embedded beam. Due
to the orthogonality constraints in the STR-ORT variant, no shear mode remains in the solid
finite element, 1.e., it is rigid with respect to shear deformations (in fact, small deformations can
be observed due to the penalty regularization). In this example, all other solid triad definitions
result in a solid displacement field matching the variant without embedded beam up to machine
precision. Table states the rigid body rotation angle 1)® of the beam for the different solid
triad variants. The rotation angle 9/® of the beam depends on the employed solid triad variant.
With the STR-DIR, variant the beam does not rotate at all since the orientation of the local solid
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(a) no beam (b) STR-POL (c) STR-DIR,
(d) STR-DIR3 (e) STR-AVG (f) STR-ORT

Figure 5.7.: Shear test — resulting nodal loads for various solid triads. Displacements are scaled
with a factor of 100. Figure is taken from the author’s article [138], permissions
granted under the Creative Commons (CC BY) license.

material fiber does not change. The STR-DIRj variant, on the other hand, results in the largest
rotation of the beam, since the solid triad is coupled to the solid material fiber which undergoes
the largest orientation change. Although they are not identical up to machine precision, the
STR-POL and STR-AVG variants lead to very similar results for the rotation of the beam, i.e.,
roughly an average of the STR-DIR, and STR-DIR; variants.

The results show that the presented solid triads lead to either no shear stiffening effects in
the solid (STR-POL, STR-DIR; 3 and STR-AVG) or to severe locking resulting in a complete
constraining of all shear modes (STR-ORT). To assess which variant resembles best the resolved
2D-3D coupling scheme, the relative Lo-displacement error

el \/fgg‘ ”ﬂf _EfefHQ dVo
€ Lo,rel = 2
\/fﬂg ||H}Sef|| dVp

is compared. In the results presented in the following, the reference solution is the solution
obtained with a fine solid mesh and a 2D-3D coupling. Figure 5.8}illustrates |[e|, ., for various
beam diameter to solid cube length ratios D/h. The relative error for the STR-ORT variant is
almost constant 1 for all beam diameters ratios, i.e., even for beam cross-section sizes similar
to the cube dimensions a full constraining of all shear modes does not accurately describe the
physical coupling. For all other variants the behavior of the relative error is the same, since none
of them constrain the shear deformation mode in the solid, i.e., the beam cross-sections rotate

(5.61)
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Table 5.2.: Shear test — numerical results. Table is taken from the author’s article [[138]], permis-
sions granted under the Creative Commons (CC BY) license.

solid triad P

STR-POL  -0.09899932
STR-DIR, -0.00000000
STR-DIR; -0.19485464
STR-AVG -0.09742732
STR-ORT -0.00099010

0.5 2

HeHLQ,rel

| | | |
0O 01 02 03 04 05
D/h

—no beam / STR-POL / STR-DIR3/3 / STR-AVG
—— STR-ORT

Figure 5.8.: Shear test — relative displacement error ||e|[, ., for various beam diameter to solid
cube length ratios D/h. The relative error is computed with respect to the 2D-
3D reference solution. The curves represent various solid triad variants. Figure
is taken from the author’s article [138]], permissions granted under the Creative
Commons (CC BY) license.

with the solid without constraining it. For small ratios of beam radius to solid cube length the
error is close to zero. For larger ratios of beam radius to solid cube length, the error increases as
there is a real physical stiffening effect due to the embedded beam cross-section in the 2D-3D
problem that is not captured by the 1D-3D coupling schemes. However, in the entire range of
practically relevant solid mesh sizes (relative to the beam cross-section size) as illustrated in
Figure the solid triad variants that do not constrain the in-plane deformation of the solid result
in a better approximation of the physical system behavior as compared to the STR-ORT triad.

5.4.3. Fiber-reinforced composite under shear loading

In this example, multiple fibers are placed inside a solid cube, cf. Figure The solid cube has
the dimensions 1 m x 1 m x 1 m and consists of a hyperelastic Saint-Venant—Kirchhoff material
model (ES = 1N/m?, »° = 0.0). Embedded inside the solid cube are 5x 5 fibers with a radius
of 0.0125m. All fibers point in e4 direction. The solid is fixed in e, direction at the left boundary,
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Figure 5.9.: Fiber-reinforced composite under shear loading — problem setup of 5x5 embedded
fibers inside a solid cube. Figure is taken from the author’s article [[138], permissions

granted under the Creative Commons (CC BY) license.

and loaded with two equilibrating shear loads (7 = 0.01 N/m?) at the left and right boundary. To
constrain the remaining rigid body mode, the lower left corner point is fixed in e axis. The fibers
are coupled to the solid via the BTSV-FULL method and no additional boundary conditions act
on the fibers. The cube is meshed with 7 x 7 x 1 solid hex8 elements, and each fiber is represented
by a single Simo—Reissner beam finite element. The penalty parameters for the BTSV-FULL
method are €” = 100 N/m? and €® = 100 Nm/m. In this example, the results obtained with
the BTSV-FULL method and various solid triads will be compared with a spatially converged
reference solution, where the coupling between the beam surfaces and solid volume is discretized
in a surface-to-volume (2D-3D) manner, i.e., the beam surface instead of the centerline is fixed to
the solid, cf. Appendix

The resulting shear stresses are visualized in Figure In the full 2D-3D model, there are
stress concentrations at the interface between the beam surfaces and the solid. It is important to
point out that the BTSV-FULL method (1D-3D), is not able to capture these stress concentrations,
regardless of the employed solid triad. However, this has not been the intention of the BTSV-
FULL method in the first place, but instead it has to be ensured that the far field stress in the
solid is represented accurately. Figure illustrates the shear stress results obtained with the
STR-POL, STR-DIR,;3 and STR-AVG solid triads. In the reference solution the in-plane shear
stress is positive at the top and bottom of the cube and negative in the middle. The results obtained
with the STR-POL, STR-DIR,/; and STR-AVG solid triads are similar to the ones obtained with
2D-3D coupling. However, the results with the STR-ORT solid triads clearly exhibit drastic shear
locking effects due to the (over-) constraining of orthogonal solid directions. Table |5.3| provides
the displacement at the top right corner of the cube for the 2D-3D reference solution and various
types of solid triad fields, as well as the relative error. The error for the STR-ORT solid triad is
six times larger than for all other solid triads. This again illustrates the unwanted locking effects
introduced by the STR-ORT solid triads variant.

At this point a short recap of the first three examples for each of the investigated solid triad
constructions is given to summarize their applicability in the context of the BTSV-FULL method:

STR-POL All basic consistency tests are fulfilled by this variant. However, due to the computa-
tional complexity of the polar decomposition in 3D, cf. Section[5.2.2] this variant is not
used in the remaining examples presented in this chapter.
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Figure 5.10.: Fiber-reinforced composite under shear loading — deformed configurations. Full
2D-3D coupling (left), STR-POL, STR-DIR,; and STR-AVG (middle), and
STR-ORT (right). The second Piola-Kirchhoff stress S,3 is shown in the solid.

Figure is taken from the author’s article [138]], permissions granted under the Cre-
ative Commons (CC BY) license.

Table 5.3.: Fiber-reinforced composite under shear loading — numerical results. The displace-
ment u at the top right corner of the cube are stated for the 2D-3D reference solution
and various types of solid triad fields.

coupling type solid triad w inm ”ﬁ;%ﬁf”
2D-3D (ref) - [0,0.0311342, —0.0706488| -
1D-3D STR-POL, STR-DIR,;;, STR-AVG  [0,0.0299373, —0.0681153]  3.6282%

STR-ORT [0,0.0293469, —0.0547324]  19.559%
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STR-DIR33 The examples show that the (arbitrary) choice of the solid material direction for the
construction of the solid triad can have a considerable effect on the results. Therefore, these
variants will not be employed in the following. However, for comparison purposes they
will be included in the spatial convergence example, cf. Section[5.4.5]

STR-AVG All basic consistency tests are fulfilled by the averaged solid triad and the results are
very close to the ones obtained via the STR-POL variant, while being less expensive from a
computational point of view. This variant is used in the remaining examples of this chapter.

STR-ORT This variant leads to considerable shear locking in the range of coarse solid mesh
resolutions, which is exactly the range of interest for the proposed 1D-3D coupling methods.
Therefore, this variant will not be used in the remainder of this chapter.

5.4.4. Constant torque transfer

This example serves as a consistency test for the BTSV-FULL method and its ability to transfer
a constant torque. It is an extension of the constant stress transfer problem for the BTSV-POS
method previously presented in Section The example is inspired by classical patch tests,
which are well-established tools to investigate the consistency of finite element formulations [140]].
The constant torque test is depicted in Figure It consists of a solid block Q° with two
embedded beams QF and 5. The two beams occupy the same spatial position. The solid is
fixed at the lower surface and no external loads are applied. One beam is loaded with a torsion
load m, and the other beam with a torsion load —m, both acting along their axial direction. The
magnitude of the torsion load is 10 Nm/m. Based on the space-continuous problem description,
the opposing loads on the two beams cancel out each other, and in sum the two beams transfer no
loads to the solid. This gives the trivial solution u® = 0 for the displacement field in the solid,
cf. Section 4.4.1] and a constant solution for the beam rotations along their axis. In this test it
shall be verified that this solution can also be represented in the spatially discretized setting using
an arbitrarily coarse discretization. Both beams are coupled to the solid via the BTSV-FULL
method. There is no direct interaction between the two beams, but all interactions are transferred
through the solid domain.

The geometry and material parameters are taken from Sectiond.4.1} The dimensions of the solid
block are 1 m X 1m X 2m and a Saint-Venant-Kirchhoff material model (E° = 10N /m?, v° =
0.3) is employed. The block is discretized with 4 x 4 x 7 eight-noded, first-order hexahedral
elements. The circular cross-sections of the two beams have a radius of 0.05m, and the beam
material parameters are £5 = 100 N/m? and v/® = 0. The beams B1 and B2 are discretized
with 5 and 7 Simo—Reissner beam finite elements, respectively. This results in a non-matching
discretization between the two beams as well as between the beams and the solid. Coupling
between the beams and the solid is realized with a linear interpolation of both the positional
and rotational Lagrange multipliers. The STR-AVG solid triads are employed in this example,
cf. Section[5.2.3.2] The penalty parameters are ¢’ = 100 N/m? and €® = 100 Nm,/m.

Figure [5.12]illustrates the results of this test. The stress in the solid and the curvature in the
beam are indeed zero up to machine precision, thus matching the expected analytical solution.
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Figure 5.11.: Constant torque transfer — problem setup. Both beams Q¥ and Q5 occupy the same
spatial position. Figure is taken from the author’s article [138]], permissions granted
under the Creative Commons (CC BY) license.

This example illustrates the ability of the BTSV-FULL method to exactly represent a constant
torsion state along the beam and the consistency of the coupling terms despite the fact that
arbitrary non-matching meshes are involved.

5.4.5. Spatial convergence

This numerical example investigates the spatial convergence properties of the BTSV-FULL
method under uniform mesh refinement. The problem is depicted in Figure[5.13] It consists of a
solid block with the dimensions 5m X 1 m X 1 m and a Saint-Venant—Kirchhoff material model
(ES =10 N/m?, v° = 0). A beam (cross-section radius 0.125m, L = 5m, E8 = 300 N/m?,
VP = 0) is embedded inside the solid block. No external loads or Dirichlet boundary conditions
are applied to the beam, i.e., homogeneous Neumann boundary conditions at both ends. The right
end of the block is loaded with a shear stress 7. The shear stress at point p = Le; + ye, + ze3
reads

T = (—ze, +ye;) 0.05N/m?, (5.62)

thus resulting in a total torque of 1.65885 - 1072 Nm. The coupling between beam and solid is
realized with the BTSV-FULL coupling method using linear Lagrange multiplier shape functions
and the penalty parameters ¢ = 100 N/m and ¢® = 100 Nm/m. This example can be interpreted
as an adapted version of the spatial convergence problem in Section4.4.2]to verify the scenario
of rotational coupling. A similar problem is also investigated in [73]. The spatial convergence
behavior of the BTSV-FULL method will be analyzed with respect to a spatially converged
reference solution obtained with a 2D-3D coupling discretization, as described in Appendix [A]
To compare the results, the Ly displacement error in the solid is calculated via

L g
lellz, = 70\//9 i = uel” dVo. (5.63)
0
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5. Rotational beam-to-solid volume coupling

Figure 5.12.: Constant torque transfer — deformed configuration. The second Piola—Kirchhoff
stress S33 is shown in the solid and the curvature « in the middle of each beam
element is shown in the beams. Figure is taken from the author’s article [138]],
permissions granted under the Creative Commons (CC BY) license.
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Figure 5.13.: Spatial convergence — problem setup. Figure is taken from the author’s article [138]],
permissions granted under the Creative Commons (CC BY) license.

Here, V, = 1m? is the solid volume in the reference configuration. It should be pointed out
that the 2D-3D coupling problem does not have the same analytical solution as the BTSV-
FULL problem, because the 1D-3D coupling results in a singularity in the analytical solution,
cf. Section[3.2] Therefore, spatial convergence of the BTSV-FULL method towards the reference
solution is not expected all the way towards the asymptotic limit of arbitrarily small solid element
sizes, but only in the practically relevant regime of solid mesh sizes that are larger than the beam
cross-section radius. In this regime, the singularity, i.e., the difference between the 1D-3D and
2D-3D models can not be fully resolved by the finite element solution space. This fact can be
exploited to obtain reasonably accurate results with the BTSV-FULL (i.e., 1D-3D) method for the
envisioned applications and practically relevant mesh resolutions.

The solution to the presented problem has a point symmetry around the e, axis. Therefore,
the STR-POL and STR-AVG solid triad variants coincide and give the same numerical results up
to machine precision. Similarly, the results obtained with the STR-DIR,, variants match up to
machine precision. Figure [5.14] shows the convergence plot for various types of solid triads as
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Figure 5.14.: Spatial convergence — convergence plot for various solid triads and the 2D-3D
reference solution. Figure is taken from the author’s article [138]], permissions
granted under the Creative Commons (CC BY) license.

well as for the 2D-3D coupling approach. For coarse discretizations an excellent convergence
behavior can be observed for the BTSV-FULL variants, slightly below the convergence rate of the
reference 2D-3D method, but with a significantly reduced computational cost. All BTSV-FULL
convergence plots exhibit a kink at a certain solid mesh resolution: the STR-DIR;,, variants
at around h° = 0.07m, and the STR-POL and STR-AVG variants at around h° = 0.06 m.
Figuratively speaking, the difference between the 1D-3D and 2D-3D coupling model becomes
dominant at the kink position, since the solid element size to beam cross-section diameter ratio
becomes smaller. Nevertheless, the kink only occurs when the solid element size is already
smaller than the cross-section radius, which is far away from the envisioned geometric relations
for the BTSV-FULL method anyways. The results confirm that for solid element sizes larger than
the beam cross-section diameter, i.e., the desired and practically relevant discretization case, the
results obtained with the BTSV-FULL method (1D-3D) exhibit excellent spatial convergence
properties and thus give a very good approximation of the 2D-3D coupling problem.

5.4.6. Plane cantilever bending

In this example a cantilever structure modeled as a solid continuum subject to a moment
load is considered. The problem is illustrated in Figure The cantilever has the di-
mensions 5m x 1m and consists of a Saint Venant—Kirchhoff material (E° = 10N / m?,
v® = 0). At the left boundary all displacement components are fully constrained. A mo-
ment load M = 0.0290888 Nm acts on the cantilever at the material point X ,, = [4.5,0]" m.
This moment is chosen such that, if the cantilever were modeled using 1D beam theory, it should
bend exactly to a quarter circle, due to a pure bending deformation in the region between the
Dirichlet boundary and the applied moment. Directly imposing a conservative moment load on a
solid, i.e., a Boltzmann continuum, which exhibits no rotational degrees of freedom is a non-trivial
task. Standard approaches would require to model the moment as a (deformation-dependent)
load/traction field distributed across an arbitrarily chosen sub-volume of the solid. A external
moment is emposed on the solid structure by defining a solid triad (STR-AVG) at the application
point of the moment. The nodal external forces effectively acting on the solid are obtained by
projecting the moment to the solid finite element space via the discrete version of (5.37). The
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Figure 5.15.: Plane cantilever bending — problem setup|(a)|and the deformed configuration
The Green—Lagrange strains Es, are shown in the deformed configuration. Figure
is taken from the author’s article [138]], permissions granted under the Creative
Commons (CC BY) license.

cantilever is discretized with 25 x 5 plane four-noded, first-order quadrilateral elements. In
Figure the deformed cantilever is illustrated. The global displacement behavior is as
expected, i.e., the cantilever bends to a quarter circle. Of course, the local strain state close to
the point where the external moment is applied is not meaningful in a continuum mechanics
sense, since a singular moment is imposed at that point. However, according to Saint Venant’s
principle, a linear stress distribution across the beam height, as expected for the pure bending of
a slender beam-like structure, can be observed at a sufficient distance from the point where the
moment is induced. This example illustrates that the presented rotational coupling approach is not
limited to the coupling of beam cross-section orientations, but can also be used as a stand-alone
feature to impose moments onto a solid domain in a variationally consistently manner. It should
be pointed out that this example has only been carried out in 2D for reasons of simplicity, while
the illustrated capability is available in 3D problems, too.

5.4.7. Plate with embedded beam

In this example a beam is only partially embedded inside a solid plate and loaded with a tip
force. Two different geometry variants of the embedded beam are considered, cf. Figure [5.16]
In variant A the embedded part of the beam has the shape of a quarter circle, while it is straight
in variant B. The plate has the dimensions 1 m x 1m x 0.1 m and consists of a Saint Venant—
Kirchhoff material (E° = 1 N/ m?, 5 = 0.3). The embedded Simo—Reissner beam has a
cross-section radius 12 = 0.025 m and the material parameters are E° = 100 N/m? and /% = 0.
In both variants the beam is loaded with a tip load ' = —0.0001 N e4 at the end that sticks out of
the solid domain. The solid plate is fully clamped at the left and at the bottom.

The coupling of beam and solid is realized with the BTSV-FULL method and compared to the
BTSV-POS method from Chapter[d] i.e., the one without rotational coupling. First-order Lagrange
polynomials are employed to discretize the positional and rotational Lagrange multipliers. The
penalty parameters are ¢” = 100 N/m? and ¢® = 100 Nm/m. The solid plate is modeled with
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Variant A Variant B

Figure 5.16.: Plate with embedded beam — problem setup for variant A and B. In variant A
the embedded part of the beam has the shape of a quarter circle, in variant B it is
straight. In both cases the red line indicates along which edge the results are plotted
in Figure[5.19] Figure is taken from the author’s article [138]], permissions granted
under the Creative Commons (CC BY) license.

1 x 10 x 10 eight-noded solid-shell elements [147]], while the entire beam is discretized
with six Simo—Reissner beam finite elements. The resulting global finite element model has
807 degrees of freedom. A full 3D model, also resolving the beam with three-dimensional solid
finite elements and consisting of 90,190 second-order tetrahedra (tet10) elements, serves as a
comparison. The discretization of the full 3D model has been chosen such that mesh convergence
is guaranteed. Consequently, the full 3D model consists of 270,570 degrees of freedom.

The results for variant A are shown in Figure It can be seen that the full 3D model and
the new BTSV-FULL method exhibit the same overall behavior, while the beam experiences
much larger deformations and the solid smaller ones in the BTSV-POS model without rotational
coupling. This is due to the fact that in the full 3D problem a considerable portion of the external
load is transferred from the beam to the solid via shear stresses on the beam surface, which are
represented by moments in the reduced-dimensional model. Only the BTSV-FULL method is
able to capture these coupling moments. Figure shows the results for variant 5. In this case a
solution for the purely positional BTSV-POS method (i.e., only centerline position coupling) does
not even exist within a quasi-static framework, since the beam has an unconstrained rigid body
rotation mode around its axis of the embedded part. Again, the displacement results of the full 3D
problem and the BTSV-FULL model are very close to each other. A more detailed comparison
of the variants is given in Figure [5.19] Therein, the displacements along the curve indicated
in Figure [5.16 are visualized. Now it also becomes clear quantitatively that the displacement
results obtained with the BTSV-FULL method are very close to the ones obtained with the full
3D problem. Considering that the former reduces the number of degrees of freedom by a factor
of about 330 as compared with the latter, this is a remarkable result and showcases the efficiency
of the new BTSV-FULL method for challenging applications.

5.4.8. Fiber-reinforced pipe

The next numerical example is a fiber-reinforced pipe under pressure. The problem setup,
illustrated in Figure consists of a pipe modeled with a Neo-Hookean material law
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Figure 5.17.: Plate with embedded beam — deformed configurations for variant A. The left

figure shows the full 3D model, the middle figure shows the BTSV-FULL model
and the right figure shows the BTSV-POS model. The contour plots visualize the
displacement magnitude. Figure is taken from the author’s article [138]], permissions
granted under the Creative Commons (CC BY) license.

Figure 5.18.: Plate with embedded beam — deformed configurations for variant 5. The left
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figure shows the full 3D model and the right figure shows the BTSV-FULL model.
The contour plots visualize the displacement magnitude. Figure is taken from the
author’s article , permissions granted under the Creative Commons (CC BY)
license.
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Figure 5.19.: Plate with embedded beam — deformed configurations of the edge indicated in
Figure for the two variants and for various modeling techniques. Figure
is taken from the author’s article [138]], permissions granted under the Creative
Commons (CC BY) license.
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Figure 5.20.: Fiber-reinforced pipe — problem setup and deformed configuration The
contour plot visualizes the displacement magnitude. Figure[(a)]is taken from the
author’s article [135]], permissions granted under the Creative Commons (CC BY)
license.

(ES = 10N/m?2, v° = 0.3). The pipe is 2m long and has an inner and outer radius of 0.9 m
and 1m, respectively. It is reinforced with Simo—Reissner beams (E® = 1000 N/m?2, v® = 0)
as also shown in Figure The cross-section radius of the beams is 0.04 m. The inner
surface of the pipe is loaded with a Neumann surface pressure p of up to 2.5 N/m?. At the top and
bottom, symmetry boundary conditions are applied to the pipe as well as to the beams. For further
symmetry reasons, only a quarter of the depicted pipe is actually simulated with the following
element numbers referring to the quarter model. Coupling between the beams and the solid is
realized with the BTSV-FULL scheme approach and linear Lagrange multiplier shape functions
for the positional and rotational Lagrange multipliers (¢¥ = 1000 N/m and ¢® = 5 Nm/m). The
pipe is discretized with 225 C'*-continuous isogeometric solid elements (based on second-order
NURBS) and 45 Simo-Reissner beam elements.

Figure [5.20(b)| shows the deformed configuration of the pipe. The expected stiffening effects
of the beams onto the structure can clearly be seen. In-between the beam reinforcements, the
relatively soft pipe exhibits larger displacements. Although only qualitative in nature, this
example illustrates a very interesting problem class for the BTSV-FULL method. Even tough all
the previous derivations and examples used first-order interpolation of the solid finite elements,
this example also showcases the straightforward applicability of the presented BTS interaction
methods to higher-order and even C'*-continuous solid interpolations. This allows for a coupling
of beam and solid fields with the same order of interpolation continuity.

5.4.9. Twisted plate

In this final example let us consider a plate, with complex, spatially distributed fiber reinforcements
in 3D, cf. Figure[5.21] The plate has the dimensions 1 m x 3.5m x 0.1 m and consists of a Neo-
Hookean material (£ = 1 N/m?, v = 0.3). The plate is fully clamped at the left face. The right
face of the plate is rotated around the e, axis with the rotation angle ¢ = [0, 27, i.e., the plate is
twisted along the e, axis. Two different shapes of fibers are embedded in the plate: semicircles

96



5.4. Examples

Figure 5.21.: Twisted plate — problem setup. The left figure illustrates the fiber placement in the
plate, all dimensions are in m. The right figure shows a 3D view illustrating the
rotation of the curved fibers around the e, axis. Figure is taken from the author’s
article [138]], permissions granted under the Creative Commons (CC BY) license.

with a radius of 0.25m and straight lines with a length of 0.6 m. The fiber semicircles are
rotated by 15 ° with respect to the e, axis to make the example more challenging and represent
general 3D fiber-solid element intersection scenarios. The embedded fibers have a cross-section
radius R = 0.01 m and the material parameters are £° = 400 N/m? and v/® = 0. The coupling of
fibers and solid is realized with the BTSV-FULL method (STR-AVG solid triad, €¥ = 100 N /m?
and €® = 1Nm/ mﬂ First-order Lagrange polynomials are employed to discretize the positional
and rotational Lagrange multipliers. The solid plate is modeled with 10 x 35 x 2 eight-noded solid-
shell elements, while each fiber is discretized with four Simo—Reissner beam finite elements, thus
resulting in a total of 92 beam finite elements. The displacement controlled twisting deformation
of the plate is applied within 100 quasi-static load steps. At this point it should be mentioned
that this example could not be solved with the BTSV-POS method, since the rigid body rotation
modes of the straight fibers lead to a non-converging Newton—Raphson algorithm in the very first
load step. This underlines the advantages of the mechanically consistent coupling provided by
the BTSV-FULL method.

Figure [5.22] illustrates the deformed structure at various load steps. Until load step 75, the
reinforced plate exhibits a more or less homogeneous twist along the e, axis. From load step 75
to load step 100, the reinforced plate folds around the e, axis. To assess the non-linear behavior
of this structure and evaluate the global impact of the fiber-reinforcements, the fiber-reinforced
plate is compared to a simple plate (same material) without any fibers. Figure[5.23] depicts the
reaction moment )M, around the e, axis at the fully clamped surface of the plate with and without
fiber-reinforcements. Until load step 70, the structures behave similarly. However, as expected
the fiber-reinforcements lead to an increased reaction moment for the same twist angle ¢, i.e., to
a stiffer structural response. Both structures exhibit a limit point with an unstable post-critical
solution, i.e., the structures would collapse if the twist is applied in a load-controlled manner. The
fiber-reinforcements affect the critical point of the structure such that the instability occurs at a
smaller twist angle and the critical moment is increased. This illustrates the complex influences
that fiber-reinforcements may have on the global non-linear behavior of a structure.

Figure [5.24] illustrates the final configuration and shows a close-up view of the deformed
embedded fibers. The maximum normal stresses in the fibers resulting from axial and bending

'Due to a typo, the values of the penalty parameters given here differ from those in the author’s article [138]. The
values stated in this thesis are correct.
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Figure 5.22.: Twisted plate — deformed configurations at various load steps. The magnitude of the
displacements is shown in the solid. Figure is taken from the author’s article ,
permissions granted under the Creative Commons (CC BY) license.

1073
| —no-fibers
. 1.5+ -1 |— BTS-FULL
Z
g 1y i
= 05 |
0 | | | | | |

0 20 40 60 80 100
load step

Figure 5.23.: Twisted plate — reaction moment at the fully clamped surface of the plate over
the course of the simulation, with and without fiber-reinforcements. The reaction
moment M, is the resulting moment around the e, axis. Figure is taken from the
author’s article [138]], permissions granted under the Creative Commons (CC BY)
license.
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Figure 5.24.: Twisted plate — closeup of deformed configuration at load step 100. Magnitude of
the displacements is visualized in the solid and the axial force N is shown in the
beams. Figure is taken from the author’s article [[138]], permissions granted under
the Creative Commons (CC BY) license.

deformations can be estimated for this example as ~ 15 N/m? and ~ 26 N/m? (not visualized
in the figure), respectively. In the solid the maximum principal Cauchy stress is 0.578 N /m?
(not visualized in the figure). As expected, the stresses in the stiff fibers are much larger than in
the relatively soft solid matrix. To further investigate the influences of the various deformation
modes of the fibers, Figure @] depicts the tension, shear, torsion and bending contributions to
the total internal elastic energy of the fibers over the course of the simulation. In the first few
load steps, the main contributors to the internal elastic energy of the system are bending and
torsion deformations, cf. right part of Figure[5.25] This can be attributed to the fact that in the
beginning of the simulation the deformations of the plate mainly take place in e, direction, which
predominantly causes bending and torsion deformations of the fibers. As the plate is twisted
further, geometrically non-linear effects materialize especially on the outer edges of the plate. The
edges form helix like curves. Due to the constrained displacements in e; direction at the clamped
surfaces, the outside edges of the plate are stretched in e, direction. This causes axial tension in
the fiber semicircles at the outside. Starting at approximately load step 25, the main contribution
to the internal elastic fiber energy comes from axial deformations. In the post-buckling state,
the bending deformation of the plate, and therefore also of the fibers increases. This causes
an increase in the internal elastic bending and torsion energy of the fibers. Moreover, shear
deformations only have a minor contribution to the total internal energy of the fibers, which
is expected due to the slenderness of the embedded fibers, thus motivating a future use of the
BTSV-FULL method in combination with shear stiff Kirchhoff-LLove beam theories [96, [97].

The considerable contributions of bending and torsional energy to the internal elastic energy of
the fibers demonstrates the importance of consistently representing these modes and coupling
them to the background solid material as done by the BTSV-FULL scheme. For this example,
this would not be the case if simplified models for the fibers (e.g., modeled as strings without
bending stiffness) or for the fiber-solid coupling (e.g., BTSV-POS) were applied.

This example also showcases the maturity of the implemented BTSV-FULL method from an
algorithmic point of view. The chosen solid mesh, in combination with the tilted fiber semicircles
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Figure 5.25.: Twisted plate — internal elastic fiber energies over the course of the simulation.
The total internal elastic energy is split up in tension, shear, torsion and bending
contributions. Figure is taken from the author’s article [138], permissions granted
under the Creative Commons (CC BY) license.

results in complex 3D intersections between the beam finite elements and the solid finite elements,
thus illustrating the robustness of the employed numerical integration algorithm. As a final
example, a more complex model of a fiber-reinforced plate is considered. Therein, the dimensions
of the plate are repeated 5 times in e; and e, direction and 3 times in e, direction. The pattern and
size of the fiber-reinforcements is similar to the one illustrated in Figure howeyver, in this case
there are 3 layers of fiber-reinforcements over the thickness of the plate. This results in a total of
approximately 53,000 solid finite elements and 1,800 fibers with 4 beam finite elements each, i.e.,
the problem size is scaled by a factor of approximately 75 compared to the previously considered
plate. The deformed configuration of the plate is visualized in Figure[5.26]. This further illustrates
the robustness and scalability of the presented BTSV-FULL method for large-scale problems.
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Figure 5.26.: Twisted plate — deformed configuration of a plate with an increased complexity.
The applied rotation at the end of the plate is ¢ = m. The magnitude of the
displacements is plotted in the solid and the axial strains € are plotted in the beams.
Figure is taken from the author’s article [138]], permissions granted under the
Creative Commons (CC BY) license.

101






6. Beam-to-solid surface coupling

In this chapter, the first truly mixed-dimensional 1D-2D mortar-type coupling approach for beam-
to-solid surface (BTSS) coupling problems is proposed. The fibers / beams are represented by
1D Cosserat continua embedded in 3D space, whereas the solid body is modeled as a classical
3D Boltzmann continuum. The 1D beams are coupled to the 2D surfaces (the boundaries) of the
3D continua, thus resulting in a mixed-dimensional 1D-2D coupling problem. The constraint
equations are discretized with a mortar-type approach. To the best of the author’s knowledge, the
proposed 1D-2D mortar-type coupling approach for BTSS coupling problems describes a novel
extension of the previously presented positional beam-to-solid volume (BTSV-POS, Chapter )
and rotational beam-to-solid volume (BTSV-ROT, Chapter [5)) coupling problems. Switching
from a 1D-3D to a 1D-2D mixed-dimensional coupling introduces two additional surface-specific
challenges: (i) The positional BTSS coupling (BTSS-POS) constraints between the beam and
the solid surface depend on the surface normal vector. Especially in the discretized problem,
consistent treatment of the surface normal vector can become cumbersome. Therefore, various
possible simplifications of the positional coupling constraints (BTSS-POS-(-)) are presented. One
of the main scientific contribution of this chapter is the demonstration that, in the general case of
non-matching 1D-2D interfaces, only a fully consistent handling of the surface normal vector
within the positional coupling constraints fulfills fundamental mechanical properties and gives
accurate results. Exact conservation of linear and angular momentum is shown for the resulting
1D-2D coupling scheme. This is the first time that exact conservation of angular momentum
is shown for a surface coupling scheme with non-vanishing surface normal distance. (i1) For
rotational BTSS (BTSS-ROT) coupling a suitable solid orientation field is required on the solid
surface. A detailed discussion on suitable solid triad fields within a solid volume is given in
Section @ However, a direct application of those to solid surfaces leads to unwanted effects, i.e.,
the solid surface orientation depending on the deformations inside the solid volume. Therefore,
the second main scientific contribution of this chapter is presented: the construction of a suitable
solid surface triad field. In the remainder of this thesis, BTSS-FULL refers to positional and
rotational BTSS coupling. Accordingly, BTSS-FULL-(-) is the specific combination of the
positional coupling variant BTSS-POS-(-) and rotational coupling.

6.1. Problem formulation

In this chapter, a quasi-static 3D finite deformation BTSS-FULL coupling problem as shown
in Figure is considered. The BTSS-FULL method couples all six cross-section degrees of
freedom of the beam to the solid surface. This is realized by coupling the positions of the beam
centerline as well as the orientation of the beam cross-section to the solid surface. One advantage
of a 1D-2D coupling approach solely enforced at the beam centerline is the decoupling of the
positional and rotational coupling conditions, i.e., both of them can be formulated independently.
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6. Beam-to-solid surface coupling

Figure 6.1.: Notation of the finite deformation BTSS coupling problem.

For embedded beam-to-solid volume (BTSV) coupling problems such an approach is presented in
Chapters [ and[5] The same general strategy is followed here for BTSS coupling problems, where
two sets of coupling constraints are defined, the positional coupling constraints (BTSS-POS) and
the rotational coupling constraints (BTSS-ROT). The principle of virtual work serves as basis for
the employed finite element method and reads

WS + oWE + 6T + 6TIF = 0. (6.1)

where §WS and W, are the virtual work of the pure solid problem and pure beam problem,
respectively. Furthermore, 0114 and STI¥ are the virtual work contributions of the positional
and rotational surface coupling constraints, respectively. As was the case with the BTSV-FULL
scheme presented in the previous chapter, only beam elements based on the Simo—Reissner beam
theory are consider in this chapter.

Remark 6.1. In this thesis the solid surface is exclusively considered as a boundary of a three
dimensional solid volume. In many of the practically relevant applications of BTSS problems, the
solid’s dimensions normal to the coupling surface are small compared to the overall dimensions,
and therefore, the solid can be represented by a continuum mechanics shell theory. The presented
BTSS coupling and contact methods in this thesis are directly applicable to beam-to-shell coupling
problems, where the solid surface is modeled using shell finite elements.

Remark 6.2. In the following, the solid surface is parameterized with the two surface parameter
coordinates £ and 1°, introduced in the finite element formulation of the solid, cf. Section [2.3.1]
To be consistent with the presented geometrically exact beam theory, cf. Section [2.2.2} the beam
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6.1. Problem formulation

centerline is parameterized with the arc-length of the undeformed beam centerline s, which can
later be identified as the finite element parameter coordinate &7 in the discretized setting.

6.1.1. Closest point projection

In the BTSS-FULL coupling problem, cf. Figure no requirements on the initial beam position
relative to the solid surface exist. This is illustrated in Figure [6.2] Obviously, the coupling
scheme has to be applicable to cases where the beam centerline curve lies on the solid surface,
cf. Figure and cases where the beam centerline is offset by the cross-section radius
in surface normal direction, cf. Figure However, also general cases, where no strict
requirements on the reference placement of the beam centerline relative to the solid surface are
made, are considered in the presented coupling schemes, cf. Figure The only requirement
considered in this chapter, is a unique closest point projection of each beam centerline point onto
the solid surface. For the envisioned application cases, it can be assumed that a unique solution
of the closest point projection exists in the vicinity of each beam centerline point 7, cf. [76].
In order to formulate the closest point projection, the beam centerline is parameterized with the
arc-length along the undeformed beam centerline s € R, and the solid surface is parameterized
with the two surface parameter coordinates £ € R and 7° € R. In the reference configuration
each point 7,(s) on the beam centerline is assigned a corresponding closest point X (¢5,75) on
the solid surface, where £ = ¢5(s) and n¥ = 13(s) are the surface parameter coordinates of
the closest point. The closest point can be found by formulating a unilateral minimal distance
problem in the reference configuration:

deols) = min d(s,£%,7%) = d(s,&,17) (6.2)
N
with
d(s,&%,n%) = ||ro(s) = X3(¢5,1%)]]. (6.3)

The two orthogonality conditions obtained from the minimal distance problem (6.2)) read

X3 )" (ro(s) — X5(€%,9%)) =0
X3 (65, 1°)" (ro(s) — X5(¢%,n%)) = 0.

For a given beam coordinate s, these conditions can be solved for the unknown surface coordi-
nates ¢S and 77°. The non-trivial solution of requires the surface directors X ‘S = 0X°%/0¢8
and X' "’;] =0X°% /On® to be orthogonal to the relative vector between the surface point and the
beam centerline point, i.e., this relative vector is parallel to the reference outward pointing surface
normal vector N € R?, i.e.,

(6.4)

ro(s) = X(E,n7) = deo(s)N (67,710, (6.5)

c

with
_ X35, n%) x X5.(65,1%)
| X5(65,75) x X5(65,19) ||

N (5, 7°) (6.6)
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/\ ;
/
(a) (b) (©)

Figure 6.2.: Illustration of possible BTSS coupling problems — a curved beam on a matching
curved solid surface[(a)| a curved beam centerline offset by the cross-section radius
in surface normal direction |(b) and a general non-matching case

(a) ()

Figure 6.3.: Illustration of the three different BTSS-POS coupling variants. Consistent positional
coupling (BTSS-POS-CONS) via the surface normal vector @I, forced reference
configuration coupling (BTSS-POS-REF) by forcing beam centerline points to lie
on the solid surface [(b)|and displacement coupling (BTSS-POS-DISP), where the
displacement of beam centerline and solid surface are coupled[(c)] The BTSS-POS-
REF and BTSS-POS-DISP variants are commonly used in classical surface-to-surface
mesh tying problems [[112]].

6.1.2. Positional beam-to-solid surface coupling

In this section, three different variants of the BTSS-POS coupling constraints are presented and
subsequently compared to each other in Section [6.4] The first presented variant is consistent with
the kinematic relations between beam centerline and solid surface. The resulting coupling terms
contain the surface normal vector, i.e., the coupling terms become non-linear. Furthermore, the
second derivative of the surface normal vector is required for a consistent linearization of the
problem, as required for tangent-based nonlinear solution schemes. To avoid this computationally
expensive linearization, two additional variants to formulate the translational coupling constraints,
commonly used in classical surface-to-surface mesh tying problems [112], will be investigated.
Both of them do not require an evaluation of the current surface normal vector or its derivatives,
and the resulting coupling operators only depend on the reference configuration, i.e., they are
constant. The three different coupling variants are visualized in Figure[6.3]
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6.1.2.1. Consistent positional coupling

The BTSS-POS coupling constraints are exclusively formulated along the beam centerline and
couple the beam and solid material points associated by (6.5)) to each other. For the considered
variant, the surface normal distance d., at each beam centerline point, shall be constant over
the simulation (pseudo) time, i.e., d. = d.o. Therefore, the coupling equations in the current
configuration can be formulated as

r(s) —z°(62,07) — deo(s) m(67,n7) =0 on T.. 6.7)
The current normal vector is defined in analogy to the reference normal vector (6.6), i.e.,

(£ 1) = z5(&5,15) x z5(€5,nS)
el T &S (€8, nS) x &S (€85, mS)

with the current surface directors = dz°/9¢° and 5, = dz° /0n°. The constraints are
enforced along the one-dimensional coupling domain I'. C 25 between the beam centerline and
the solid surface, i.e., the part of the beam that is coupled to the solid surface. In the following
considerations, the explicit dependency on the beam and solid parameter coordinates will mostly
be omitted for improved readability.

In the remainder of this thesis, the positional coupling constraints will be referred to as
the consistent (BTSS-POS-CONS) surface coupling variant. The name refers to the fact, that the
coupling definition is consistent with the kinematic relations between solid surface and beam
centerline, cf. Figure Furthermore, it will be shown that this variant leads to vanishing
constraint forces in the (undeformed) reference configuration and exact conservation of linear and
angular momentum in the discretized coupled system, cf. Section [0.3.4.1]

The Lagrange multiplier method is used to weakly enforce the coupling constraints (6.7).
Therefore, a Lagrange multiplier vector field A”(s) € RR3, defined along the beam centerline, is
introduced. The total Lagrange multiplier potential reads:

: (6.8)

STIY = / N (r— 2 — doom) ds. (6.9)

Variation of the Lagrange multiplier potential leads to the constraint contribution to the weak
form,

S = | oAU (r — 2 — d.om) ds + / N (67 — 62 — d,om) ds . (6.10)
e c
SWU sy

Therein, 6W¥ and W are the variational form of the coupling constraints and the virtual work
of the generalized coupling forces A, respectively. It is well-known from the geometrically
exact beam theory that the variation of the centerline position dr is work-conjugated with the
resulting point-wise beam centerline load. Therefore, the generalized coupling forces A can be
directly interpreted as the coupling line load acting on the beam centerline. On the solid side,
the variation of the solid displacement 6z is work conjugated with a point load acting on the
solid, i.e., the generalized coupling forces also act as a line load on the solid. Additionally, the
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6. Beam-to-solid surface coupling

term dc,o(A“)Tdﬂ arises, which represents a point-wise moment contribution of the coupling
line load acting on the solid surface. If the beam centerline exactly lies on the beam surface,
ie., d.o = 0, cf. Figure the BTSS-POS-CONS method (in the space continuous form)
is identical to the BTSV-POS method, cf. Chapter 4, The drawback of the BTSS-POS-CONS
variant is that for general scenarios the weak form contains the surface normal vector variation,
thus requiring the second derivatives of the surface normal vector for a consistent linearization
of dn, as required for tangent-based nonlinear solution schemes. Furthermore, the positional
coupling operators become non-linear, i.e., they depend on the current configuration.

Remark 6.3. In the considered cases of BTSS coupling, d., = R/2 is an obvious physical choice
for the surface normal distance, i.e., the beam is offset of the surface by half of the cross-section
radius, cf. Figure [0.2(b)] However, even in cases where there is no physical motivation for a non-
vanishing surface normal distance, cf. Figure it can be beneficiary to employ the consistent
positional coupling constraints (6.7). For example: if the continuous geometry description
of beam and solid does not match, e.g., due to an incompatibility in the employed modeling
software, not accounting for the resulting surface normal distance can lead to non-physical results,
cf. Section

6.1.2.2. Forced reference configuration coupling

The considered 1D-2D line-to-surface coupling constraints are very similar to the ones in classical
2D-2D surface-to-surface coupling problems, cf. [41, 1103, 112]. The main difference is that in
the surface-to-surface case the space continuous interfaces are usually matching, i.e., the normal
distance vanishes and the coupling constraints can be simplified to

r—z>=0 on [, (6.11)
This type of positional coupling constraint will be referred to as the forced reference configuration
surface coupling (BTSS-POS-REF). The Lagrange multiplier coupling contributions to the global
weak form read

OWlker = / oAU (r—=°) ds (6.12)
e

—6Wgr = / P (6r — 02°) ds. (6.13)
e

In this case, the surface normal vector is not contained in the resulting coupling equations, simpli-
fying the numerical evaluation of the coupling terms. However, the coupling constraints (6.11])
in the reference configuration are only fulfilled if the beam centerline lies exactly on the solid
surface, i.e., d.o = 0. If the beam centerline is not a subset of the solid surface, the coupling
constraints will lead to non-vanishing virtual work contributions in the reference configura-
tion, i.e., initial stresses and deformations in the unloaded coupled system. In other words, the
BTSS-POS-REF coupling conditions force the beam centerline to exactly lie on the solid surface,

which is illustrated in Figure
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6.1.2.3. Displacement coupling

Another alternative coupling approach in surface-to-surface mesh tying is to directly couple
the displacements instead of the positions in (6.11). This variant will be referred to as the
displacement surface coupling (BTSS-POS-DISP). The BTSS-POS-DISP coupling constraints
read,

uP—u®=0 on T, (6.14)

with the beam centerline displacement u® = r — r,. The Lagrange multiplier coupling contribu-
tions to the global weak form are

SWilpise = / SAT (uf — uS) ds (6.15)
Ie

_5WCL,[DISP = / AMT (528 - 528) ds. (6.16)
Ie

As is the case for the BTSS-POS-REF variant, the normal vector does not appear in the coupling
constraints. In this case, the coupling conditions are always fulfilled in the reference configuration,
no matter if the initial geometries of beam centerline and solid surface are matching or not.
In [112]] it is demonstrated, that displacement coupling (6.14) can lead to a coupling formulation
that does not conserve angular momentum. This can be shown by inserting a constant virtual
rotation 6@, i.e., 6uP = d¢ x r and du’ = d¢ x z%, into (6.16). To guarantee conservation
of angular_ momentum the?esulting virtual work has to vanish, cf. [S7, 184, 112]. This gives the
condition for conservation of angular momentum

/ (6 x (r—2%))" Ads = 0. (6.17)

This condition is only fulfilled if » = ¥, i.e., for matching interfaces. For general configurations

of the beam and the solid, i.e., when the beam centerline is offset in surface normal direction,
conservation of angular momentum is violated by the BTSS-POS-DISP variant. This can also be
interpreted from a mechanical point of view: displacement coupling of two points (a point on the
beam centerline and the corresponding projection point on the solid surface) that do not coincide
in the reference configuration, cf. Figure leads to a non-physical coupling moment which
violates the conservation of angular momentum.

6.1.3. Rotational beam-to-solid surface coupling

Rotational beam-to-solid volume (BTSV-ROT) coupling between an embedded geometrically
exact beam with a Boltzmann continuum is presented in Chapter [5| There, it is shown that
constraining the relative rotation (pseudo-) vector ﬂs 5 between the current beam triad A” and a

suitable solid triad A° along the beam centerline leads to an objective coupling scheme. This
is in accordance to general cross-section interaction laws within the geometrically exact beam
theory, cf. [94]. This type of rotational coupling scheme can also be adopted and extended for the
presented case of BTSS coupling problems. The general approach is the same as in Chapter[5] but
instead of a solid volume triad field, a suitable solid surface triad field has to be constructed. This
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6. Beam-to-solid surface coupling

construction is presented in Section [6.2] The rotational coupling constants constrain the relative
rotation vector between the beam triad and a corresponding solid surface triad A2, i.e.,

=0 on [ (6.18)

with

P, =1v(ATAS), (6.19)

The Lagrange multiplier method is used to weakly enforce the rotational coupling constraints.

The corresponding weak form has been derived and thoroughly discussed in Chapter [5|and will
not be stated here.

6.2. Surface triad field

The rotational coupling conditions (6.18)) constrain the relative rotation vector ﬁss between the

beam cross-section triad A® and a corresponding solid surface triad A‘E. The solid is modeled as
a Boltzmann continuum, i.e., it does not have any rotational degrees of freedom. Therefore, a
suitable solid surface triad field has to be constructed as a function of the solid deformation field.
The construction of solid triad fields is thoroughly discussed and analyzed in Section There,
two important attributes of the constructed triad field are identified: (i) The solid triad field has
to be invariant with respect to an arbitrary rigid body rotation, such that the rotational coupling
constraints (6.18)) lead to an objective discrete coupling formulation. (ii) The resulting solid triad
field should not constrain shear deformations in the beam cross-section plane, as this can result
in spurious stiffening / locking effects of the coupled system. It is shown in Appendix |B|that
the rotation tensor obtained via a polar decomposition of the (in-plane projection of the) solid
deformation gradient fulfills both aforementioned properties and represents the solid material
directors in an Ly-optimal manner. Furthermore, a slightly modified construction of the solid
triad is presented that fixes an averaged solid material director to the solid triad. In practice, this
modified variant gives very similar results compared to the solid triad obtained from the polar
decomposition and also fulfills both aforementioned properties. Moreover, this variant avoids the
computationally expensive evaluation of the polar decomposition (and its second derivatives) at
Gauss-point level. This section presents an extension of this solid triad definition to end up with a
solid triad definition that is suitable for BTSS coupling problems

For the solid volume triads in Section the solid deformation gradient F' was used. In
theory, the solid volume triad definitions from Section [5.2|can be applied to the considered BTSS
problem, where the solid deformation gradient is evaluated at the solid surface. However, in
this case the surface triad field would not only depend on the surface deformation, but also on
deformation inside the solid volume. This is illustrated in Figure [6.4] where the solid exhibits
deformations inside the solid volume, while the surface geometry stays the same. The solid
deformation gradient at the solid surface changes due to the deformation of material fibers inside
the solid volume. However, from an intuitive physical point of view the orientation of the solid
surface does not change. Therefore, a different approach is proposed in this section, where the
resulting solid surface triad is constructed directly based on the surface kinematics, i.e., the two
surface basis vectors and the surface normal vector.
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The proposed construction of the surface triad is based on a material director g lying on the
solid surface, in combination with the surface normal vector. The obvious and intuitive choice for
this solid material director is the intersection between the beam cross-section plane and the solid
surface tangent plane in the reference configuration, cf. Figure[6.5] which reads

g, = (6.20)

Theoretically, this definition of the solid material director can result in a singularity if the beam
cross-section and the surface tangent plane are parallel to each other. However, since this would
mean that the beam centerline is normal to the solid surface, this singularity will not be relevant
for practical applications. The solid surface triad in the reference configuration can subsequently
be constructed based on the solid material director and the solid surface normal vector, i.e.,

A =19, N,g,x NJ. (6.21)

The solid material director in the current configuration g is calculated by applying the push-
forward operator F to the material director in the reference configuration, i.e., g=Fg/|Fg,/
The previously mentioned dependency of the deformation gradient on deformations inside the
solid volume does not affect this projection, as g 0 lies withing the solid surface, i.e., the projection
only depends on the in-plane components of F'. With the current solid material director, the
surface triad in the current configuration can be constructed in analogy to (6.21)), i.e.,

Af =[g.,n.gxn]. (6.22)

In a final step, the actual surface triad used for evaluation of the coupling terms has to be offset by
a constant rotation, such that the rotational constraint equations (6.19) are fulfilled in the reference
configuration. The final surface triad reads,

~ ~ T
AR = A7 (Aﬁo) AS. (6.23)

With this definition, it is straight-forward to show that the surface triad in the reference con-
figuration is equal to the beam reference triad, i.e., A‘RO = AOB and therefore, the rotational
coupling constraints are fulfilled (by definition) in the reference configuration. It can be shown
that the surface triad definition 1s invariant with respect to a superposed rigid body rotation,
thus fulfilling requirement (i) stated above. Furthermore, since the surface triad is constructed
based on a single material director g and the surface normal vector, a constraining of shear
deformations on the solid surface can not occur. Therefore, the presented solid surface triad also
fulfills requirement (ii).

Remark 6.4. To ensure a unique closest point projection in the spatially discretized problem, an
averaged C-continuous surface normal field is presented in Section Due to the averaging
procedure, the resulting averaged normal is not point-wise orthogonal to the solid surface,
cf. Figure[6.6] With the definition of the surface triad (6.22)), this would result in a non-orthonormal
tensor A ¢ SO®. Therefore, the actual point-wise orthogonal normal vector on the surface, not
the averaged normal vector, is used in the evaluation of the surface triad.
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Figure 6.4.: Illustration of the influence of out of plane solid deformations on the solid deformation
gradient at the solid surface.

. r

Figure 6.5.: Construction of the solid surface triad.
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6.3. Spatial discretization

The spatial discretization of the BTSS coupling scheme is exclusively based on the finite element
method. In Section [2.3.1]it is assumed, that the solid parameter coordinates are chosen such that
the third parameter coordinate (© is constant at the solid surface, i.e., the solid surface 89‘3 , can
be parameterized with only the first two solid parameter coordinates £ s and 7°. The kinematics of
the solid surface only depend on the finite element nodes on the surface. The spatial interpolation
of the solid surface is given by

S

X5 => Ny (&.0°) X3 (6.24)
kn_i;

=Y N (¢%.0°) &F (6.25)
k=1

ouy = > Ni (65,9°) ods, (6.26)
k=1

where, n‘lf 18 the number of solid surface nodes.

6.3.1. Evaluation of solid surface normal field

The closest point projection (6.2) of a point along the beam centerline to the solid surface requires
a C°-continuous normal field to guarantee an unique solution. If the solid discretization is based
on isogeometric solid elements with higher order continuity, then the surface normal field can be
directly calculated from the kinematic description of the discretized surface. The resulting surface
normal field is at least C°-continuous and a unique closest point projection can be guaranteed. If a
standard C°-continuous Lagrangian finite element interpolation is employed in the solid domain,
the surface normal field obtained from the kinematic description of the discretized surface is not
continuous. This can result in an undefined closest point projection. However, the BTSS coupling
scheme presented in this chapter is also applicable to such discretizations. This is achieved by
constructing a C°-continuous normal field based on averaged nodal normal vectors, as is common
in surface-to-surface problems, cf. [109}154].

The main idea behind the construction of an averaged surface normal field is illustrated in
Figure An averaged nodal normal is defined at each surface node £ as

Z:adjl "l(g g
|z g
(©)

where n;’ is the outward pointing surface normal vector at element (e), evaluated at node k.
Furthermore, 7,4, represents the number of adjacent faces at node k. The final normal vector
field is then defined via a FE interpolation, i.e.,

EZF1 Nk(f 1 )nAVG,k
”E )ﬂAVG,kH

(6.27)

NavGr =

(53 S

(6.28)
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(a) (b) (©

Figure 6.6.: Illustration of the constructed C°-continuous surface normal field, for an exemplary
planar problem with three elements. Discontinuous standard surface normal field
based on the finite element surface kinematics averaged nodal normals |(b) and
CP-continuous interpolated averaged nodal normal field

Such a surface normal field is guaranteed to be C°-continuous, i.e., it mimics a C''-continuous
surface interpolation. However, this procedure increases the computational effort required to
evaluate the normal field and its derivatives. Additionally, the connectivity between element
degrees of freedom is increased, as the normal on a solid face element depends on the degrees of
freedom of the adjacent faces.

6.3.2. Mortar-type coupling of beam-to-solid surface normal
distance

Similar to the BTSV-POS method, a mortar-type coupling approach for all three positional
coupling variants is employed, i.e., the Lagrange multiplier field A introduced in Section
is also interpolated with finite element shape functions, cf. Chapter and [[17, 109, 150]. The
discrete Lagrange multiplier field is defined along the discretized beam centerline. Its finite
element interpolation reads

nM
N =D M(EBHAY, (6.29)
j=1

where n is the total number of Lagrange multiplier nodes, @?’ is the Lagrange multiplier shape

function of the node 7, and i]“ € R3 is the Lagrange multiplier at node j. Although defined along
the beam centerline, there is no requirement for the Lagrange multiplier shape functions to match
the shape functions used for interpolation of the beam centerline. Even the number of nodes can
differ, i.e., n' # n®.

The choice of Lagrange multiplier basis functions is important for the mathematical properties
of the resulting discretized system. Generally speaking, the Lagrange multiplier interpolations
must fulfill an inf-sup condition to guarantee stability of the mixed finite element method. We
circumvent the inf-sup stability condition by employing a penalty regularized Lagrange multiplier
approach. Detailed discussions regarding this topic can be found in Chapter 4| for the purely
positional coupling BTSV-POS and in Chapter [5] for rotational coupling BTSV-ROT. The exten-
sive studies and discussions in these chapters show, that a linear interpolation of the Lagrange
multipliers combined with a node-wise weighted penalty regularization generally leads to a stable
finite element formulation of the coupled problem. Instabilities might only occur if the beam
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finite elements become significantly shorter than the solid finite elements. However, as discussed
in Chapter 3] such BTS element size ratios are typically not relevant for the envisioned scope of
applications.

6.3.2.1. Consistent positional coupling

Inserting the finite element interpolations into the first term of (6.10) yields the discrete variation
of the BTSS-POS-CONS coupling constraints,

”rn

S, = ZZWT / BHds 38— 303 oA / PN, ds 179
=1 j=1 k=1 j=1
%/—/ ~~
) pli.l MU k] (6.30)
Sy ! / Bd, gm, ds
j=1 Len .
il

Here, two local matrices with mass matrix-like structure can be identified: DYl ¢ R3x6
and MYUH ¢ R3%3 e | the so-called mortar matrices. Furthermore, the abbreviation g#l/l € R3
is introduced, referring to the integral of the surface normal distance weighted with the Lagrange
multiplier shape function of the Lagrange multiplier node j. Again, inserting the finite element
interpolations into the second term of yields the discrete virtual work of the coupling
forces,

’VZF TL

SWY, = Z Z (D”U ”5d8> _ (M“U k]éds) A
=1 j=1 k=1 j=1
nf i T (6.31)
—ZZ(/ coaﬂh¢?d5> A
k=1 j=1 N .

-

a7 Moay

where the abbreviation Qu[] M= —dq"V! /dds is introduced. With equations (]6.30[) and (]6.3 1[)
the global virtual work of the coupling contributions reads

(—M" +Q¥)"
SIY, = [5dS" o5d®" 5>\“T} p“T \U . (6.32)
DYxB — M¥xS — g

Here, DY € R3" x6n" MU g R3n"x3n° U ¢ R3nYx1 gpg QY, € R377%37% are the globally
assembled matrices and vector of the previously defined local ones. The following residual
vectors can be identified in (6.32))

r (M + Q)"
I’Z;{ — DUT)\Z/{ i (633)
gu DYx5 — MYxS — qu
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Here, ¥4 and ! are the coupling residual force vectors acting on the solid and beam degrees of
freedom, respectively, and g is the residual vector of the constraint equations. A linearization of
the coupling residuum vectors with respect to the discrete degrees of freedom is required for the
Newton—Raphson algorithm employed to solve the nonlinear system of equations resulting from
the discretization process. The linearization of the positional coupling contributions reads:

| rg 0 Q4 [V ( Uyt Adz
Lin r =10+ 0 0 DY Ad” |, (6.34)
g g |-MY+qQ4 D 0 A

where the abbreviation Q% = 9 ((Q%,)"AY) / dd® is introduced. In practice, all integrals are
numerically evaluated using segment-based integration along the beam centerline, which avoids
integration over discontinuities, cf. Section and [45]. Each subsegment is integrated using
Gauss—Legendre quadrature with a fixed number of integration points for all coupling terms,
which is required to ensure conservation of linear and angular momentum, cf. Section [6.3.4.1]
Segment-based integration yields an accurate numerical evaluation of the coupling integrals
and allows for the resulting coupling scheme to pass patch test-like problems, cf. Section [4.4.1]
Furthermore, all derivatives explicitly stated in the discrete equations are evaluated using forward
automatic differentiation (FAD), cf. [78]], using the Sacado software package [[121], which is part
of the Trilinos project [[143].

6.3.2.2. Forced reference configuration coupling

By neglecting the normal distance d. o, the BTSS-POS-REF variant of the positional coupling
conditions simplifies the coupling equations ([6.7)), such that the surface normal vector does
not appear in the coupling equations anymore. The discrete coupling terms for the BTSS-POS-
REF variant read

U MY
M = DU\ . (6.35)
gu REF DMXB — Muxs

It becomes clear, that the constraint equations in the reference configuration are only fulfilled
if DYX5 — MYXS = 0, where X® € R"” and X5 € R™ are the global vectors containing
the nodal reference positions (and tangents), respectively. If the condition is not fulfilled in the
reference configuration, this coupling variant leads to initial (coupling) stresses in the system.
The influence of the initial stresses within the BTSS-POS-DISP variant is analyzed in Section
The linearization of the coupling terms (6.35]) reads

P 0 0 o0 M| [AdS
Lin [ |/ =0 +1 0 o DY | |AdP. (6.36)
& e/ 18w [-M¥ DY 0 | [N

6.3.2.3. Displacement coupling

Another alternative positional coupling variant is the BTSS-POS-DISP variant (6.14). Therein,
the normal distance between the beam and the solid surface is neglected and the displacements
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are directly coupled to each other. The discrete coupling terms for the BTSS-POS-DISP variant
read:

Y — MU
r = D4 \U . (6.37)
g s |D“d® — MHd®

In this case, the coupling constraints are fulfilled in the reference configuration and there are
no initial stresses in the system. However, this variant violates the conservation of angular
momentum. Again, the influence of this violation within the BTSS-POS-DISP variant is analyzed
in Section[6.4] The linearization of the coupling terms reads

r{g 0 0 0 -—Mm|[Ad
Lin [ | =10 +1 0 o ¥ | |Aad?|. (6.38)
gu DISP gM DISP - Mu DM 0 )\U

Remark 6.5. A very similar problem occurs for surface-to-surface mesh tying problems, in
the case of general curved interfaces. To guarantee conservation of angular momentum a mesh
initialization procedure is performed, cf. [112]. The mesh initialization slightly relocates the
reference position of the slave nodes (in the case of BTS problems, the beam nodes) X5 , such
that the (non-linear) condition D¥X?® — MYX® = 0 is fulfilled. For the presented BTSS-POS
method, such a mesh initialization would mean that both presented simplifications BTSS-POS-
REF and BTSS-POS-DISP are identical. However, in the surface-to-surface case the space
continuous interfaces are usually matching, thus the mesh initialization of the discretized system
only marginally affects the overall solution. This is not the case for BTSS coupling problems.
For example, in many situations it is sensible for the beam centerline to be offset of the coupling
surface in surface normal direction, cf. Figure [6.2(b)] In such cases, the mesh initialization
procedure of the beams reference configuration might lead to a drastically different system
behavior.

Remark 6.6. If the discretized beam centerline lies exactly on the discretized solid surface, the
three presented variants of the global system equations (6.34)), (6.36) and (6.38) are all identical,
ie., QY, = 0 and D¥X® — M¥X® = 0. However, with the employed Lagrange polynomial
interpolation for the solid finite elements and the third-order Hermitian interpolation for the beam
finite elements, a matching mesh for beam and solid surface discretizations is only possible in case
of planar solid surfaces. Furthermore, in this special case, the positional surface coupling variants
would also be equal to the BTSV-POS method Chapter 4} as the problem can also be interpreted
as a volume coupling problem, where the beam is directly embedded at the boundary of the solid
volume, i.e., the solid surface. There, the beam would lie at a face of the solid (volume) finite
element parameter space, i.e., the limit case for BTSV coupling.

6.3.3. Combined mortar-type coupling

In this section the global system for the BTSS-FULL problem is assembled and subsequently
regularized. The BTSS-FULL problem consists of the following individual parts: the uncoupled
beam and solid problem, the positional coupling (BTSS-POS) and the rotational coupling (BTSS-
ROT). The rotational coupling between beam cross-section and solid surface (BTSS-ROT) is
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6. Beam-to-solid surface coupling

entirely based on the BTSV-ROT coupling method presented in Chapter [5] In Section [6.3.2]
three different variants of BTSS-POS are presented: BTSS-POS-CONS, BTSS-POS-REF and
BTSS-POS-DISP. Depending on the employed variant, the corresponding BTSS-FULL problem
is referred to as BTSS-FULL-CONS, BTSS-FULL-REF and BTSS-FULL-DISP. BTSS-FULL-
CONS is the most general of the presented variants, i.e., the equations for the other variants
are more or less simplifications thereof. In Section [6.4 BTSS-FULL-CONS will be identified
as the superior variant, with respect to the accuracy of the results. Therefore, and for the sake
of brevity, the following derivations are only presented for the fully coupled and consistent
BTSS-FULL-CONS variant.

Inserting all discretized variables into gives the discrete nonlinear system of equations for
the quasi-static BTSS-FULL problem:

ro(d®) + 4 (d®, AY) 4 rR(dS, 9P, %) = 0, (6.39)
rB(d® %) + (A1) =0, (6.40)

rB(d®, ¢P) + v} (d, 45, A%) = 0, (6.41)
g"(d®,d%) =0, (6.42)

g"(d® ¢") =0 (6.43)

Here, the dependency of the residual contributions on the discrete unknowns is stated to illustrate
the coupling connectivity introduced by each residuum vector. For improved readability, the
explicit dependency of the residual contributions on the discrete unknowns will be omitted going
further. The resulting BTSS-FULL global system of equations with saddle point structure reads:

KS +Q“+ Q% 0 Q% —-MY 1 (Q%)" Q%] ad’ ¢S
0 K5 0 p“"’ 0 | |Ad® —rB
R 0 K5 +QF 0 QR AOP| = | —r5 | . (6.44)
MY QY. DY 0 0 0 Y —g
R As R R R
Qt 0o Qf 0 0] Lx g

Remark 6.7. The global solid displacement vector d® also contains degrees of freedom not
related to the solid surface, i.e., the number of total solid nodes n° is larger than the number of
solid surface nodes n. However, a split up of the solid degrees of freedom into surface and inner
volume degrees of freedom is not introduced for improved readability and compatibility with the
previous chapters.

6.3.4. Penalty regularization

Enforcing the coupling conditions with Lagrange multipliers results in a mixed formulation, i.e.,
the Lagrange multipliers are additional global unknowns, thus yielding a global system with
a saddle point-type structure (6.44). A direct solution of this global system introduces certain
drawbacks, e.g., an increased system size and possible linear solver issues due to the saddle
point-type structure, cf. Section[2.5.2] A weighted penalty regularization has proven to be an
efficient and reasonably accurate approach to circumvent the aforementioned drawbacks for BTS
coupling problems, cf. Chapters [ and [5] Therefore, the resulting global system ((6.44) will also
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6.3. Spatial discretization

be approximated with a penalty regularization. For the rotational coupling constraints the same
penalty relaxation as in (5.57) will be employed, i.e., A\ = €?(V*)~'g®. For the BTSS-POS
constraints a similar relaxation as the one for the BTSV-POS constraints (4.20)) is employed,

AY = ()T g, (6.45)

Again, €/ € R* is a scalar penalty parameter and V¥ is a global diagonal scaling matrix. The
global scaling matrix is assembled from the nodal scaling matrices VY9! for Lagrange multiplier
node j, i.e.,

VUil = / Y ds 1P%%, (6.46)
e

The penalty regularization of the BTSS-FULL problem introduces two additional system
parameters, ¢/ and ”*. This leaves the important question on how to chose these two parameters,
which is discussed in Sections [4.2.3] and [5.3.4] for the positional and rotational penalty parameter,
respectively. There, the following recommendations choosing the two penalty parameters are
given: the positional penalty parameter should be in the range of the beams Young’s modulus,
ie., ¥ ~ EB, and the rotational parameter should be in the range of the beams Young’s modulus
scaled with the square of the cross-section radius, i.e., X ~ EBR2. This is also applicable to the
present case of BTSS-FULL coupling.

The relaxation of the penalty constraints defines the Lagrange multipliers as functions of the
displacements, i.e., they are no longer independent degrees of freedom of the system and can be
condensed from the global system of equations (6.44):

AZ;{S AZ;{T AZS/IG Ads sz
AL AY AU AP = [BY] . (6.47)

Azé[s AZQ/{T AZ{Q AOB bzé{
Therein, the following abbreviations have been introduced for improved readability:
A = K QL QE (M Q)T (V) (M Q)
+ *Q¥ (VR) R
AU — & (—MY + Q)" (v”)‘1 DY
A = Q) + €FQf (VR) Qfe
T
AZ/{ — CMDM (VU) (_MZ/{ +QZ;\IS)
AY = KE 4+ HpHt (V)T DY

A%, = KZ, (6.48)
AY = QF + QY (VR) R
Aj =Ky,

AY, = KB, + QR + *QR (VR) ' Q%
b? — S ¢ (—MM—FQ)\S)T( ) 1gu _ERQR (VR) gR
uDuT (Vu)—l g

B u
bY = —r8 — QR ( 72)—1 g®.
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6. Beam-to-solid surface coupling

6.3.4.1. Conservation properties

In this section, the proposed BTSS-POS-CONS scheme shall be analyzed with respect to conserva-
tion of linear and angular momentum. In the context of surface-to-surface problems this has been
discussed in detail, e.g., [110}112-114]. For surface-to-surface coupling (mesh tying) problems it
has been shown, that linear momentum and angular momentum are conserved by the semi-discrete
mesh tying formulation, cf. [112]. However, the proposed mixed-dimensional BTSS-POS-CONS
scheme differs in two important aspects from classical surface-to-surface coupling problems: (i)
The coupling constraints are formulated with the current positions instead of the displacements,
and, more importantly, contain the surface normal vector. (ii) The nodal degrees of freedom for
the beam nodes contain the positions as well as the centerline tangents. Therefore, a discussion
on conservation of linear and angular momentum of BTSS-POS-CONS is given in the following.
In the following considerations the BTSS-POS-CONS variant is analyzed, as the implications for
the BTSS-POS-REF variant can be directly obtained by applying the respective simplifications.
In the case of the BTSS-POS-DISP variant, it is shown in Section[6.3.2.2]that already the space
continuous coupling terms do not conserve angular momentum.

As discussed in [[112], conservation of linear momentum can be guaranteed if the discretized
virtual work of the coupling forces vanishes for a constant virtual displacement du # 0. In that
case, the nodal displacement weighting functions become ddS = du, k = 1,...,nS and (5@51 =
du, [ = 1,...,nB. Since the virtual displacement is constant, the variation of the beam centerline
tangents vanishes, i.e., (5@@ =0, =1,..,nP. Insertion into (6.31)) yields

nt nB T 0

S : T .
> Z(DUM[O_]) —Z<M“M5g) —~ /F deodn, @ ds | X4 =0.  (6.49)
j=1 \ I=1 - k=1 eh

The variation of the surface normal vector vanishes for a constant virtual displacement field,
i.e., 0n, = 0. Furthermore, since du is non-zero, the condition (6.49) is only satisfied if

TLB n‘1§
> / OUHf ds — ) / YN, ds | XY =0. (6.50)
1=1 “Ten k=1 YTen

. iy . ) B S
With the partition of unity property of H and Ny, i.e., > ;_, H = land >, N, = 1, the
condition for conservation of linear momentum further simplifies to

nY

> / oY ds —/ o ds | = 0. (6.51)
Fc,h Fc,h

J=1

Obviously this property is fulfilled if the integrals are evaluated exactly. In the case of numerical
integration the property is fulfilled if the same numerical integration procedure is used for both
integrals. At this point it is important to point out that the two integrals originally arise from
the evaluation of DUl and M“U* As mentioned in Section both integrals use the
same segment-based integration scheme with a fixed number of Gauss-points. Therefore, the
condition (6.57) is fulfilled, i.e., the discrete BTSS-POS-CONS scheme exactly conserves linear
momentum.
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6.3. Spatial discretization

In a similar fashion, conservation of angular momentum can be guaranteed, if the virtual
work of the coupling forces vanishes for a constant virtual rotation ¢ # 0 (for simplicity,
the origin is assumed to be the center of the virtual rotation). With that assumption, the nodal
virtual displacements of solid and beam are 5dS = d¢p x 27, k=1,..,nf and 5@7{3’[ =0 X1,
[ =1,...,n". In a similar fashion, the variation of the nodal beam tangent vectors reads 5@51 =
o x t,,1=1,...,n5, cf. [99]. Insertion into yields

TLM TLB
> ((59 X ﬁl)T/ Y HJ ds + (0 x il)T/ oY HY ds)

j:l =1 c,h 1—‘c,h

(6.52)

n

S35 x 5)" / PN, ds — / doponT @ ds | AU = 0.
Fc,h Fc,h

k=1

S
T

In the case of a constant virtual rotation, the variation of the normal vector can be expressed
by dny, = d¢ x m,,. Since d¢ is non-zero, the condition (6.52) is only fulfilled if

DMU“ﬁF
’I’Lu TLB ” ~ A
> ( (/ QYH] ds +/ cb?H;fdsil)
— — r.. r.
mE A AT " (6.53)
np
- Z/ UN, ds 179 &7 —/ doon, @Y ds | x A = 0.
k=1 1—‘c,h N Fc,h ,
Mu?;k]T q;{rm
This condition can be reformulated and written in global form
DYx5 — M“x® — g = 0. (6.54)

These are simply the coupling constraints for BTSS-POS-CONS, i.e., if the coupling constraints,
cf. last row in (6.32)), are fulfilled, the coupling scheme preserves angular momentum. In
the present thesis, the coupling constraints are enforced with a node-wise weighted penalty
regularization, which results in a violation of the coupling constraints. However, the resulting
regularized problem still preserves angular momentum. To demonstrate this, let us state the
penalty regularization for a Lagrange multiplier at node j:

Aju = (/ % ds I3X3>
Fc,h

When inserting (6.55)) into (6.53)) it is obvious that the condition for conservation of angular
momentum is also fulfilled for the regularized problem, as the cross product of two parallel
vectors vanishes.

1 nB n?
Z DUbRBE Z MUGK 5 qHll | (6.55)
=1 k=1
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Figure 6.7.: Projection of point p to the parameter space of the solid finite element (e) with
BTSV-POS-X. For illustrative purposes a 2D example is shown.

6.3.5. Extended beam-to-solid volume coupling

The main difference between the proposed BTSS-POS-CONS coupling procedure and the BTSV-
POS method, cf. Chapter 4] is a term accounting for the normal distance between the beam and
the solid surface. The discretization of this term introduces rather complex coupling terms, which
require the evaluation of an averaged surface normal field. An alternative to the BTSS-POS-
CONS method is to use an extended version of the BTSV-POS scheme proposed in Chapter []
which shall be denoted as the extended positional beam-to-solid volume coupling (BTSV-POS-X)
scheme in the following. The idea of this BTSV-POS-X scheme is to simply project points on
the beam centerline to an extended solid parameter space, i.e., projections that lie outside of the
solid volume are still admissible. Thus, no closest point projection with the surface normal field
is required. This is exemplarily illustrated in Figure The point p is projected to the parameter
space of the solid finite element (e), and although the &, coordinate of the projection point lies
outside of the solid finite element domain the projection will still be used in the evaluation of M.
There are no coupling terms dependent on the surface normal distance in this case, i.e., the
resulting linearized system of equations is equal to (6.36)) and (6.38]). At first glance this approach
might seem very appealing as there is no need for evaluating the surface normal vector and its
derivatives. Furthermore, basically the same implementation as in BTSV-POS problems can be
used. However, there are two significant drawbacks of this approach: (i) The projection of the
beam centerline points onto the solid surface is highly dependent on the solid finite element mesh.
Figure[6.§]illustrates cases where the BTSV-POS-X method fails. In Figure [6.8(a)] the solid finite
elements are distorted in negative normal direction of the coupling surface, such that a unique
projection is not possible in the shaded areas. (ii) The BTSV-POS-X method only works well for
grid-like hexahedral meshes of the solid surface, unstructured hexahedral meshes or tetrahedral
meshes lead to problems due to non-unique projections, cf. Figure Additionally, the
proposed BTSS-POS-CONS method can be directly applied to structural shell finite element
models, whereas the BTSV-POS-X method requires that the solid is discretized with 3D solid
finite elements. Therefore, the BTSV-POS-X method will not be investigated further in this thesis.
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Figure 6.8.: Cautionary cases for BTSV-POS-X. Distorted elements in negative normal direction
of the solid surface General tetrahedral mesh Gray areas indicate where a
projection to the solid surface fails. For illustrative purposes a 2D example is shown.

6.4. Examples

The following numerical examples are set up using the open source beam finite element pre-
processor MeshPy [137] and are simulated with the in-house parallel multi-physics research code
BACI [12].

6.4.1. Constant stress transfer

In this first example the ability of the BTSS-FULL coupling method to transfer a constant stress
state is investigated. This example is inspired by classical patch tests for solid mechanics, cf. [140].
Similar examples are presented in Section 4.4.1|for the BTSV-POS method and in Section[5.4.4]
for the BTSV-FULL method. Figure [6.9]illustrates the problem setup. It consists of a solid
block Q° (E°S =1 N/mQ, vS = 0) with the dimensions 1 m x 1m x 1.2m. The center of the
bottom face is located at the origin of the coordinate system. No external loads are applied to
the solid and the bottom face is fixed in all spatial directions. At the top face the solid surface is
coupled to two beams ¥ and Q5 (R = 0.05m, E® = 100 N/m?, v/® = 0). The two beams share
the same spatial position and are loaded with opposing line loads in e, direction. The magnitude
of the line loads is ¢ = 0.025 N /m. The opposing line loads on the beams cancel each other out,
1.e., the resulting analytical solution of the space continuous problem is uw = 0. Both beams
are coupled to the solid domain, there is no direct interaction between the beams, and all loads
are transferred through the solid domain via the BTSS-FULL coupling method. This example
shall verify the ability of the three proposed BTSS-FULL variants, i.e., BTSS-FULL-CONS,
BTSS-FULL-REF and BTSS-FULL-DISP, to exactly represent this analytical solution using an
arbitrary coarse discretization, i.e., the ability of the coupling method to transfer a constant stress
state across non-matching mixed-dimensional interface meshes.

The solid block is discretized with first- and second-order hexahedral finite elements (/zexS,
hex20 and hex27) as well as first- and second order tetrahedral finite elements (tet4 and tet10). The
beams B1 and B2 are discretized with 5 and 7 Simo—Reissner beam finite elements, respectively.
This results in a non-matching mixed-dimensional interface discretization between the beams and
the solid. The Lagrange multipliers for positional and rotational coupling are discretized using
first-order Lagrange polynomials and regularized using penalty parameters of ¢/ = 100 N /m?
and €® = 0.1 Nm/m. The results for various coupling variants and hex8 elements are illustrated
in Figure[6.10] It can be seen that for all considered variants, the second Piola-Kirchhoff stress Ss3
in the solid and the curvature ~ in the beam elements are zero up to machine precision, thus
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6. Beam-to-solid surface coupling

Figure 6.9.: Constant stress transfer — problem setup. Both beams Q¥ and Q5 occupy the same
spatial position.

(a) BTSS-FULL-CONS (b) BTSS-FULL-REF (c) BTSS-FULL-DISP

Figure 6.10.: Constant stress transfer — results for straight beams and various coupling vari-
ants. The solids are discretized with hex8 solid finite elements. The second Piola-
Kirchhoff stress S33 is shown in the solid and the curvature x at the middle of each
beam element. Note that both beams ¥ and Q25 occupy the same spatial domain in
the undeformed reference configuration.

exactly representing the analytical solution. However, the displacement of the two beams in the
BTSS-FULL-REF variant does not vanish, as the beam centerline is forced to lie on the solid
surface, i.e., in this example the beams show an offset in negative e;-direction by a distance of R.
The results of the constant stress transfer test for the various solid element types are visualized
in Figure [6.11] There, the coupling is realized with the BTSS-FULL-CONS variant. It can
be seen, that for all considered solid element types, the stress in the solid and the curvature
in the beams match the analytical solution up to machine precision. This illustrates that the
BTSS-FULL-CONS coupling variant is able to exactly represent a constant stress state between a
straight beam and a planar solid surface for general non-matching discretizations. The results
obtained with BTSS-FULL-DISP exactly match the results obtained with BTSS-FULL-CONS.
In case of the BTSS-FULL-REEF variant, the beams displacement is not zero, but the constant
stress state can still be transferred exactly.

To make the constant stress transfer test more demanding, the previously presented example is
now modified such that a position field X on the top surface of the solid is defined by X =
i€, +jey, + f(i,j)es fori, j € [—0.5,0.5], with f(i,5) = 2 —4* — j2, i.e., a curved surface is
generated. The centerlines of the two beams are offset by the beam radius in surface normal
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(a) hex8, hex20, hex27 (b) tet4, tet10

Figure 6.11.: Constant stress transfer — results for straight beams and various solid finite element
discretizations. The coupling is modeled with the BTSS-FULL-CONS coupling
variant. The second Piola-Kirchhoff stress Ss3 is shown in the solid and the curva-
ture & at the middle of each beam element. Note that both beams 2§ and 25 occupy
the same spatial domain in the undeformed reference configuration.

direction. Otherwise, all parameters are the same as in the previous example. Because of the
specific choice of surface curvature, the employed beam centerline interpolation with third-order
Hermitian polynomials is not able to exactly represent the space continuous reference geometry of
the beam centerline. This results in a discretization error of the beam centerline interpolation and
slightly different arc lengths of the two beams. In order for the resultants of the two line loads to
still be in equilibrium with each other, the load ¢ on beam B2 is scaled with a factor of 0.9995346
to account for the different beam lengths. Figure[6.12]illustrates the results of the constant stress
transfer test for the curved solid surface and the various coupling variants. It can clearly be seen
that the results for BTSS-FULL-REF do not match the analytical solution. This is because the
beam is forced to lie on the solid surface. In case of the planar coupling surface this could be
achieved by a rigid body translation of the beams onto the solid surface. However, in case of the
curved solid surface, a rigid body translation of the beams can not fulfill the positional coupling
equations for BTSS-FULL-REF, this also requires a deformation of the beams and the solid,
and thus results in a failing constant stress transfer test. The results for the BTSS-FULL-CONS
and BTSS-FULL-DISP variant are more or less equal to each other. Figure[6.13]illustrates the
results for the BTSS-FULL-CONS variant in combination with various solid finite element types.
Note the different scaling of the contour plots in Figure[6.12] compared to Figure[6.13] It can be
observed that even for the BTSS-FULL-CONS (and also the BTSS-FULL-DISP) variant, the
analytical solution is not reproduced up to machine precision as the results show a non-vanishing
stress state in the solid and a non-vanishing curvature in the beams. However, these non-zero
stress and curvature values, respectively, are introduced by the discretization error of the initial
geometry, i.e., the inability of the beam finite elements to exactly represent the curvature of the
initial geometry, and are orders of magnitude smaller than the discretization errors associated
with deformation states in typical application scenarios (and the error introduced by the BTSS-
FULL-REEF variant). It can be concluded that the discretization error for arbitrarily curved beam
centerlines within the BTSS-FULL-CONS and BTSS-FULL-DISP methods can be neglected as
compared to the overall discretization error.
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(a) BTSS-FULL-CONS (b) BTSS-FULL-REF (c) BTSS-FULL-DISP

Figure 6.12.: Constant stress transfer — results for curved beams and various coupling vari-
ants. The solids are discretized with hex8 solid finite elements. The second Piola-
Kirchhoff stress Ss3 is shown in the solid and the curvature ~ at the middle of each
beam element. Note that both beams Q% and Q25 occupy the same spatial domain in
the undeformed reference configuration.

833

(d) tet4 (e) tetl0

Figure 6.13.: Constant stress transfer — results for curved beams and various solid finite element
discretizations. The coupling is modeled with the BTSS-FULL-CONS coupling
variant. The second Piola-Kirchhoff stress Ss3 is shown in the solid and the curva-
ture  at the middle of each beam element. Note that both beams Q2% and 5 occupy
the same spatial domain in the undeformed reference configuration.
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Figure 6.14.: Half-pipe with helix-shaped beam — problem setup. The left figure shows a 3D view
of the problem and the right figure shows a cut through the e, — e;.

Figure 6.15.: Half-pipe with helix-shaped beam — finite element discretization of the beam-to-
solid mesh (left) and full 3D mesh (right).

6.4.2. Half-pipe with helix-shaped beam

In this example, a helix-shaped beam is coupled to the outer surface of a solid half-pipe, cf. Fig-
ure [6.14] This example is introduced to further compare the three surface coupling types dis-
cussed in Section [6.3.2] The solid half-pipe with length L = 1 m has an outer radius r, = 1 m
and inner radius r; = 0.8 m. The pipe is modeled using a compressible Neo-Hookean ma-
terial law (E® = 1N/m?, v° = 0). The solid is coupled to a helix-shaped beam with a
radius 7, = 1.05 m and a pitch of 2m. The beam has a cross-section radius R = 0.1 m, Young’s
modulus £EF = 50 N /m? and Possion’s ratio ¥ = (. With the chosen geometric dimensions, the
beam centerline does not exactly lie on the outer surface of the solid half-pipe, but is offset by a
normal distance of 0.05 m. On one side of the half-pipe, a concentrated force F' = 0.0004 Ne, is
applied to the tip of the beam. On the other side, the solid is fixed in all spatial directions.

Coupling between the beam and the solid is realized with the three BTSS-FULL coupling
variants (¢ = 10N/m?, €® = 1 Nm/m). First-order Lagrange polynomials are employed to
discretize both the positional and the rotational Lagrange multipliers. The left part of Figure [6.15]
illustrates the finite element discretization of the 1D-2D model. The pipe is modeled with 2x12x4
finite elements in radial, tangential and e, direction, respectively. Eight-noded solid shell elements
are employed, cf. [20,[147]. The beam is discretized using 10 Simo—Reissner beam finite elements.
In the present example, the beam cross-sections penetrate the solid coupling surface. Therefore, it
1s possible to discretize this example with a full 3D finite element mesh, where the beam itself
is also modeled using 3D finite elements, cf. the right part of Figure [6.15] The full 3D model
is discretized with 50,480 second-order tetrahedra (fet/0) elements. Consequently, the full 3D
model consists of 226,383 degrees of freedom. The discretization of the full 3D model has been
chosen such that mesh convergence is guaranteed and it can be used as a reference solution to
assess the quality of the results obtained with the three BTSS-FULL variants.
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Table 6.1.: Half-pipe with helix-shaped beam — numerical results for the unloaded problem
(F = 0). The total internal elastic energy (including penalty coupling energy) 11,
and the beam tip displacement u” are stated.

coupling type [Ty in J - 107% uBinm
full 3D 0.00000 [0.0,0.0,0.0]
BTSS-FULL-CONS 0.00000 [0.0,0.0,0.0]
BTSS-FULL-REF 3.37499 [0.24411, -0.37493, -0.03631 ]
BTSS-FULL-DISP 0.00000 [0.0,0.0,0.0]

Figure[6.16] visualizes the deformed configurations for the unloaded (F' = 0) structure. Since
no pre-stressing or prescribed initial deformations are applied to the structure, the analytical
displacement field for the unloaded structure vanishes. The BTSS-FULL-REF variant exhibits
non-vanishing displacements, cf. Figure This is because the coupling constraints in the
reference configuration are only fulfilled by the BTSS-FULL-REF variant (6.11)), if the beam
centerline lies exactly on the solid surface, which is not the case in this example. The coupling
conditions thus force the beam centerline to lie on the solid surface. This in turn leads to an
artificial pre-stressing of the system as both the beam and the solid are deformed in order to fulfill
the coupling constraints in the unloaded reference configuration. All other BTSS-FULL coupling
variants and the full 3D solution exhibit vanishing displacements up to machine precision as
expected. A quantitative comparison of the variants is given in Table[6.1] As discussed above, only
the BTSS-FULL-REF variant has a non-zero internal elastic energy II;, (including the penalty
coupling potential) and beam tip displacement . for the unloaded state. Figure visualizes
the deformed configurations for the loaded structure. It can be seen that the BTSS-FULL-CONS
variant closely resembles the full 3D reference solution. The two other variants, BTSS-FULL-REF
and BTSS-FULL-DISP, exhibit a different solution than the full 3D model. Again, quantitative
comparisons of the variants are given in Tables|6.2| and The results for the BTSS-FULL-REF
and BTSS-FULL-DISP show a large discrepancy with respect to the reference solution. For
the BTSS-FULL-REF variant, this can easily be explained since already the initial (unloaded)
configuration does not match the reference solution. For the BTSS-FULL-DISP variant, this
discrepancy illustrates that the simplified coupling conditions are not able to accurately describe
the coupling between the beam and the solid surface if the discretized beam centerline does not
exactly lie within the discretized solid surface in the reference configuration. Furthermore, the
balance of internal and external moments around the origin shows that the conservation of angular
momentum is not fulfilled by the BTSS-FULL-DISP variant, cf. Table[6.2] Finally, the internal
elastic energy and the beam tip displacement obtained with the BTSS-FULL-CONS variant are
very close to the reference solution, which is a remarkable feature considering the much simpler
spatial discretization of the mixed-dimensional problem.

Recapitulatory, after the first two examples it can be stated that both presented simplifications
of the BTSS-FULL conditions, BTSS-FULL-REF and BTSS-FULL-DISP, are not suitable for
general purpose BTSS coupling problems. Only the BTSS-FULL-CONS variant with a consistent
handling of the surface normal vector, and its derivatives, passes the constant stress transfer tests
and gives accurate and usable results. Therefore, only the consistent variant will be used in the
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H: 3.8e—1
0e0

(a) full 3D

(¢) BTSS-FULL-REF (d) BTSS-FULL-DISP

Figure 6.16.: Half-pipe with helix-shaped beam — deformed configurations for the unloaded
problem (F' = 0). The results for the various coupling schemes are shown and the
contour plots visualize the displacement magnitude.

]

[ 5.4e—1
0e0

(a) full 3D

(¢) BTSS-FULL-REF (d) BTSS-FULL-DISP
Figure 6.17.: Half-pipe with helix-shaped beam — deformed configurations for the loaded problem.

The results for the various coupling schemes are shown and the contour plots
visualize the displacement magnitude.
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6. Beam-to-solid surface coupling

Table 6.2.: Half-pipe with helix-shaped beam — numerical results for energy and balance of
moments. The total internal elastic energy (including penalty coupling energy) 1,
the total energy errors, and the normalized sum of internal and external moments are

stated.
: 1104 Tl s, )|
coupling type ITipein J - 10 | I
full 3D 1.14109 - 0.0000
BTSS-FULL-CONS 1.12581 1.3392% 0.0000
BTSS-FULL-REF 4.39811 285.4301% 0.0000
BTSS-FULL-DISP 4.74429 58.4232% 126.5426

Table 6.3.: Half-pipe with helix-shaped beam — numerical displacements results. The beams tip
displacement »” and the relative tip displacement errors are stated.

B
HH ~Yn3p ||

llwnusp !

coupling type uBinm

full 3D [ -0.08411, 0.55495, -0.00476 ] -
BTSS-FULL-CONS [ -0.08077, 0.54627, -0.00883 ] 1.8088%
BTSS-FULL-REF [ 0.05225, 0.10224, -0.02442 ] 84.3041%
BTSS-FULL-DISP [ -0.03799, 0.22497,0.05944 1  60.4513%

remainder of this contribution to model the positional coupling between beam and solid surface.

6.4.3. Supported plate

In this example the importance of coupling both positions and rotations within the BTSS coupling
scheme is demonstrated. This is achieved by comparing the BTSS-FULL-CONS (including
rotational coupling) and BTSS-POS-CONS (without rotational coupling) coupling schemes to
each other. The problem consists of a plate and a straight beam serving as a strut, cf. Figure [6.18]
The plate is loaded with a surface load f = 0.0002 N /m?e, at the bottom surface. The dimensions
of the plate are 3m x 1 m x 0.1m and it is modeled using a compressible Neo-Hookean material
law (E¢ = 1N/m?2, v = 0). On the opposite face of the surface load, the plate is reinforced by
a straight beam with circular cross-section (R = 0.075m, E® = 100N/m? and v*® = 0). The
beam centerline is parallel to the e, axis and offset from the solid surface by a distance of R in
surface normal direction, i.e., the beam cross-section exactly touches the solid surface. In e,
direction, the beam centerline is offset by a distance of 0.35 m with respect to the middle of the
plate. At the right end, both solid and beam are fully clamped. Apart from that, no displacement
boundary conditions are applied to the system.

A full 3D reference solution is computed, where the plate as well as the beam are fully resolved
with 3D solid finite elements. In this reference solution, the connection between the beam and the
plate, i.e., the weld line, has to be modeled. For the mixed-dimensional BTSS-FULL coupling
scheme a rigid connection between the beam and the solid surface is assumed, cf. Section[3.2.2]
Figure shows the fully resolved connection (weld line) between the beam and the plate which
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Figure 6.18.: Supported plate — problem setup. The red line indicates the material line for which
the results are plotted in Flgure 6 21

o

Figure 6.19.: Supported plate — modeled weld line between the beam and the plate in the full 3D
reference solution.

has a total width of 2R. The weld line between beam and solid is assumed to be made up of the
solid material and resembles a sufficiently stiff connection between the beam surface and the
solid surface to align with the modeling assumptions of the mixed-dimensional model. The full
model is discretized with first-order hexahedral (hex8) elements, thus resulting in roughly 125,000
elements and 450,000 degrees of freedom to obtain mesh convergence.

In the 1D-2D BTSS coupling problems, the coupling between the beam and the solid surface
is realized with first-order Lagrange polynomials as shape functions for the rotational and the
positional Lagrange multipliers (¢4 = 100N/m?, €® = 0.1 Nm/m). The plate is modeled
with 30 x 10 x 1 eight-noded solid shell elements, cf. [20,[147]. The beam is discretized using
10 Simo—Reissner beam finite elements. The total number of degrees of freedom for the BTSS
coupling problem is only 2,175.

Figure [6.20] visualizes the deformed configurations for the various models. The full 3D refer-
ence solution as well as the 1D-2D BTSS-FULL-CONS solution including rotational coupling
behave very similarly, i.e., the plate is bent upwards and the strut stiffens the plate, cf. Fig-
ures [6.20(a) and [6.20(b). The BTSS-POS-CONS variant without rotational coupling, however,
exhibits much larger deformations. In that case, the rotational movement of the plate is not
coupled to the rotations of the supporting beam, i.e., the torsional stiffness of the beam is not
directly coupled to the solid plate, thus resulting in an overall softer structural behavior, cf. Fig-
ure This clearly underlines the importance of including rotational coupling for BTSS
coupling problems to fully capture all relevant stiffening effects. A more detailed comparison
of the variants is given in Figure [6.21 where the displacements along the curve indicated in
Figure[6.18] are visualized. Now it also becomes clear quantitatively that the displacement results

131



6. Beam-to-solid surface coupling

(b) (©

]

0e0 1.5e0
—

Figure 6.20.: Supported plate — deformed configurations for various modeling techniques. Full
3D model[(a), BTSS-FULL-CONS (with rotational coupling) [(b)|and BTSS-POS-
CONS (without rotational coupling) The contour plots visualize the displace-
ment magnitude.

obtained with the BTSS-POS-CONS variant without rotational coupling are unphysical due to
the underestimated overall stiffness of the structure. Furthermore, the full 3D model and the
BTSS-FULL-CONS model exhibit almost matching displacement curves. Considering that the
latter reduces the number of degrees of freedom by a factor of about 200 as compared with
the former, this is a remarkable result and showcases the efficiency of the BTSS-FULL-CONS
coupling method for reinforced plate applications.

6.4.4. Stented elastic artery

This final example is designed to give an outlook towards real-life applications and the appli-
cability of the proposed BTSS coupling approach to more complex coupling scenarios. This is
motivated by the fact that in [139] a general one-dimensional vascular stent model was found to
be in good agreement with the results of a fully resolved three-dimensional simulation presented
in [156]], at a fraction of the degrees of freedoms. In this example, the suitability of the proposed
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141 | |—e—full 3D
—=— BTSS-FULL-CONS
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Figure 6.21.: Supported plate — deformed configurations of the material line indicated in Fig-
ure for various modeling techniques.
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Figure 6.22.: Stented elastic artery — problem setup. Geometric configuration of the stent and
artery and unwrapped stent geometry

BTSS-FULL coupling approach in the context of vascular angioplasty is investigated. The present
example is inspired by the well-known fluid-structure interaction (FSI) benchmark problem of a
pressure wave traveling through an elastic tube (artery), that was originally proposed in [48], to
validate the suitability of FSI algorithms for blood flow simulations. The presented BTSS-FULL
coupling approach is employed to capture the effect of a diamond-shaped stent on the behavior of
the overall system.

Figure illustrates the problem setup. As in the original benchmark problem, a constant
pulse p;, is applied for 3 - 1073 s at the fluid inlet. Besides the pulse, zero traction conditions
are applied to the fluid inflow as well as outflow boundary, on the left and right end of the pipe,
respectively. Both ends of the pipe are assumed to be clamped. The beam centerline geometry
depicted in Figure [6.22(b)] is wrapped around a cylinder with a radius of 7, = r;, — R, i.e.,
the stent perfectly fits into the pipe up to an offset the size of the beam radius. In addition to
the BTSS-FULL problem introduced in Section this example contains a fluid, modeled as
Newtonian with a constant dynamic viscosity 7y, and a density pp, using the incompressible
Navier-Stokes equations. The fluid is coupled to the solid via classical surface-coupled FSI [75] in
a partitioned manner aided by a matrix free Newton Krylov method [83] to accelerate convergence.
Classical no-slip conditions are enforced on the FSI boundary. Since FSI problems are necessarily
transient, the BTSS-FULL problem is enhanced by a Generalized-«o Lie group time integration
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Table 6.4.: Stented elastic artery — problem parameters.

Geometry r; 0.0125m
Tq 0.01375m
Ts 0.01246 m
Iy 0.15m
ly 0.06 m

Beam Ep  9-10°N/m?
B 7800 kg /m?

VB 0.3
R 0.0004 m
Solid Es  3-10°N/m?
ps 1200 kg /m?
Vg 0.3
Fluid Din 500 N /m?

oF 1000 kg /m?
nr 0.003kg/(ms)

method, for all structural degrees of freedom [29,30]. Here, the parameters are chosen to obtain
a fully implicit scheme, and a time step size At = 10~*s is used. To the fluid field, a classical
second-order accurate Generalized-a time integration scheme, with the same time step size
as for the structure field, is applied [/0]. A detailed analysis of the effect of different time
integration parameters on the original benchmark problem can be found in [91]. The mortar-type
BTSS-FULL-CONS method is applied using linear shape functions for the Lagrange multiplier
field and the penalty parameters ¢” = 10 N/m? and ¢® = 102 Nm/m. The stent and pipe are
discretized with 264 Simo—Reissner beam elements and 2,880 solid shell elements, respectively.
For the fluid, 22,800 streamline upwind Petrov—Galerkin (SUPG) stabilized Q1-Q1 fluid elements
with an additional div-grad stabilization term [124] are employed. All dimensions and material
parameters of the problem setup are summarized in Table[6.4.4]

Figures [6.23((a) to[6.23](c) depict the deformed problem (scaled with a factor of 15) after 0.01s,
0.016s, and 0.024 s. It is evident, that the wall displacement caused by the pressure wave in
the stiffer stented region in Figure [6.23] is smaller than in the unstented region. Figure [6.24]
illustrates the fluid velocity v, in channel direction along the pipe’s centerline. The fluid velocity
plot demonstrates that the maximum fluid velocity increases slightly while traveling through the
stented region.

While the change of compliance in the artery, and thus also its effect on the fluid flow, could
also be modeled by a simpler homogenized approach, the proposed approach allows to quantify
the forces interchanged on the coupling interface. Figures |6.25(a)| and [6.25(c)| show the coupling
interactions, i.e., the line loads excerted on the beam system by the surface. In general, it can
be observed, that the interaction is highest at the ends of the stent, i.e., at the transition between
a compliant and a very stiff region. This is particularly notable in Figure [6.25(b), where the
pressure wave is right at the transition between the unstented and stented region. Furthermore,
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Figure 6.23.: Stented elastic artery — deformed configurations at various simulation times. The
snapshots are taken at t = 0.01s (a), t = 0.016 s (b) and ¢ = 0.024 s (c) respectively.
The norm of the displacements is shown in the solid and the pressure is shown in
the fluid. The displacements are scaled with a factor of 15.
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Figure 6.24.: Stented elastic artery — plot of the fluid velocity v, in channel direction along the
centerline of the pipe.
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()

Figure 6.25.: Stented elastic artery — negative coupling line loads for beam-to-solid surface
coupling at various simulation times. The snapshots are taken at ¢ = 0.01s (a),
t = 0.016s (b) and t = 0.024 s (c) respectively. Five values are visualized along
each beam element and only the positional coupling loads are shown.

dividing the 1D coupling loads by the beam diameter results in an approximation of the interaction
stresses between the beam and the artery. The absolute maximum normal and shear stresses can
be estimated for this example as 1.8179 - 10* N/m? and 1.28899 - 10 N/m? (not visualized in
the figures), respectively. The sign for the normal stresses is positive, therefore, this is a tensile
stress between the beam and the solid surface.

It is evident, that the shown example is still a long way from the complexity of simulating
real-life stenting procedures. Using BTSS coupling, instead of frictional BTSS contact, prevents
the investigation of real-life phenomena such as stent migration. Nevertheless, because of growth
and remodeling of the artery, coupling between the stent and the artery is a valid assumption in
many patient-specific cases. Also, direct interactions between the stent and the fluid flow are
not considered in this example. In any case, the presented simulation results have shown that
the proposed BTSS-FULL coupling approach can generally be used for geometrically complex
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beam systems such as stent geometries. The ability to capture important phenomena, such as
changes in compliance and its effect on the blood flow as well as the distribution of the interaction
forces, which may provide insight into the long-term success of vascular angioplasty, has been
demonstrated.
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7. Beam-to-solid surface contact

The main focus of this thesis lies in the development of BTS coupling, i.e., mesh tying, schemes.
Nevertheless, a unilateral contact formulation between 1D beams and 2D solid surfaces will be
presented in this chapter, i.e., beam-to-solid surface contact (BTSSC). This is the obvious next
step in the development of a general purpose mixed-dimensional BTS interaction framework. In
the previous sections, the constraint equations are weakly enforced using a Lagrange multiplier
approach and subsequently discretized with a (penalty regularized) mortar-type finite element
method. Recently, the mortar method has been successfully applied in the context of beam-
to-beam contact problems, cf. [28, [142]]. While the development of such mortar-type contact
schemes for BTS problems is subject of ongoing research, the presented BTSSC scheme is
directly based on a space continuous penalty potential. The qualitative and quantitative results
obtained in Section [/.2|demonstrate the maturity of the presented penalty-based BTSSC scheme.

7.1. Problem formulation

In this section a BTSSC formulation is presented, that formulates the contact conditions as a line
constraint along the entire beam, i.e., a line-to-surface contact scheme. This can be viewed as an
extension to the beam-to-surface (BTSS) coupling scheme presented in Chapter |6} Furthermore,
in some aspects, the line-to-surface contact scheme closely resembles beam-to-beam line contact
formulations presented in [93} 95, [100].

7.1.1. Contact kinematics

All contact models considered in this chapter are based on the assumptions of frictionless contact,
circular beam cross-sections with a radius R and small shear deformations of the contacting
beams. With these assumptions, the contact terms can be completely described by the positional
field of the beam centerline. The contact conditions in the line-to-surface scheme are fulfilled
for each point r(s) along the beam centerline. Consequently, the corresponding point on the
solid surface is obtained by formulating a unilateral minimal distance problem in the current
configuration:

du(s) = min d(s,¢%,1°) = d(s, &, ) (7.1)
N
with
d(s,&%,1°%) = ||r(s) — 2°(¢%, 7)) - (7.2)

As with the BTSS coupling formulation, it can be assumed that this closest point projection has a
unique solution for the envisioned applications. The two orthogonality conditions obtained from
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the minimal distance problem ((/.1)) read

z3(&% )" (r(s) — 2°(¢5,1°%)) =0
x5,(E%, %) (v(s) —2°(¢%,n%)) = 0.

For a given beam coordinate s, these conditions can be solved for the unknown surface coordi-
nates £ and 1°. The non-trivial solution of requires the surface directors @‘Z = 0x5/0¢S
and g‘% = 0x°/0n° to be orthogonal to the relative vector between the surface point and
beam centerline point, i.e., this relative vector is parallel to the outward pointing surface normal
vector n € R3,

(7.3)

Z(S) - QS( fa Uf) = dul<3)ﬂ( CS’ 7729) (74)

A left multiplication of (7.4) with n" leads to the following definition of the minimal distance
function,

du(s) =n(&, )" (r(s) — 255, n)) . (7.5)

In the next step, a gap function, i.e., the minimal distance between a point on the circumference
of the circular beam cross-section and the solid surface, is defined as

9(s) = duls) — R (7.6)

This definition can be written as a simple subtraction of scalar values due to the previously
mentioned assumption of small shear deformations in the beam, i.e., the solid surface normal
vector lies within the beam cross-section plane. The gap function has to fulfill the non-penetration
condition

g(s) >0V s, (7.7)

i.e., the closest distance between a point on the beam surface and the solid surface has to be larger
or equal to zero as penetrations are prohibited.

7.1.2. Variational formulation and finite element discretization

The contact constraint enforcement in the BTSSC scheme is based on a space continuous penalty
potential, similar to beam-to-beam line contact [93} 95, [100], i.e.,

~ _ c
¢ = / I°(s)ds  with  TI(s) = %<g(s)>2 (7.8)
af
where ¢ € R* is a scalar penalty parameter and
z, <0
ry=<"" "=". 7.9
() {0, x>0 (7.9)

Variation of the penalty potential yields the contact contributions to the weak form,

STIC = ¢ /QB (g9(s))dg(s)ds, (7.10)
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with the variation of the gap function, cf. Appendix [C]
69(s) = (or(s) — 62" (&5,m?)) " m(s). (7.11)

From the virtual work expression ([7.10)) the contact force ic(s) acting on the beam centerline
can be identified as

)= fls)nls)  with  f(s) =~ (g(s)) . (7.12)

Here f is a scalar penalty law, i.e., the contact force dependent on the gap function. A more
detailed discussion on various variants of the penalty law is given in Section Adding the
variation of the penalty potential to the virtual work of the beam and the solid yields the total
virtual work of the BTSSC problem

WS + 6WE 4 611 = 0 (7.13)

To ensure a unique closest point projection, a C°-continuous surface normal field is required.
Therefore, the C°-continuous averaged surface normal field from Section is employed in
combination with the presented BTSSC scheme. The discretized contact contributions to the weak
form can be obtained by inserting the finite element interpolations from Section [2.3|into (7.10)),
ie.,

nB n?
~ T ~ T
II¢ ), = § :5df / e (g(€%))H/ n, ds — § ody / € (g(€%)) Nin,ds, (7.14)
=1 k=1 Jlen

Fc,h
N

/ - /

where the abbreviations rfm and rSW, describing the nodal BTSSC forces on a beam and solid
node, respectively, have been introduced. Accordingly, the contact contributions to the global
force vector are r® and r¢, i.e., the BTSSC residual vectors. Finally, the global linearized system

of equations can be given as

KS + K, K¢ Ad®T  [—rS —¢C
K¢ K5 +KE | |Ad®| — |—rB ’

c Bl (7.15)
with the contact contributions to the global tangent stiffness matrix K¢, = or¢/0d®, K¢ =
o od®, KE, = 0r¢/od® and K€, = 0r¢/0d®. The presented (frictionless) BTSSC scheme only
depends on the positional beam centerline degrees of freedom, therefore no rotational degrees
of freedom are stated in (7.15). All derivatives in the discrete equations are evaluated
using forward automatic differentiation (FAD), cf. [78]], using the Sacado software package [121],
which is part of the Trilinos project [143].

Remark 7.1. The enforcement of the contact constraints via the presented penalty potential
inevitably results in a violation of the non-penetration condition (7.7). In the case of BTSSC, it
can be argued that this penetration is physical, as it can be interpreted as the in-plane deformation
of the beam cross-section. Obviously, this requires the penalty parameter to be a function of the
material and geometric properties of the beam. However, a thorough derivation and analysis of
this relation is beyond the scope of the present thesis. The interested reader is referred to [98,100]
for a detailed discussion on this topic in the context of beam-to-beam contact.
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Remark 7.2. To avoid spurious locking effects, as observed in Chapter 4] the integrals in (7.14)
are evaluated using element-based integration without boundary segmentation. This will result in
a violation of suitable BTSSC constant stress transfer tests. Nevertheless, the results in Section
demonstrate that the presented BTSSC scheme can still be employed to obtain physically accurate
results.

Remark 7.3. The inclusion of frictional contact phenomena between the beam and the solid
surface introduces contact terms acting on the rotational degrees of freedom of the beam. This is
because the frictional contact forces act at the contact point between the beam cross-section and the
solid surface, which lies on the circumference of the beam cross-section. The frictional forces are
perpendicular to the surface normal vector, therefore, a projection of the frictional forces onto the
beam centerline results in a contact moment. A variationally consistent description of this contact
moment introduces coupling terms dependent on the rotational degrees of freedom. However, this
is conceptually different and should not be confused with rotational (BTSS) coupling introduced
in Chapter [5and section[6.1.3] where the orientation of the beam cross-section is coupled to a
suitable solid surface triad, thus resulting in rotational coupling terms. In the case of frictional
BTS contact, no rotations are coupled. Instead, the rotational coupling terms arise because of the
previously described projection of the friction forces onto the beam centerline.

7.1.3. Penalty laws

In this section two different types of penalty laws f will be presented. Both are directly adapted
from line-to-line beam-to-beam contact, cf. [98]]. The penalty law (7.12)) derived from the penalty
potential is a linear penalty law,

) —€fg, g<0
flg) = {07 0. (7.16)

In practical applications, it is common to use a regularized penalty law that allows for a smooth
contact force transition between active and inactive contact. Such a regularization usually
improves the behavior of the nonlinear solver and the time integration scheme, cf. [98]]. The
employed quadratically regularized penalty law in this thesis is directly adopted from [98]] and
reads

fo)={5@-9" 0<g<g (7.17)
0, 9>9
Here, g € R" defines the (positive) value of the gap function, where the first contact force arises,

cf. Figure The corresponding integrand of the total penalty potential is

C

% (=36 +399—39%), g<0
c ,_ _

E(g) =& @—9)7°, 0<g<y (7.18)
0, g>g.

142



7.2. Numerical examples

Figure 7.1.: Visualization of the quadratically regularized penalty law. Figure is adapted
from [9§]].

, €9
// Y T e, undeformed configuration

l_k§2

Figure 7.2.: Sliding spaghetti problem — problem setup. Figure adapted from the author’s arti-
cle [134]], permissions granted under the Creative Commons (CC BY) license.

initial configuration

7.2. Numerical examples

7.2.1. Sliding spaghetti problem

In this example, a variant of the sliding spaghetti problem is considered, cf. [32, 166, 67, [134].
The name of this example stems from the simple experiment almost everybody has performed at
some point, sucking a cooked noodle into ones mouth. The problem considered in this example
is an adapted version of the sliding spaghetti problem presented in [134]]. Figure depicts
the problem setup and Table states the geometric and material properties of the problem. It
consists of an initially straight beam subject to a constant body load k in negative e,-direction.
The left end of the beam is placed in a rigid guide and is initially retracted by a distance s = s.
Over the course of the quasi-static simulation, the beam is further retracted into the guide until the
retracted distance s = s.,g. Even in the static case, this is a challenging problem for numerical
(contact) algorithms as it includes large deformations and an inherently large relative sliding
motion between the guide and the beam.

The beam is discretized with 250 equidistant Simo—Reissner beam finite elements. Although
the beam has a high slenderness ratio, it is important to include shear flexibility, as the shear
deformations within the guide result in a rotation of the beam cross-section at the opening of
the guide. Neglection of this shear deformation, e.g., by employing Kirchhoff-Love or Euler—
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Table 7.1.: Sliding spaghetti problem — geometric and material properties, cf. [134].

total beam length [ 6 m
beam width b 1m
beam height h 0.2m
Young’s modulus EB 10" N/m?
Poisson’s ratio VB 0
body load k 1000N/m?
initially retracted length s 0.5m
final retracted length Send 5.5m

Bernoulli beam finite elements, leads to a vanishing rotation at the guide and inaccurate results,
cf. [134]. The prescribed displacement s is applied to the left end of the beam via a Dirichlet
boundary condition. All displacements and rotations are constrained at the left end of the beam.
The top and bottom parts of the guide are modeled with one eight-noded hexahedral element
(hex8) each. The height of the resulting guide is equal to the height of the beam. To represent the
rigid guide, both solid elements are fully constrained. The contact between the beam and guide
is modeled with the penalty-based BTSSC scheme (linear penalty law with ¢ = 101 N /m?
and ngp = 6). A sufficiently large penalty parameter is chosen, to accurately represent the rigid
guide for comparison purposes. The solution of this problem is performed in two stages: first, the
body load is applied to the undeformed configuration with 5 incremental load steps. In the second
stage, the left end of the beam is retracted with 50 load steps until s = Sepg-

The results obtained with the BTSSC method are compared to results obtained with the sliding-
beam-formulation (SBF), cf. [66, |67, 134, 146]. Within the SBF, a coordinate transformation
is introduced, which maps the region of the beam inside the guide and the region of the beam
outside the guide to constant intervals. The contact conditions, i.e., constrained displacement
in e, direction inside the guide and unconstrained outside the guide, can then be directly applied
to the transformed intervals, as the boundary conditions are constant for each interval of the
transformed system. In [134]], the SBF model of the sliding spaghetti problem was successfully
compared to 1D beam and 3D solid finite element models using the commercial finite element
solver ABAQUS [39]. The finite element discretization of the SBF model is setup as described
in [[134] and a total of 240 beam finite elements are used to discretize both intervals, which
guarantees a spatially converged solution. The SBF is implemented and simulated with the open
source simulation software HOTINT [49]].

A detailed comparison between the results obtained with the BTSSC method and the SBF
is given in Figure where the tip trajectory of the right part tip of the beam is plotted over
the course of the retraction process. It becomes clear, that the displacement results obtained
with the two methods are very close to each other. This is a remarkable result, considering the
fundamentally different modeling approach of both methods. Furthermore, this illustrates that
the presented BTSSC method is able to accurately model the considered version of the sliding
spaghetti problem. Finally, to illustrate the deformation of the sliding spaghetti problem, various
configurations of the beam during the retraction process are shown in Figure
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7.2. Numerical examples

Figure 7.3.: Sliding spaghetti problem — trajectories of the right hand tip ot the beam over the
course of the retraction process for the BTSSC method and the SBF. The lower right
part of the curves represent the initial configuration, the upper left part represents the
retracted configuration.

4]—s = —0.5m
—s=—1m
||—s=—1.5m
$ s=—2m
— s =—2.0m
|—s=—3m
s = —3.5m
J|—s=—4m

Figure 7.4.: Sliding spaghetti problem — deformed configurations at various retraction stages.
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7. Beam-to-solid surface contact

Figure 7.5.: Four-point bending test — problem setup. All given dimensions are in m.

7.2.2. Four-point bending test

In this example, finite deformation contact of a four-point bending test is analyzed. The bending
specimen (Saint-Venant-Kirchhoff material model, £° = 1 N/m?, v¥ = 0.3) is placed between
two straight beams on the bottom and two straight beams on the top (E® = 5 N/m?, v® = 0). In
the reference configuration, the beams exactly touch the solid, i.e., the initial gap between the
beams surface and solid surface is zero. All beams are fully constrained at both ends. Additionally,
the ends of the two upper beams are moved downwards via a prescribed displacement by a distance
of 3 m in negative e,-direction. The geometric relations of the problem are illustrated in Figure
The four-point bending test is a commonly used test case in material sciences, since the (idealized)
specimen exhibits pure bending between the two upper beams. In most real life applications, the
indenters can be considered rigid relative to the specimen. However, the chosen ratio of intenter
(beam) Young’s modulus to specimen (solid) Young’s modulus in this example is only 5, i.e., the
flexibility of the beams has an effect on the overall solution to the problem, thus presenting a
more challenging problem for the employed contact algorithm.

The problem has two planes of symmetry, the e, —e; plane and the e,—e; plane. Therefore,
only a quarter of the problem is actually modeled and symmetry boundary conditions are applied
accordingly. The quarter of the specimen is discretized using 30 x 9 x 3 eight-noded hexahedral
elements (hex8). Each (half) beam is modeled using 4 Simo—Reissner beam finite elements. The
contact interaction between the beams and the solid is realized with the penalty-based BTSSC
scheme (quadratically regularized penalty law, ¢¢ = 10N/m?, gy = 0.001 m, ngp = 6). The
displacement of the upper beams is applied in 10 equidistant static load steps. Due to the non-zero
value of gy, the rigid body mode of the solid in e direction does not lead to numerical issues, as
there is already a contact contribution to the global tangent stiffness matrix in the initial time step,
eliminating all rigid body modes.

The final deformed configuration of the four-point bending problem is visualized in Figure
The expected behavior of the specimen can clearly be observed. Furthermore, due to the low
relative stiffness, the indenters also exhibit visible deformations under the resulting contact forces.
Two detailed visualizations of the quarter model of the problem are illustrated in Figure In
Figure[7.7(a)| the second Piola—Kirchhoff stress .Sy; is visualized in the solid. Even in this large
deformation configuration, the specimen exhibits an almost constant bending state between the
two upper indenters. Furthermore, a deformation of the rectangular cross-section of the specimen
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Figure 7.6.: Four-point bending test — deformed configuration. The contour plot visualizes the
displacement magnitude. Note that only a quarter of the problem is actually meshed,
due to the symmetry of the problem.

can be observed. This is due to the non-zero Poisson’s ratio in the solid. The upper part of the
specimen is compressed in e, -direction and thus extends in e,-direction. The opposite occurs on
the bottom side of the specimen, resulting in the deformation of the specimen cross-section. The
resulting second Piola—Kirchhoff stress S5 is about one quarter of the magnitude of the S stress,
cf. Figure[7.7(b)] Furthermore, the bending moment in the beams is visualized in Figure
and Figure[7.7(b)| for the moment in e, and e;-direction, respectively. In this example frictionless
contact is considered, i.e., the contact forces are normal on the solid surface, thus explaining
the larger bending moment in e -direction. Figure [7.§] visualizes the contact forces acting on
the beams surface. One can observe that, due to the bending of the indenters as well as the
aforementioned deformation of the solid cross-section, the contact zones do not span over the full
width of the specimen, but only form towards the edge of the specimen.

7.2.3. Dynamic simulation of a tennis shot

In this last and probably most demanding numerical example, the dynamic impact of a tennis
ball on a tennis racket is simulated. The geometry and material parameters of this example are
inspired by [5H7] to closely resemble the real life application. The main geometric dimensions of
the racket are visualized in Figure[7.9(a)] It consists of an elliptic frame with elliptic cross-section.
The frame is connected to the handle via two connectors which also have the same elliptic
cross-section. The whole racket frame is modeled using a Saint-Venant—Kirchhoff material model
(Young’s modulus £ = 5-10'° N/m?, Poisson’s ratio /3 = 0.3). The density p% = 553.1kg/m?
is chosen such that m$, = 0.3 kg, where m$, is the mass of the racket. The string bed of the
racket consists of 17 horizontal and 16 vertical strings (Young’s modulus £ = 2 - 101° N/m?2,
density p® = 1100 kg/m?). Each string has a circular cross-section with radius R = 6.5 - 10~* m.
The strings are strung in a way that the top and bottom strings switch between two adjacent
intersections, cf. Figure [7.9(b)] Finally, the tennis ball itself is modeled as a hollow sphere
with an outer radius r, = 0.03333 m and thickness {5 = 0.003663 m, and is described by a
Neo-Hookean material law (Young’s modulus £ = 5 - 10" N/m?, Poisson’s ratio v = 0.3,
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Figure 7.7.: Four-point bending test — quarter view of the deformed configuration. The contour
plots once visualize the second Piola-Kirchhoff stress S1; in the solid and the beam
bending moment m; in the beam@ and once the second Piola-Kirchhoff stress Sy
in the solid and the beam bending moment mg in the beam

B, N

Figure 7.8.: Four-point bending test — deformed configuration with the contact forces ic acting
on the beams. The contact forces are visualized for each Gauss point along the beam

centerlines.
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0.7

[] horizontal string on top

O vertical string on top
(b)

Figure 7.9.: Dynamic simulation of a tennis shot — problem setup. Geometric relations of the
racket[(a) and detailed illustration of the string webbing[(b)l All given dimensions
are in m.

density p% = 882kg/m?). The density of the ball is chosen such that m$, = 0.04 kg. The center
of the ball is initially located at the spatial position p = 0.03655 m e.

Each string is discretized using 40 torsion-free beam finite elements, which are straight in the
undeformed configuration. The racket is discretized using 20,738 eight-noded hexahedral (hex8)
solid finite elements and the ball is modeled with 2,198 eight-noded solid-shell elements [20,
147,1148]]. All in all, the total number of degrees of freedom for the system is 98,538. A number
of different beam-to-(-) interactions occur during the simulation. The interaction between the
strings themselves is modeled with the all-angle beam contact (ABC) beam-to-beam (BTB)
contact scheme, cf. [95,100]. In the present example, only point-to-point beam-to-beam contact
interactions occur. A quadratically regularized penalty law, similar to the one presented in
Section with egrg = 7.2-10° N/m and go gtg = 5- 107" m is employed. The connection of
the strings with the racket frame is modeled with positional beam-to-solid volume (BTSV-POS)
coupling and a linear interpolation of Lagrange multipliers, ¢¥ = 10'°N/m?. Furthermore,
the interaction of the strings with the ball is modeled with the penalty-based BTSSC scheme
(quadratically regularized penalty law, ¢ = 2 - 108 N/m?, gy = 5 - 10~ m, ngp = 6).

Over the course of the whole simulation, the bottom face of the racket handle is clamped in
all directions. The initial configuration of the racket is pre-stressed, as the strings have to be
under tension and interwoven with each other to produce a stiff string bed. This pre-stressed
configuration is achieved in three separate stages:

1. In this first stage, the axial tension of the strings is applied via non-zero Dirichlet conditions.

The undeformed straight strings are pre-stressed with an axial force of 400 N and 250 N for
the horizontal and vertical strings, respectively. This is realized by applying a prescribed
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Figure 7.10.: Dynamic simulation of a tennis shot — pre-stressed initial configuration of the racket.
Subfigure [(a)] shows the complete string bed, where the contour plot shows the
normal force NV in the strings and the e, component of the displacement u; in the
racket. Subfigure [(b)] shows a close up of the BTSV-POS coupling between the
strings and the racket frame

Dirichlet displacement, in axial direction, at both ends of each string. Neither beam-to-beam
contact or BTSV-POS coupling is activated during this stage. One quasi-static load step is
preformed in this stage.

2. In the second stage, BTSV-POS coupling is activated between the strings and the racket
frame, while the Dirichlet conditions from stage([T|on the strings are still active. Furthermore,
the topology of the string bed depicted in Figure is achieved by applying Dirichlet
conditions to the beam nodes closest to each intersection point between the strings. The
magnitude of this Dirichlet condition is chosen such that no two beams penetrate each other.
Again, one quasi-static load step is preformed in this stage.

3. In the final pre-stressing stage, beam-to-beam contact is activated and the Dirichlet condi-
tions from stages [I] and 2] are removed, thus resulting in the final pre-stressed racket frame.
To achieve a converging Newton—Raphson iteration, the Dirichlet conditions are replaced
by Neumann boundary conditions with matching nodal forces. These Neumann loads are
linearly reduced to zero within 20 quasi-static load steps.

The resulting pre-stressed initial configuration of the racket is shown in Figure [7.10] Even
though the prescribed tension in the horizontal strings is larger than in the vertical ones, in the
pre-stressed state it can be observed that the vertical strings are under higher tension. This is
due to the deformation of the frame itself, which reduces the tension in the horizontal strings
and increases the tension in the vertical strings, cf. Figure A close up of the BTSV-POS
coupling between the strings and the racket frame is illustrated in Figure [7.10(b)}

The previously described pre-stressed initial configuration serves as the initial configuration for
the dynamic simulation of the racket. The racket is at rest, i.e., zero initial velocity, while the ball
has a uniform initial velocity &, = —30m/s e;. A dynamic simulation of the transient system
evolution along a total simulation time of ¢ € [0 ms, 5 ms] is performed. Time discretization
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is based on the standard generalized-a scheme with a time step At = 0.005 ms and a spectral
radius p,, = 1. The standard generalized-a scheme for vector spaces, cf. [35], can be employed
since the torsion-free beam elements do not carry any rotational degrees of freedom. Time
deformed configurations at various simulation times are illustrated in Figure The impact
of the ball on the string bed leads to a large compression of the ball. At around ¢ = 1.5 ms the
velocity in es-direction of the ball is roughly zero, i.e., the movement in direction of the racket
is stopped and the ball will be reflected from this point on. This is also the time, where the
string bed exhibits the largest local deformations. Large parts of the balls kinetic energy are
converted into elastic deformations of the ball and the string bed. Until around ¢ = 3 ms, the
elastic deformations are again converted into kinetic energy of the ball. The time evolution of the
averaged ball velocity in e;-direction Ug = fQB ug dVp/ Vb, is plotted in Figure It can be
seen that the return velocity is more or less constant from around ¢ = 3 ms on, which coincides
with the time, where the ball and the string bed are not in contact any more. The ratio of impact
to return velocity is roughly 3/2, the "lost” kinetic energy is converted into kinetic and elastic
energy of the racket frame and string bed. For illustrative purposes, Figure visualizes a
photo-realistic rendering of the present example at ¢t = 1.5 ms, generated with the open source
visualization software Blender [22].

Obviously, this problem does not include some important effects of the real physical problem,
such as the nonlinear behavior of the ball due to compression of the enclosed gas, cf. [31], or
the friction between several strings as well as strings and the ball. Nevertheless, the results
demonstrate the robustness of the BTSSC method and also showcase the immense potential of
employing and combing beam-to-(-) interactions for real life applications.
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Figure 7.11.: Dynamic simulation of a tennis shot — deformed configurations of tennis ball and
racket at various time steps. For visualization purposes only half of the ball is shown.
The contour plots visualize the displacement magnitude in the racket and the strings,

and the e;-component of the velocity in the ball.

152



7.2. Numerical examples

20 | -
L
g 0 -
g
= 20 .
| | | | | |
0 1 2 3 4 5
time ¢ in ms

Figure 7.12.: Dynamic simulation of a tennis shot — average velocity of the tennis ball in e;-
direction over the course of the simulation.
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Figure 7.13.: Dynamic simulation of a tennis shot — photo-realistic rendering of the tennis ball
and racket at ¢ = 1.5ms.
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8. Summary and outlook

8.1. Summary of achievements

In this thesis, numerical solution methods for beam-to-solid (BTS) problems were investigated.
Within the developed BTS interaction framework, the beams were exclusively modeled as 1D
Cosserat continua based on the geometrically exact beam theory, thus resulting in a mixed-
dimensional interaction problem between the 1D beams and the 3D solids.

Firstly, new modeling techniques for the coupling of 1D Cosserat continua embedded in 3D
Boltzmann continua have been proposed (BTSV-POS). The position of the beam centerline was
coupled to the underlying solid matrix. Two different finite element-based coupling schemes have
been introduced: a Gauss point-to-segment (GPTS) and an embedded mortar-type approach. The
resulting constraint equations of both schemes are enforced via a penalty approach, and in the case
of the mortar-type approach, the penalty regularization was performed in a weighted node-wise
manner. For the mortar-type method, various discrete Lagrange multiplier bases were investigated.
Moreover, various numerical integration methods of the coupling terms were compared. Several
numerical experiments were conducted to assess the behavior of the various schemes regarding
the choice of the penalty parameter and the numerical integration of the coupling terms. For
relevant physical application scenarios of the BTSV-POS method, i.e., relatively slender and stiff
fibers compared to the surrounding matrix material, the validity of the fundamental modeling
assumption of 1D-3D coupling was confirmed, and its optimal spatial convergence behavior was
shown numerically. Overall, the embedded mortar-type discretization with linear interpolation of
the discrete Lagrange multiplier basis proves to be the better modeling choice due to its superior
robustness regarding the choice of the penalty parameter, the beam element to solid element
length ratio, and its optimal spatial convergence properties. Furthermore, the results underline
the importance of an accurate numerical integration of the coupling terms as provided only by
carefully chosen segmentation schemes. The subsequently developed coupling schemes are
largely based on these fundamental findings.

Secondly, a 1D-3D coupling scheme has been proposed to fully embed 1D Cosserat beams
into 3D Boltzmann continua. Full embedding of fibers inside volumes is characterized by six
constraint equations at each point along the fiber centerline, namely three positional constraints
and three rotational constraints, thus resulting in a full, mechanically consistent coupling between
the 1D beams and the 3D continuum (BTSV-FULL). Deriving the full 1D-3D coupling on the
beam centerline from a 2D-3D coupling on the beam surface via a Taylor series expansion of
the solid displacement field would require to fully couple the deformed solid directors with
the undeformable beam cross-section triad. It is demonstrated that such an approach, which
suppresses all in-plane deformation modes of the solid at the coupling point, might result in severe
locking effects in the practically relevant regime of relatively coarse solid mesh sizes. Therefore,
a suitable triad field must be defined in the 3D Boltzmann continuum that only represents solid
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material directions in an average sense without constraining them. It has been shown that the
rotational part of the polar decomposition of the (in-plane projection of the) solid deformation
gradient is a natural choice, since it represents the average orientation of material directions of
the 3D continuum in a Ly-optimal manner. Additionally, several other solid triad definitions have
been presented, which allow for a more efficient numerical evaluation. The existing BTSV-POS
coupling methods for the positional degrees of freedom have been extended for the coupling of
rotational degrees of freedom, all within the theory of large rotations. The coupling equations
were again discretized using a mortar-type approach and enforced using a weighted penalty
regularization. Based on elementary numerical test cases, it was demonstrated that a consistent
spatial convergence behavior can be achieved and potential locking effects can be avoided, if the
proposed BTSV-FULL scheme is combined with a suitable solid triad definition. Furthermore,
numerical experiments were conducted to show the applicability of the proposed method to
real-life engineering applications.

Thirdly, a 1D-2D mixed-dimensional coupling method to consistently couple 1D Cosserat
beams to 2D surfaces of 3D Boltzmann continua has been presented (BTSS-FULL). Therein,
similar to the BTSV-FULL scheme, all local degrees of freedom along the beam centerline are
coupled to the solid surface. Three different variants of the positional coupling constraints were
investigated. One of them, the consistent variant requires the expensive evaluation of the current
surface normal field. The other two variants are commonly used in surface-to-surface mesh
tying problems. Numerical examples have shown that only the consistent positional coupling
constraints, i.e., with inclusion of the surface normal vector, lead to physically correct results and
fulfill basic mechanical consistency properties, such as conservation of angular momentum. The
existing coupling methods for the rotational degrees of freedom in the BTSV-FULL scheme were
used in the BTSS-FULL scheme. This required the construction of a suitable surface triad field
on the 2D surface of the 3D Boltzmann continuum. The Lagrange multiplier method was again
used to enforce the positional and rotational coupling constraints, which were discretized with
a with a mortar-type approach. Numerical examples illustrate the importance of positional and
rotational coupling via a practically motivated example. A multi-physics simulation, inspired by
models of stented arteries, has demonstrated the BTSS-FULL scheme’s suitability for complex
beam geometries.

Finally, a 1D-2D mixed-dimensional frictionless contact method between 1D Cosserat beams to
2D surfaces of 3D Boltzmann continua has been presented (BTSSC). In contrast to the previously
described mortar-type coupling schemes, that have been developed within this thesis, the presented
BTSSC scheme is based on a GPTS approach. Although future research on BTSSC is required,
numerical experiments have been presented to demonstrate the applicability of the proposed
method to real-life engineering applications.

In summary, it can be stated that a mixed-dimensional interaction framework between 1D
Cosserat beams and 3D Boltzmann continua has been developed and successfully applied to
multiple examples relevant for real-life applications.

8.2. Outlook and future work

Although substantial progress towards a truly general purpose mixed-dimensional simulation
framework for BTS interaction problems has been made, there is still room for improvements.
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Future work on the presented BTS interaction framework can be split up into four main categories:

Applications Throughout this thesis, the presented numerical examples illustrate possible
application scenarios for the presented BTS interaction methods, as well as the maturity of
the developed code framework to deal with complex problems. The obvious next step is to
apply the developed algorithms to actual real life engineering and biomedical problems.
For example, ongoing work focuses on the modeling of fiber-reinforced concrete, based
on actual computed tomography (CT) scans of existing specimens. Furthermore, patient
specific simulations and optimizations for abdominal aortic aneurysm repair are also part of
ongoing research. Future work will also focus on applying the developed BTSV coupling
schemes to optimize the placement of steel reinforcement in concrete beams.

Interaction physics The primary focus of this thesis is the development and analysis of
coupling (mesh tying) algorithms for BTS problems. The previous chapter gave a short
outlook on frictionless unilateral BTSSC. Although the presented approach already shows
a remarkable maturity, further investigations into the contact constraint discretization
techniques are required. Moreover, the extension to frictional BTSSC is an important aspect
of future research to enable the capture of complex real life interface effects in BTSSC
problems. Another topic of interest is the use of the developed BTSV coupling schemes for
the analysis of progressive damage and failure phenomena in fiber-reinforced materials,
such as fiber pull-out.

Model assumptions The presented BTSV coupling schemes are based on true 1D-3D mixed-
dimensional interactions, i.e., the interaction terms are evaluated exclusively along the 1D
beam centerline. As discussed in detail, this allows for accurate results of the overall system
response. Instead of evaluating the coupling along the 1D beam centerline, the coupling can
also be evaluated on the surface of the embedded beam, i.e., a 2D-3D coupling approach.
The beam is still modeled as a 1D Cosserat continuum. This thesis outlines two approaches
(penalty and Lagrange multiplier) for 2D-3D beam-to-volume coupling problems. The
penalty based 2D-3D coupling scheme is employed to obtain reference solutions for the
spatial convergence examples. A topic of interest for future research is the combination of
such true 1D-3D and 2D-3D coupling within a unified BTS coupling approach. This would
allow the use of 2D-3D coupling along with a refined solid mesh only in domains where
high resolution of solid stress fields is of interest, and using the proposed, highly efficient
1D-3D coupling approach in the remaining problem domain. Moreover, a combination of
the developed schemes with concepts allowing for a consistent coupling of the beam ends
with the solid domain are also considered as a promising future research direction.

Algorithmic and numerical properties Based on the work presented in this thesis, further
extensions of the interaction discretization should be considered. This includes direct
solution of the mixed-formulation problem, i.e., abolishing the penalty regularization and
directly solving the coupled BTS problem including Lagrange multipliers. This will also
very likely require the construction of an inf-sup stable Lagrange multiplier interpolation,
similar to 3D-3D embedded mesh methods. Another important aspect that was beyond the
scope of the present thesis is the development of iterative linear solvers and preconditioning
schemes for BTS interaction problems. This includes the penalty regularized system
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considered in this thesis, as well as the system with saddle point structure directly arising
from discretizing the variational mixed-formulation.

The listed aspects above should not be viewed as shortcomings of the presented BTS interac-
tion schemes, but rather as promising extensions of the application range, or improvements of
numerical properties and computational performance. To recapitulate, this thesis presents a BTS
interaction framework combining the long history of beam theory with classical 3D continuum
mechanics. The presented theoretical considerations and numerical examples throughout this
thesis lead to the conclusion that this framework can become an important tool in various fields
of science, engineering and biomechanics.
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A. Full 2D-3D coupling for
beam-to-volume coupling problems

In the example sections for BTSV-POS and BTSV-FULL the truly 1D-3D coupling methods
are compared to reference solutions obtained with a 2D-3D coupling approach. For the sake of
completeness, the kinematic coupling constraints for the employed 2D-3D coupling approach are
stated in this appendix. The 2D-3D coupling constraints read

r+res—z°=0 on Ieopap. (A.1)

Therein, I'. op.3p is the 2D-3D coupling surface, i.e., the part of the beam surface that lies within
the solid volume. Furthermore, r-g € IR3 is the cross-section position vector, i.e., the vector that
points from the cross-section centroid to the cross-section perimeter. The cross-section position
vector can be expressed by the current beam triad basis vectors gf and g? , or via the cross-section

rotation tensor A® and the Cartesian basis vectors e, and e, i.e.,
B B B
res = ag, + g, = A" (aey + Pey) . (A.2)

Therein, « € R and 8 € R are the beam cross-section coordinates, i.e., they parametrize the
beam cross-section.

A.1. Constraint enforcement strategies

In the following, two methods to enforce the 2D-3D coupling conditions (A.1]) are presented,
once with a Lagrange multiplier method and once with a quadratic penalty potential.

A.1.1. Penalty potential

The quadratic penalty potential reads

€. T
I, opap = —22 / (r +reg — ° ) <z +reg — @S) dA, . (A.3)
2 I'c2p3p

Here, e;p3p € R is a scalar penalty parameter. Variation of the penalty potential gives the
following contributions to the weak form:

T
01l op3p = / 5r" enap (E +Tes — §S> + 5QB €2D-3D <§ (Tcs) (Z - £5)>
I'copap

J/ N J/
~~ ~~

I 2D-3D mM)p3p

(A4)
-H@ST €2D-3D (—E — T+ £S> dA .

(. J/
-~

_iZDﬁD
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A. Full 2D-3D coupling for beam-to-volume coupling problems

Therein, the coupling force f, .. acting on the beam centerline and solid, can be identified.
Furthermore, m,, 5 is the coupling moment acting on the beam cross-section. This demonstrates
the projection of purely positional coupling constraints (on the surface of the beam) onto the beam
centerline, and illustrates the arising rotational coupling terms in a 2D-3D coupling approach.

A.1.2. Lagrange multiplier potential

The 2D-3D coupling conditions (A.1)) can also be enforced with a Lagrange multiplier method. A
Lagrange multiplier vector field Ayp 5, € R? is therefore defined on the coupling surface I'..sp 3p.
The total Lagrange multiplier potential for the 2D-3D coupling reads

I op3p = / A;FD@D (f + Tes — @S) dAp . (A.5)
¢ 23D

The variation of the total Lagrange multiplier potential gives the following contributions to the
weak form:

Ol opap = / (5AZTD-3D (Z +Tes — Qs) + 67" Aypap
Tcop3p (A.6)
+5Q8T§ (rcs) Aopap — 6§$TA2D-3D) dAy .

Again, this showcases the projection onto the beam centerline, in this case of the Lagrange
multiplier field A, 5p, i.€., the coupling surface tractions on the beam surface.

A.2. Constraint discretization strategy for full 2D-3D
coupling
In this section the discretization of the full 2D-3D coupling constraints is presented. Only the

version based on the variation of the penalty potential (A.4)) is presented, as this was the actual
method used to obtain the reference results.

A.2.1. Gauss point-to-segment approach for full 2D-3D coupling

Evaluating the variation of the total coupling potential (A.4)) on the basis of the discretized solid
position field and beam cross-section rotation field yields the discrete variation of the 2D-3D
coupling potential:

0l opap,y = €2D-3D/ (H5d8 + 8 (L596) Af (aey + Bes) — N‘Sds)T (A7)
T'apaap,n .

(Hd® + Af (e, + Bey) — Nd°) dA, .

Therein, I';p3p 5, is the discrete beam surface. It is important to point out that the beam surface
is not directly discretized. It is an analytical surface defined by the discretized beam centerline,
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the beam cross-section orientations and the beam cross-section geometry. Equation (A.7) can be
stated in matrix form as

[ fF2D73D h fiZD‘3D dAO
Meapans = |6dS" 6d%" 6657 | | Jry., Foranap d4o
: . B
_fFZD-BD,}L fc,G,ZD-3D ddy (A.8)

[ .S

- - . %,2D—3D

_ S B B

= |éd od 00 rc,r,ZD—?)D )

| ¥e,0,2D-3D
with the generalized point-wise 2D-3D coupling forces
5030 = 2030 (NTNd® — NTHA® — NTA7 (ae, + Bej)) .
f2 pap = €p3p (—H'Nd® + H'Hd® + H'Af (ae, + fey)), (A.9)
f§0,2D-3D = €2p-3D (_LT§ (AE (ae, + 693)) Nd® +L'S (Aig (ae, + ﬁﬁ?,)) HdB) :
Furthermore, rﬁZD_m, rg,,’ZD_m and "68,9,21).313 are the local residual vectors. Again, a linearization

of the residual contributions with respect to the discrete beam-to-solid pair degrees of freedom is
required for the Newton—Raphson algorithm. The linearization read:

re re
Bc,2D-3D B(’:,ZD-3D
Lin Yo r2D-3D = |¥cr2D-3D
8 B
¢,0,2D-3D c,0,2D-3D
aff,znsz af29,21}313 aff,2D—3D (’(bB)i
odS odB opr —\Lh Ad®
achTZD-SD 8ch'r2D-3D 6ch'r 2D-3D B\] B
+/ 5dS 5dB R T(yp))1| dAg AdB
Ipap,n - -
2p-3b aff,e,w-m afﬁ@,ZDJD 8ff,0,2D-3D (¢B)| Ae
od® od® opr =\ Lh
(A.10)

The local contributions (A.8) and (A.10) to the global residual and the stiffness matrix, respec-
tively, can be assembled in a straightforward manner and will not be stated here for the sake of
brevity. As in the BTSV-FULL mortar-type coupling, all derivatives explicitly stated in (A.10)
are evaluated using forward automatic differentiation (FAD).

In practice, all integrals presented in this section are evaluated using a Gauss-point-to-segment
(GPTS) approach as illustrated in Figure At each Gauss—Legendre point &B along the beam
centerline, multiple equally spaced coupling points (illustrated with the symbol <’ in Figure
are defined along the circumference of the corresponding cross-section. Mechanically speaking,
each coupling point is tied to the underlying solid via a linear penalty constraint.

'In the author’s article [138] there is a typo in this formulae. The version stated here is correct.
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A. Full 2D-3D coupling for beam-to-volume coupling problems

Figure A.1.: Illustration of the discrete coupling points for 2D-3D coupling along a single cross-
section. Figure is taken from the author’s article [138], permissions granted under
the Creative Commons (CC BY) license.
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B. L2-optimality for the polar
decomposition of the deformation
gradient

In the following, a proof shall be given for (5.29). First, an angle 6§, € [—m, 7| is defined that
represents the orientation of arbitrary in-plane directors in the reference configuration defined to
coincide for solid and beam according to g5 (6y) = g (fo) = cos (90)92’3 o Fsin (6o)gs . The push-

forward to the spatial configuration is given by g, = F,, g; 5 (0o) for the solid and g® RB 5 5 (0o)
for the beam. As stated in Section Litis a desrrable property of the (to be defined) solid trlad
and therefore also of the beam triad that the base vectors Q 5 and 233 lie in the n-plane, i.e., the
plane spanned by the solid base vectors g‘g and Q‘gs . Thus, in analogy to (5.26) as stated for the
solid, it is assumed that the total rotation of the beam cross-section RP is split in a multiplicative
manner into two successive rotations

R° =R} R, (B.1)

where R,, describes the 3D rotation from AOB to A, and EfD the quasi-2D rotation from A to AB.
Thus, after push-forward to the intermediate configuration defined by R,, the corresponding
directors of solid and beam still coincide:

QS(HO) = QB(HO) = EQQB,O(HO) cos (6) g, + sin (6o) g,,- (B.2)

In the following, the material and spatial principle axes associated with the polar decompo-
sition of the in-plane deformation gradient F',, are denoted as G p, and G p; as well
as g, = R5,Gp, and 9ps = = R5,G ps. Since the principle axes G p; and the orthonormal base
vectors g are related by quasr -2D rotations with respect to the normal vector n, the directors
in (B.2)) can alternatively be stated as

Q‘S(QO) = QB(QO) = cos (90) Gp, + sin (6’~0) Gps. (B.3)

where éo = 0y — O4fr 1s defined via the constant offset value 6y describing the rotation from g,

to G p;. The final beam cross-section triad follows from the second (quasi-2D) rotation RS, =
R(65 n) from g, to gB described by the scalar rotation angle 65,,. In a similar fashion the (quasi-
2D) rotation R2D = R(QZDn) from Gp; to g, is described by the scalar rotation angle 62P.
Due to the 2D-nature of these rotations, the beam director gB in the spatial configuration can be

derived from (B.3]) according to:

gB(QO) = cos (9~0+6’§3D—0§9D)QP2 + sin (Ap+65,—65;) 9ps (B.4)
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B. L2-optimality for the polar decomposition of the deformation gradient

Let the principle stretch ratios associated with the in-plane deformation gradient F',, be denoted
as A2 and A3. Then, the solid director QS =F, g‘g (Ap) in the spatial configuration can be derived
according to:

QS(QO) = QZDE‘st (cos (50) Gp, +sin (9~0) QP3) = )y COS (9~0) 9p, + A3 sin (50) (B.5)

9ps-
Here, the relation g , = R5,G p,; and the diagonal structure Vop = Mg, ® G, T A39,, 09,
of the spatial stretch tensor has been exp101ted From (B.4) and (B.3), ‘the orientation angles of
the spatial beam and solid directors g®(6,) and g°(6y) relatlve to the spatial principle axis g ,,
can be identified according to:

0% (60) = 0o+035 — 03, (B.6)
6°(0y) = arctan M : (B.7)
Ao cos (6p)

Now, the difference between the solid director orientations and the beam director orientations,
measured in the Lo-norm, shall be minimized, i.e.,

/ (65(6y) — 6°(69))*dfy — min. (B.8)
As necessary condition, the first derivative of the integral with respect to 65, has to vanish, i.e.,
/ (05(0) — 6°(6))dby = 0. (B.9)

By exploiting the property 65 (—60y) = —05(6,) of (B.7), it can easily be shown that results
in the requirement:

O =05 < RS =RS, (B.10)

This means that the beam directors gB have to coincide with the principle axes g ,. and, thus, the
total beam triad has to satisfy A® = RfDR AB, which is identical to the solid triad definition

STR-POL according to (5.28) with the initial condition A5 = AS. By checking the second
derivative, it can easily be confirmed that this solid triad choice indeed results in a minimum of
the Lo-norm in (B.S8)).
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C. Variation of the gap function in
beam-to-solid surface contact

In this appendix, the variation of the gap function for BTSSC shall be presented. The full
definition of the gap function reads

9(&%) = n(&, n)" (r(€F) —25(&2,10)) — R, (C.1)
with the variation
59(&P) = on" (r (£°) —2° (€F)) + n'6 (v (€F)) —n'0 (2° (,70)).  (C2)

The first term in can be reformulated as dn’n. As the name suggests, the normal vector
is normalized, i.e., n'n = 1. Variation of this condition results in n'n = 0, and therefore,
the first term in (C.2) vanishes. The solid parameter coordinates £ and 1S are dependent on the
beam parameter coordinate, thus resulting in a contribution of 6¢ and dn? to the total variation
of the solid position §(z®). Inserting this total variation of the solid position into the last term
in yields (only for the last term)

n' (2 (¢,07)) = n (02 (¢,07) + 2% (65, 17) 067 + a5, (€2, n8) onf) . (C3)
Since _Tgi = 0 and n"2 = 0, this can be simplified to
n's (2% (62,n7)) = n'oz® (62,17). (C.4)
Inserting all considerations above into (C.2)) gives the final variation of the gap function

59(€%) = n" (o7 (¢5) — 0z (&5,77)) . (C.5)
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