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Abstract: Frames made of polymer composites are increasingly used in the aerospace, automotive,
and agricultural industries. A frequently used technology in the production line of composite frames
is winding rovings onto a non-load-bearing frame to form the structure using an industrial robot
and a winding head, which is solidified through a subsequent heat-treatment pressure process.
In this technology, the most difficult procedure is the winding of the curved parts of a composite
frame. The primary concern is to ensure the proper winding angles, minimize the gaps and overlaps,
and ensure the homogeneity of the wound layers. In practice, the curved frame parts very often
geometrically form sections of a torus. In this work, the difficulty of achieving a uniform winding of
toroidal parts is described and quantified. It is shown that attaining the required winding quality
depends significantly on the geometrical parameters of the torus in question. A mathematical model
with a detailed procedure describing how to determine the number of rovings of a given width on
toroidal parts is presented. The results of this work are illustrated with practical examples of today’s
industrial problems.

Keywords: curved composite frame; roving winding; optimized winding procedure; winding angle;
torus; straight helix; toroidal helix

1. Introduction

The progress in the development of high-performance materials and structures has
been a challenge that has required the development of novel materials with superior and
selective mechanical properties and physical features to overcome the standard demand for
quality and reliability at different scales [1–3]. The need to increase conventional material
efficiency continues to focus materials development on the exploration of materials as
composites [4,5]. In this regard, new polymer composites are developed to have special
microstructures with unique features to replace conventional materials (e.g., steel, glass,
wood) that are frequently used in the design of advanced structures. They are characterized
above all by mechanical properties such as tensile, compressive, and torsional strength,
lightness, long lifespan, and weather resistance. These exceptional mechanical properties
make possible composite structures that can endure extreme loads and boundary condi-
tions [4,6,7]. The important role of such composites in various applications that require
the development of structures with complex geometries, such as profiles with open or
closed cross-section forms, curved frames with rectangle to circular geometries, and an-
tisymmetric planer shapes [8,9], forced designers to innovate many fabrication methods,
such as the vacuum-infusion process, pultrusion process, and robot winding, enabling
the possibility of such fabrications [10]. Examples for application of such composite struc-
tures are reinforcements for the fuselages, wings, and doors of aircraft, or the attachment
part of windows to helicopter cockpits [11], or chassis reinforcements, car cabins, and
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door reinforcements in the automotive industry [12]. Composite frames (narrow curves,
hollow structure) are utilized in many applications, such as orthopedic devices [13], the
manufacture of sports equipment and bicycles [14], ship construction and fishery (hull
reinforcements and masts) [5], internal parts of aircraft bodies [15], or to play the role of
structural reinforcement [16]. As one of the important applications, such frame structures
have been used in oil and petroleum industries as complex pipe or tank structures branch-
ing off different cross-sectional configurations of circular to elliptic shapes, utilized for
transporting or storing oil and other petroleum liquid materials [17,18]. This is also due to
the high potential of composite materials to bear severe loading under harsh environmental
conditions. The composite frame structures with long wound fibers are normally fabricated
using the filament-winding method by robot or machine to wind continuous strands of
tow [19,20]. This winding process is highly adapted to arrange the fiber orientation in such
a way that an ideal custom creation with lightweight structures is engineered to meet the
desired strength characteristics as dictated by the application [21,22].

In robot filament winding, the winding of rovings on a non-load-bearing frame is
performed by a winding head and an industrial robot (see Figure 1a). The frame is generally
3D; it can also have a geometrically complicated shape (see Figure 1b). The frame is attached
to the end of the robot’s working arm (robot end effector; see Figure 1a). The winding head
contains usually three rotating rings (see Figure 2a). Several coils with rovings are placed
evenly around the circumference of each ring (see Figure 2c).
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Figure 2. (a) Simultaneous winding of three layers of glass rovings on the open frame. (b) Fixing the 
closed frame to the robot end effector. (c) Rotating ring of winding head with coils with wound 
rovings. 

Figure 1. (a) The frame attached to the robot end effector passes through the winding head with
a single rotating ring. One layer of winding is formed. (b) An example of a 3D frame with a
complicated shape.

Polymers 2023, 15, x FOR PEER REVIEW 2 of 22 
 

 

attachment part of windows to helicopter cockpits [11], or chassis reinforcements, car cab-
ins, and door reinforcements in the automotive industry [12]. Composite frames (narrow 
curves, hollow structure) are utilized in many applications, such as orthopedic devices 
[13], the manufacture of sports equipment and bicycles [14], ship construction and fishery 
(hull reinforcements and masts) [5], internal parts of aircraft bodies [15], or to play the role 
of structural reinforcement [16]. As one of the important applications, such frame struc-
tures have been used in oil and petroleum industries as complex pipe or tank structures 
branching off different cross-sectional configurations of circular to elliptic shapes, utilized 
for transporting or storing oil and other petroleum liquid materials [17,18]. This is also 
due to the high potential of composite materials to bear severe loading under harsh envi-
ronmental conditions. The composite frame structures with long wound fibers are nor-
mally fabricated using the filament-winding method by robot or machine to wind contin-
uous strands of tow [19,20]. This winding process is highly adapted to arrange the fiber 
orientation in such a way that an ideal custom creation with lightweight structures is en-
gineered to meet the desired strength characteristics as dictated by the application [21,22]. 

In robot filament winding, the winding of rovings on a non-load-bearing frame is 
performed by a winding head and an industrial robot (see Figure 1a). The frame is gener-
ally 3D; it can also have a geometrically complicated shape (see Figure 1b). The frame is 
attached to the end of the robot’s working arm (robot end effector; see Figure 1a). The 
winding head contains usually three rotating rings (see Figure 2a). Several coils with 
rovings are placed evenly around the circumference of each ring (see Figure 2c).  

 
(a) (b) 

Figure 1. (a) The frame attached to the robot end effector passes through the winding head with a 
single rotating ring. One layer of winding is formed. (b) An example of a 3D frame with a compli-
cated shape. 

 
(a) (b) (c) 

Figure 2. (a) Simultaneous winding of three layers of glass rovings on the open frame. (b) Fixing the 
closed frame to the robot end effector. (c) Rotating ring of winding head with coils with wound 
rovings. 

Figure 2. (a) Simultaneous winding of three layers of glass rovings on the open frame. (b) Fixing
the closed frame to the robot end effector. (c) Rotating ring of winding head with coils with wound
rovings.
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Based on the determination of a suitable robot trajectory, the frame passes through the
winding head at a constant speed. Each of the three rings performs the winding of a layer
of rovings; based on the determination of the necessary angular speed of each ring (control
provided by the robot’s external axis), each layer is wound at the specified angle. Three
layers of windings at different angles are thus created in one pass of the frame through the
winding head. A detailed description of the calculation of the optimized robot trajectory is
given in [23].

Note 1.
Roving is a fiber system that enables single filaments to be arranged in one parallel

collection without twists. Fiber rovings (from carbon, glass, basalt, or aramid fibers) are
used to produce 3D composite reinforcement.

Both open and closed frames can be wound using this winding procedure (see
Figure 2a,b).

The quality of the composite frame significantly depends on maintaining the required
winding angles, and ensuring the homogeneity of the windings (i.e., roving windings
without overlaps and gaps). This article focuses on the quality of winding of the composite
frame from a geometric perspective. At the same time, the quality of the composite also
depends on the material properties of the rovings (e.g., rovings from carbon, glass, aramid,
and rovings from recycled materials). However, studying the properties and quality of the
fibers used in rovings is not included in the article.

Ideal roving winding can be formed on a frame with a circular cross-section if it forms
a straight segment. In this case, a smooth, high-quality winding of the roving onto the frame
can be realized. However, winding the curved parts of the frame is more difficult when
high-quality winding is required. Simultaneous testing and ensuring the collision-free
passage of the frame through the winding head is essential for 3D frames [23,24].

A constant speed of the frame through the winding head is assumed during the
winding process. The winding angle is regulated by changing the angular speed of the
winding rotated ring of the head. This issue is discussed in detail in [25]. It is also possible
to calculate the distance of the roving winding on the frame from the rotating ring (this
distance depends on the specified winding angle, the radius of the ring, and the radius of
the wound frame; for detail see [25]). This enables smooth and continuous change from a
given winding angle to another. The optimization of the number and width of the rovings
used for specific winding is discussed in [26]. Based on this optimization, the formation of
gaps and overlaps is minimized during the winding process.

As already mentioned, winding the curved parts of the frames is the most difficult
process of winding technology. The curved sections of the frame often form parts of a
torus (see next figures). Based on the literature review and to the best of the authors’
knowledge, such a study has not been undertaken before. Therefore, this study focuses on
the procedures for the optimal winding of the curved sections of frames shaped like parts
of a torus. It is highlighted that achieving acceptable winding quality depends on the torus
geometry. A mathematical model of the winding procedure and a detailed analysis of the
possibility of achieving an acceptable and optimized winding of the frame with toroidal
parts is described in the next sections. In addition, practical examples of the application of
the various torus geometries are provided.

2. Materials and Methods

Winding the roving onto a straight frame of circular cross-section using a winding
head creates a helix on the surface of the frame (see Figure 3). A standard helix wound on a
straight frame is called a straight helix.
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Figure 3. The first rotating ring of the winding head winds one roving at an angle of 45◦ and the
following second rotating ring winds the roving at an angle of −45◦.

If the wound roving forms a right-handed straight helix on the surface of the frame,
it is said to have a positive winding angle (see Figure 4a). If a left-hand straight helix is
formed, this is interpreted as a negative winding angle (see Figure 4b). One turn of the
straight helix is shown in both cases Figure 4a,b. The following sections focus only on the
winding in a positive direction and the creation of a right-handed straight helix. Winding
at a negative angle is completely analogous.
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One turn of right-handed straight helix hR (initial point A and endpoint A’) is shown
in Figure 4a. This straight helix is defined by its axis o (longitudinal axis of the frame),
radius r (radius of the frame), and pitch ϑ (height of one helix turn measured parallel to
axis o of the helix), which is the Euclidean distance between points A and A’ in Figure 4a;
for detail see [27]. A characteristic triangle (see Figure 4c) defines the straight helix angle α,
where

tgα =
ϑ

2πr
=

ϑ0

r
. (1)

Parameter ϑ is a pitch of straight helix per 2π, and parameter ϑ0 is a pitch per one
radian. Angle α is defined as an angle between tangent t to hR at point T of the straight helix
and its orthogonal projection t1 into the ground plane (see Figure 4a). In the following, we
will call the angle α defined by Relation (1); the winding angle. It is true that α ∈ (0, π/2〉.
In case of α = π/2, the roving is laid parallel to the axis o and longitudinal to the frame
surface.

Specialists in the field of composite materials often call the β angle; the winding angle,
as defined by the relationship

β =
π

2
− α. (2)

In this article, the winding angle will mean the angle α defined by Relation (1).

2.1. Torus-Shaped Part of the Frame

As already mentioned in the introduction of the article, winding the curved sections of
frames belongs to the most difficult part of the winding technology when using a winding
head and an industrial robot. These frame sections often form parts of a torus (see Figure 5).
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Figure 5. (a) Model of the torus. (b) Non-bearing polyurethane frame for winding rovings with a
middle section forming part of the torus.

Instead of describing the winding of the curved part of the frame in the shape of a
torus, for simplicity, we provide a description of the procedure for the case of winding
rovings on the whole torus.

From a geometric point of view, a torus is a 3D body created by rotating a circle of
radius r around a line lying in the plane of this circle and not intersecting this circle (see
Figure 6a). The center of the circle of radius r is placed on the y-axis and its distance from
origin S of the coordinate system is R, where 0 < r < R. Rotation of this circle around axis
z creates a torus (see Figure 6a). The value of R is called the major radius and r the minor
radius of the torus.
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Similar to winding a roving on a straight frame at the α angle, it is necessary that the
tangent t at point P of the intersection of frame axis o and plane ρ of winding of the roving
on the frame is orthogonal to plane ρ (see Figure 7).
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However, the roving is not wound at the specified constant α angle. The winding
angle of the roving changes continuously during one turn (it is described in more detail in
Sections 2.3 and 2.4; see also [28]).

2.2. Level of Difficulty of Roving Winding

In this paragraph, the focus is on determining the difficulty of winding the roving
onto a torus.

The aspect ratio a of the torus is defined as

a = r/R. (3)

The aspect ratio a significantly affects the difficulty of winding the torus. The smaller
the value of a, the easier the torus can be wound. In the case of a→ 0 , the torus transforms
into a straight cylinder.

A vertical cut through the circle q (see Figure 5b) divides the surface stotal of the whole
torus into outer part s1 and inner part s2 (see Figures 5a and 7). The winding difficulty is
caused by the different surface sizes of part s1 and part s2 of the torus. Integral calculus is
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used to determine s1 and s2 (see Figure 8a). Radius R + r of circle p1 (see Figures 6a and 7)
is called the outer radius of the torus and radius R−r of circle p2 the inner radius of the torus.
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Figure 8. (a) Torus centered at the origin S, xy-plane cut, rotation of circle k ≡ (M, r) around the
x-axis. (b) Roving of width d with the central axis l.

Surface stotal of the whole torus is composed of partial surfaces s1 and s2, i.e.,
stotal = s1 + s2, and (see [29], p. 26)

stotal = 4π2rR . (4)

Surface stotal of the whole torus is thus equal to the contents of a rectangle with the
lengths of the sides 2πR and 2πr (see Figure 9).
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s2, and stotal = s1 + s2.

In addition, the focus is concentrated on the calculation of values s1 and s2. Surface s1 is
created by rotating the curve f (x) = R +

√
r2 − x2 around the x-axis, where x ∈< −r, r >
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(see [30], p. 107; Figure 8a). Therefore, the size of surface s1 can be calculated by the
following procedure:

s1 = 2π
r∫
−r

f (x)
√

1 + ( f ′(x))2dx = 2π
r∫
−r

(R+
√

r2 − x2)·
√

1 +
(

−x√
r2−x2

)2
dx =

= 2π
r∫
−r

(R+
√

r2 − x2)
√

1 + x2

r2−x2 dx = 2π
r∫
−r

(R+
√

r2 − x2)·
√

r2−x2+x2

r2−x2 dx =

= 2π
r∫
−r

(R+
√

r2 − x2)· r√
r2−x2 dx = 2πRr

r∫
−r

1√
r2−x2 dx + 2πr

r∫
−r

1dx =

= 2π
[
Rr arcsin x

r + rx
]r
−r = 2π

[
Rr arcsin1 + r2 −

(
Rrarcsin(−1)− r2)] =

= 2π
[
Rr π

2 + r2 −
(

Rr
(
−π

2
)
− r2)] = 2π2Rr + 4πr2.

In the previous derivation, the relation
∫ dx√

r2−x2 = arcsin x
r (see [30], p. 150) is used.

This relationship also follows from the derivative of composite function arcsin x
r :

(arcsin
x
r
)
′
=

1√
1− x2

r2

· 1
r
=

1
√

r2
√

1− x2

r2

=
1√

r2 − x2
.

The size of the surface s1 is therefore given by the relation

s1 = 2π2Rr + 4πr2. (5)

Since the following holds: s2 = stotal − s1, and from the Relations (4) and (5), this
implies

s2 = 2π2Rr− 4πr2. (6)

Thus, the value for the ratio s2/s1 and the use of Relations (5) and (6) is equal to

s2

s1
=

2π2Rr− 4πr2

2π2Rr + 4πr2 = 1− 8πr2

2π2Rr + 4πr2 = 1− 4r
πR + 2r

< 1. (7)

The more the ratio s2/s1 in Relation (7) approaches the value 1, the more acceptable
the conditions for the winding of rovings are. It follows from Relation (7) that the larger
the value of R with respect to r, the better the conditions for roving winding. The sizes of
the areas corresponding to stotal , s1, and s2 are shown graphically in Figure 9.

Figure 9 shows that the geometrical conditions for roving winding are better the
smaller the blue marked area of size 2r·2πr.

As stated in [26], circumference o(p1) of the outer circumferential circle p1 (see
Figures 6b and 7) is equal to o(p1) = 2π(R + r) and circumference o(p2) of inner cir-
cumferential circle p2 is equal to o(p2) = 2π(R− r), while it is valid R > r (see Figure 6).
This then implies

o(p2)

o(p1)
=

2π(R− r)
2π(R + r)

=
R− r
R + r

=
R + r
R + r

− 2r
R + r

= 1− 2r
R + r

< 1. (8)

It follows from Relation (8) that winding of the torus is easier the closer the o(p2)/o(p1)
ratio is to 1, i.e., the smaller the positive value of 2r/(R + r).

Relations (7) and (8) characterize the difficulty of winding rovings on the curved part
of the frame.

Thus, it follows from Relations (7) and (8) that the smaller the value of aspect ratio
a defined by Relation (3) (i.e., R � r), the more homogeneous the winding that can be
achieved.
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2.3. Mathematical Description of Roving Winding on the Torus

Our attention in this paragraph is focused on the procedure of winding rovings onto
the surface of a torus. In the next mathematical model of the roving winding on the surface
of the torus, only the central axis l (see Figure 8b) of the roving will be considered.

The torus can be parametrically defined in a 3D right-handed Euclidean space in the
form (see [31], p. 65)

x(θ, ϕ) = (R + r cosθ) cosϕ,
y(θ, ϕ) = (R + r cosθ) sinϕ,
z(θ, ϕ) = rsinθ.

(9)

Recall that major radius R denotes the radius of the central axis o of the torus (see
Figure 7) and the minor radius r the radius of the tube (see Figures 6a, 7 and 8a). Parameters
θ and ϕ are the angles that make the whole torus, θ, ϕ ∈< (0, 2π). Angle θ represents
rotation around the tube, whereas ϕ represents rotation around the torus’s central axis o
(see Figure 7).

The parametric expression of a right-handed helix wound on a torus can be expressed
in the following form [28]

x(t) = (R + rcos(ωt))cost,
y(t) = −(R + rcos(ωt))sint,
z(t) = r sin(ωt)

(10)

for t ∈ R, ω is a real positive constant; parameters R and r have the same meaning as in
Relation (9). This winding defined by Relation (10) describes the helix wrapped around the
torus and is called the right-handed toroidal helix (see Figure 10a).
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Figure 10. (a) Graph of right-handed toroidal helix for specified parameters R = 100,
r = 33, ω = 5 (number of winds per helix). (b) δ angle clamped by vectors
u(0) and w(0 ) at point T0 of toroidal helix δ. (Figures 10a and 12 are generated by
“Toroidal Helices—Wolfram Demonstrations Project” graphics application freely available from
https://www.google.com/search?q=toroidal-helix&oq=toroidal-helix&aqs=chrome..69i57j0i13i30.

10920j0j15&sourceid=chrome&ie=UTF-8#imgrc=HAw5MhPvHq4pfM, accessed on 11 June 2023).

When ω is a natural number, the toroidal helix creates a closed loop and ω defines
the number of times the toroidal helix coils around the torus (in more detail see [28]). The
circumference O(o) of the central axis o of the torus (see Figure 7) is equal to O(o) = 2πR.
Following this, toroidal pitch H (specifies the length of repetition along the center axis o)
and corresponding reduced toroidal pitch H0 (pitch per one radian) are defined by the
relations

H =
2πR

ω
, H0 =

H
2π

=
R
ω

. (11)

https://www.google.com/search?q=toroidal-helix&oq=toroidal-helix&aqs=chrome..69i57j0i13i30.10920j0j15&sourceid=chrome&ie=UTF-8#imgrc=HAw5MhPvHq4pfM
https://www.google.com/search?q=toroidal-helix&oq=toroidal-helix&aqs=chrome..69i57j0i13i30.10920j0j15&sourceid=chrome&ie=UTF-8#imgrc=HAw5MhPvHq4pfM
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The central axis o of the torus passes at the same speed through the winding head as
in the case of a straight frame and this and Relation (1) imply that for toroidal pitch,

H = ϑ = 2πr tgα0. (12)

Recall that α indicates the winding angle on the straight part of the frame.

2.4. Determination of Winding Angle on Torus

When the roving is wound onto a straight frame, a straight helix is formed with the
same winding angle at all points of the resulting helix. When winding the toroidal helix,
however, the winding angle continuously changes. This paragraph focuses on a more
detailed description of the winding angle in the case of the toroidal helix.

A torus with major radius R and minor radius r in Figures 6a and 7 has its center S
placed at the origin in the 3D right-handed Euclidean coordinate system. Circles p1, p2,
and central axis o lie in the plane defined by the x and y axes. The points of the wound
toroidal helix defined by Relation (10) and lying on the circles p1 or p2 can be determined
by the following procedure. The z-coordinate of these points is zero. Therefore, it follows
from Relation (10)

z(t) = r sin(ωt) = 0.

The relationship is valid when sin(ωt) = 0, which implies ωt = k.π, where k is an
arbitrary integer number. From here it follows

t =
k.π
ω

. (13)

Applying Relation (13) successively for k = 0, 1, 2, 3, it follows t0 = 0, t1 =
π/ω, t2 = 2π/ω, and t3 = 3π/ω. Points of toroidal helix T0 = [x(t0), y(t0), z(t0)],
T2 = [x(t2), y(t2), z(t2)] lie on the outer circle p1 of torus and points T1[x(t1), y(t1), z(t1)],
T3[x(t3), y(t3), z(t3)] lie on the inner circle p2 of the torus. The components of these points
can be expressed using the relationship (10):

T0 = [x(t0), y(t0), z(t0)] = [R + r, 0, 0] ,
T1[x(t1), y(t1), z(t1)] =

[
(R− r)cos π

ω ,−(R− r)sin π
ω , 0

]
,

T2 = [x(t2), y(t2), z(t2)] =
[
(R + r)cos 2π

ω ,−(R + r)sin 2π
ω , 0

]
,

T3[x(t3), y(t3), z(t3)] =
[
(R− r)cos 3π

ω ,−(R− r)sin 3π
ω , 0

]
.

(14)

Attention is focused on determining the winding angle on the outer circumference
of the torus (circle p1) and on the inner circumference of the torus (circle p2). The tangent
vector w(t) at any point of the toroidal helix can be obtained by the following procedure.
From Relation (10) it follows

∂x
∂t = r·(−sin(ωt))·ω·cost + (R + r·cos(ωt))·(−sin t) =

= −rωsin(ωt)· cost− (R + rcos (ωt))·sint,
∂y
∂t = −[r·(−sin(ωt)·ω·sint + (R + r·cos (ωt))·cost] =

= +rω(sin(ωt))·sint− (R + r·cos(ωt))·cos t ,
∂z
∂t = r·cos(ωt)·ω = rω·cos(ωt).

(15)

The tangential direction vector w(t) at the point [x(t), y(t), z(t)] has the expression

w(t) =
(

∂x
∂t

,
∂y
∂t

,
∂z
∂t

)
, (16)

where ∂x
∂t , ∂y

∂t , and ∂z
∂t are defined by Relation (15).

Point T0 lies on the circle p1 and has coordinates T0 = [R + r, 0, 0] according to
Relation (14).
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Tangent vector u(t0) to the circle p1 at point T0 lying in the plane of the x and y axes
(ground plane) can then be expressed in the form u(t0) = (0, R + r, 0); see Figure 10b.

Recall that in Euclidean space E3, the length of the vector
→
u is defined by the re-

lation ‖u‖ =
√

x2
u + y2

u + z2
u. The scalar product u.v of vectors u and v is defined by

u.v = xu·xv + yu·yv + zu·zv. The tangent vector w(t0) to the toroidal helix at point T0
is according to Relations (15) and (16) of the form w(t0) = w(0) = (0,−(R + r), rω).
The angle δ0 enclosed by the vectors u(0) and w(0) can be determined using the relation
(see [32], p. 113)

cosδ0 =

→
u (0)×→w(0)∥∥∥→u (0)∥∥∥× ∥∥∥→w(0)

∥∥∥ =
(0,−(R + r), 0)· (0,−(R + r), rω)

(R + r)·
√
(R + r)2 + r2ω2

=
R + r√

(R + r)2 + r2ω2
,

thus

δ0 = arccos

 R + r(√
(R + r)2 + r2ω2

. (17)

Similarly, tangent vector w(t1) to the toroidal helix at point T1 is w(t1) = w
(

π
ω

)
=(

−(R− r)sin π
ω ,−(R− r)cos π

ω ,−rω
)
. Tangent vector u(t 1) to the circle p2 at point T1 ly-

ing in the plane of the x, y axes (ground plane) can be expressed in the form u(t1) =
(R− r)·

(
−sin π

ω ,−cos π
ω , 0

)
. Thus, it is true for the angle between vectors u1 and w(t1)

cosδ1 = u(t1)×w(t1)∥∥∥u(t1

)∥∥∥×‖w(t1)‖
=

(R−r)·(−sin π
ω ,−cos π

ω , 0)· (−(R−r)sin π
ω ,−(R−r)cos π

ω ,−rω)√
(R−r)2(sin π

ω +cos π
ω ) ·

√
(R−r)2(sin2 π

ω +cos2 π
ω )+r2ω2

=

(R−r)2

(R−r)
√

(R−r)2+r2ω2
= R−r√

(R−r)2+r2ω2
.

Thus it is that

δ1 = arccos

 R− r

(
√
(R− r)2 + r2ω2

. (18)

Note 2.
Let R, r, ω be real numbers and R > r. Thus,

R + r√
(R + r)2 + r2ω2

>
R− r√

(R− r)2 + r2ω2
. (19)

Proof. Assume the validity of Relation (19). After the removal of fractions, partial adjust-
ments of the inequality are gradually made

R + r(√
(R + r)2 + r2ω2

>
R− r√

(R− r)2 + r2ω2

(R + r)·
√
(R− r)2 + r2ω2 > (R− r)·

√
(R + r)2 + r2ω2

(R + r)2·
(
(R− r)2 + r2ω2

)
> (R− r)2·

(
(R + r)2 + r2ω2

)
(R + r)2·(R− r)2 + (R + r)2r2ω2 > (R− r)2· (R + r)2 + (R− r)2r2ω2

(R + r)2r2ω2 > (R− r)2r2ω2
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(R + r)2 > (R− r)2

The last inequality holds for arbitrary real numbers R, r for R > r. From Relation (19)
and the fact the arccos function is decreasing in the interval 〈0, 1〉, it follows that δ1 > δ0.
In accordance with Relation (2), it follows that

∼
α0 = π

2 − δ0,
∼
α1 = π

2 − δ1 and it is true
∼
α0 >

∼
α1. The transition from the point T0 to point T2 on the circle p1 is made at one turn of

the filament on the outer circumference of the torus. Analogously, transition from the point
T1 to T3 on the circle p2 is made also in one turn filament on internal circumference of the
torus. This means that on the outer circumference of the torus, the filament is wound at an
angle

∼
αext =

π

2
− δ0 (20)

and in the internal circumference of the torus, the filament is wound at an angle

∼
αint =

π

2
− δ1. (21)

At the same time,
∼
αint <

∼
αext and the filament winding angle

∼
α varies continuously

over the interval
〈∼

αint,
∼
αext

〉
. When winding the filament on a straight frame with a circular

cross-section, the filament is wound at a constant α angle. However, if the filament is wound
on a torus-shaped frame section, the wound

∼
α angle changes and is valid

∼
αint < α <

∼
αext.

�

2.5. Determination of Torodial Helix Parameter ω

One of the parameters defining the expression of the toroidal helix in Relation (10) is a
real ω value. If ω is a natural number, it indicates the number of turns of the toroidal helix
on the whole torus. According to Relations (11) and (12), 2πR

ω = 2πr·tg α holds. From here
it follows

ω =
2πR

2πr·tgα
=

R
r·tgα

. (22)

The ω value determined by Relation (22) and used in the toroidal helix parametric
Expression (10) ensures that the central axis o of the frame will pass through the winding
head at the same speed when passing through both the straight and curved torus-shaped
parts of the frame. In this case, the length ϑ on the o-axis at one turn of the straight frame
part of the frame is equal to the length H on the o-axis at one turn of the toroidal helix on
curved part of helix.

2.6. Optimal Number of Rovings Used during Winding

When winding the frame using rovings, it is desirable to ensure the following prop-
erties of the wound layer: the winding does not contain any gaps on the outer part of
the torus, overlaps of adjacent rovings on the inner part of torus are minimized, and the
approximate desired winding angle is maintained. The determination of the appropriate
number of rovings when winding a curved torus-shaped frame section is the subject of this
paragraph.

First, attention is paid to determining the length of the arc on the circle p1 at one turn
of the toroidal helix (i.e., the length of the arc with the starting point T0 and the ending
point T2 on the circle p1; see Figure 10b). Similarly, the length of the arc on the circle p2
with starting point T1 and ending point T3 will be determined.

From the parametric expression of the coordinates of points T0, T1, T2 and T3 in

Relation (14) it is clear that the vectors
→

ST0 and
→

ST2 (see Figure 11a) are at an angle γ = 2π
ω

and analogously vectors
→

ST1 and
→

ST3 are also at the same angle γ. At one turn of the
toroidal helix, point T0 ∈ p1 corresponds to point T2 ∈ p1 and point T1 ∈ p2 corresponds to
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point T3 ∈ p2. The arc length l02 of circle p1 with origin point T0 and end point T2 is given
by relation (see [29], p. 11)

l02 = γ· (R + r). (23)
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Angle γ is given in Relation (23) in arc measure. Analogously the arc length l13 of
circle p2 with origin point T1 and end point T3 is given by the relation

l13 = γ· (R− r). (24)

From Relations (23) and (24), it follows that the difference g of the arc lengths l02 and
l13 is equal to g = l02 − l13 = 2γr. As the g-value increases, it becomes more difficult to
ensure quality winding of the rovings on the curved part of the frame.

Let d denote the width of the roving (see Figure 8b). The appropriate number of
rovings when winding the curved part of the frame is determined by making one turn of
the toroidal helix. Recall that δ0 is the angle that the tangent vector w(0) of the toroidal
helix makes with the tangent vector u(0) of the circle p1 at the point T0 (see Figure 10b,
Relation (17)). It is valid (see Figure 11b) that sinδ0 = d/c0, where c0 denotes the width of
the wound roving on the circle p1. From here it follows

c0 = d/sinδ0 . (25)

Thus, the optimized number n of rovings used during torus winding is equal to

n =

⌈
l02

c0

⌉
. (26)

Note 3.
The ceiling dxe of a real number, x, is defined as dxe = min{p ∈ Z; p ≥ x}, where Z

denotes a set of integers.
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Further the total sum ε02 of overlaps of adjacent rovings on the circle p1 when winding
a layer of rovings within one turn of the toroidal helix is equal to

ε02 = n· c0 − l02. (27)

The overlap
∼
ε 02 of two adjacent rovings on the circle p1 is then equal to

∼
ε 02 =

ε02

n
(28)

Similarly, the angle δ1 at the point T1 lying on the circle p1 is defined. Parameter c1
denotes the width of the wound roving on the circle p1. Thus,

c1 = d/sinδ1 (29)

and the total sum ε13 of overlaps of adjacent rovings on the circle p2 within one turn of the
toroidal helix is equal to

ε13 = n·c1 − l13. (30)

The overlap
∼
ε 13 of two adjacent rovings on the circle p2 is then equal to

∼
ε 13 =

ε13

n
. (31)

Relations (26)–(30), (31) allow us to determine the optimized number of rovings when
winding the torus. For a given roving width d, the minimum number of rovings used in
the winding process can be determined. This prevents the formation of gaps between the
rovings and at the same time ensures minimum overlaps between adjacent rovings on the
outer circumference of the torus (circle p1). At the same time, overlaps of adjacent rovings
on the inner circumference of the torus (circle p2) are minimized.

When using n rovings (n is defined by Relation (26)) of width d when winding the
curved part of the torus-shaped frame, the n coils with wound rovings are distributed
evenly around the circumference of the rotating ring of the winding head (see Figure 3).
When winding the curved part of the frame, the relationships given in Section 2.6 apply.
After the transition to the straight part of the frame, the rovings are wound at the desired α
angle. The process of winding rovings onto a straight frame is discussed in detail in [26]
and [25].

Note 4.
Relation (10) defines a toroidal helix wound on the torus. Consider hereafter only the

central axes l of n rovings (see Figure 8b) wound on the torus. Following this, these axes
form on the torus regular toroidal n-helix ([28]; see Figure 12).
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3. Results and Discussion

This chapter focuses on the practical applications of derived relationships presented
in the previous paragraphs.

3.1. Determining the Difficulty of Torus Winding

As mentioned in the previous part of the article, winding a curved frame section with
a circular cross-section is one of the most difficult parts of winding technology. Often the
curved part of the frame is shaped in 2D and forms part of the torus (see Figure 5a). The
three basic characteristics of the difficulty of performing a quality roving winding on a
torus are applied in Table 1. The first column contains the values of major radius R and
the second column minor radius r of the torus (see Figure 6a). The third column shows
the values of aspect ratio a defined by Relation (3). The smaller the value of the parameter
a is, the more suitable the conditions for winding (at a→ 0 the torus becomes a straight
frame). The penultimate column contains the ratio of the surface area of the inner part
s2 and the outer part s1 of the total torus surface (Figure 5a). The closer the ratio s1/s2
is to 1, the more suitable the torus is for winding. The last column shows the values of
the ratios o(p2)/o(p1). Here o(p1) denotes the circumference of the circle p1 on the outer
circumference of the torus (Figure 6b) and o(p2) the circumference of the circle p2 on the
inner circumference of the torus. Again, the closer the ratio o(p2)/o(p1) is to 1, the better
winding can be achieved.

Table 1. Characteristics indicating the level of difficulty of performing a quality roving winding.

Major Radius
(R)

[mm]

Minor
Radius

(r)
[mm]

Aspect
Ratio

(a)

Ratio
s2
s1

Ratio
o(p2)
o(p1)

1000

20 0.02 0.9748 0.9607

500 0.5 0.5171 0.3333

800 0.8 0.2407 0.1111

500

50 0.1 0.8802 0.8181

100 0.2 0.7741 0.6666

400 0.8 0.3251 0.1111

100

20 0.2 0.7741 0.6666

50 0.5 0.5171 0.3333

90 0.9 0.2715 0.0526

50

10 0.2 0.7741 0.6666

20 0.4 0.5941 0.4285

30 0.6 0.4472 0.2500

Figure 13 shows three torus floor plans for the given pairs of R and r values from the
fourth to sixth rows of Table 1. From Figure 13 and Table 1, it is clear that the best way to
wind rovings onto the torus is in the a/ case and the worst way is in the c/ case.



Polymers 2023, 15, 3227 16 of 22
Polymers 2023, 15, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 13. Floor plans of tori with parameters: 𝑅 = 500[mm]; (a) 𝑟 = 50[mm], 𝑎 = 0.1; (b) 𝑟 =100[mm], 𝑎 = 0.2; (c)  𝑟 = 400[mm], 𝑎 = 0.8. 

If the winding difficulty characteristics are unfavorable for the specified torus, then 
it is appropriate to consider either another production technology or the use of a differ-
ently shaped frame for the manufacture of the composite.  

Figure 14 shows the values of the characteristics 𝑎 = 𝑟/𝑅 (Relation (3)), 𝑠 /𝑠  (Rela-
tion (6)) and 𝑜(𝑝 )/𝑜(𝑝 ) (relation (8)). The best conditions for winding the roving on the 
torus occur in the case of 𝑎 → 0, 𝑠 /𝑠 → 1 and 𝑜(𝑝 )/𝑜(𝑝 ) → 1. 

 
Figure 14. Graphical representation of 𝑎 = 𝑟/𝑅, 𝑠 /𝑠 , and 𝑜(𝑝 )/𝑜(𝑝 ) values for constant major 
radius 𝑅 = 500[mm] and gradually increasing minor radius 𝑟. 

It can be clearly seen from Figure 14 that as the value of 𝑟 increases, the conditions 
for making a high-quality winding gradually deteriorate (aspect ratio of torus 𝑎 =𝑟/𝑅 gradually increases and values of 𝑠 /𝑠  and 𝑜(𝑝 )/𝑜(𝑝 ) gradually decrease). It is 
possible to use any quantity of 𝑎 = 𝑟/𝑅, 𝑠 /𝑠 , and 𝑜(𝑝 )/𝑜(𝑝 ) as a measure of the dif-
ficulty of the winding, but we recommend the ratio 𝑜(𝑝 )/𝑜(𝑝 ) as the most practically 
oriented measure. 

3.2. Relations between Winding Parameters 
The interrelationships of some parameters in winding the straight part of the frame 

and the curved part of the frame in the shape of a torus section are shown. An example of 
a frame composed of two straight parts and one curved part in the shape of a torus section 
is shown in Figure 5b. Table 2 gives examples of different parameter values for a frame 
with a circular cross-section, which includes a straight part and a curved part in the shape 

Figure 13. Floor plans of tori with parameters: R = 500[mm]; (a) r = 50 [mm], a = 0.1;
(b) r = 100 [mm], a = 0.2; (c) r = 400 [mm], a = 0.8.

If the winding difficulty characteristics are unfavorable for the specified torus, then it
is appropriate to consider either another production technology or the use of a differently
shaped frame for the manufacture of the composite.

Figure 14 shows the values of the characteristics a = r/R (Relation (3)), s1/s2 (Relation
(6)) and o(p2)/o(p1) (relation (8)). The best conditions for winding the roving on the torus
occur in the case of a→ 0 , s2/s1 → 1 and o(p2)/o(p1)→ 1 .
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Figure 14. Graphical representation of a = r/R, s2/s1, and o(p2)/o(p1) values for constant major
radius R = 500 [mm] and gradually increasing minor radius r.

It can be clearly seen from Figure 14 that as the value of r increases, the condi-
tions for making a high-quality winding gradually deteriorate (aspect ratio of torus
a = r/R gradually increases and values of s2/s1 and o(p2)/o(p1) gradually decrease).
It is possible to use any quantity of a = r/R, s2/s1, and o(p2)/o(p1) as a measure of the
difficulty of the winding, but we recommend the ratio o(p2)/o(p1) as the most practically
oriented measure.

3.2. Relations between Winding Parameters

The interrelationships of some parameters in winding the straight part of the frame
and the curved part of the frame in the shape of a torus section are shown. An example of a
frame composed of two straight parts and one curved part in the shape of a torus section
is shown in Figure 5b. Table 2 gives examples of different parameter values for a frame
with a circular cross-section, which includes a straight part and a curved part in the shape
of a torus section. The first column contains the value of the major radius R and several
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different values of the minor radius r of the torus in the second column. Aspect ratio a is
defined by Relation (3). The following two columns contain the different values of the α
angle under which the roving winding is required and the corresponding values of the
tangent function. The penultimate column contains the values of ω parameter defined by
Relation (22); this parameter is significant in the toroidal helix parametric Expression (10).

Table 2. Interrelation of parameters when winding the straight part of the frame and the curved part
of the frame in the shape of the torus part.

Major
Radius

(R)
[mm]

Minor
Radius

(r)
[mm]

Aspect
Ratio

(a)

Winding
Angle

(α)
[◦] [rad]

tg α Parameter
ω

Toroidal
Pitch
(H)

[mm]

500

25 0.05

5 0.0815 0.0874 228.8329 13.7287

30 0.5235 0.5773 34.6440 90.68215

45 0.7853 1.0000 20.0000 157.0796

50 0.1

5 0.0815 0.0874 114.3118 27.4826

30 0.5235 0.5773 17.32051 181.3799

45 0.7853 1.0000 10.0000 314.1592

100 0.2

5 0.0815 0.0874 61.3496 51.2080

30 0.5235 0.5773 8.6610 362.7286

45 0.7853 1.0000 5.0000 628.3185

450 0.9

5 0.0815 0.0874 12.7128 247.1204

30 0.5235 0.5773 2.1224 1480.2076

45 0.7853 1.0000 1.1111 2827.4616

The last column of Table 2 contains values of toroidal pitch H calculated by the use of
Relation (11).

Central axis o of the frame passes through the winding ring of the head at a constant
speed. The required winding angle can be achieved by regulating the angular speed of
the rotating ring of winding head when winding the straight part of the frame (angular
speed is controlled by the robot’s external axis; for details see [25]). When winding a
part of the torus-shaped frame, the winding angle changes during one turn in the range
of values

∼
αint to

∼
αext defined by Relations (20) and (21). Maintaining the same angular

speed of the rotating ring of head when winding the bent part of the frame corresponds to
the determination of the ω parameter using Relation (22). Parameter ω is applied in the
parametric expression of the toroidal helix in Expression (10). The ω parameter defines the
toroidal pitch H (specifies the length of repetition along the centre axis o) by Relation (11).

3.3. Winding Angle of Rovings on the Torus

Based on the values of major radius R, minor radius r of the torus, and the desired
winding angle α on the frame, the winding angle

∼
αint of the roving on the inner circum-

ference p2 of the torus (see Figure 6b) and on the outer circumference p1 of the torus
∼
αext

can be determined. It always holds that
∼
αint < α <

∼
αext. Therefore, the winding angle

∼
αext

on the outer circumference of the torus is larger than the winding angle
∼
αint on the inner

circumference of the torus. The angle of winding
∼
α roving on the torus surface changes

continuously from
∼
αint to

∼
αext and vice versa,

∼
αint ≤

∼
α ≤ ∼αext.

In Table 3, Relation (22) is used to calculate the parameterω, Relations (18) and (21)
are used to determine the angle

∼
αint, and Relations (17) and (20) are used to determine

∼
αext.
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Table 3. Determination of the winding angle
∼
α int on the inner circumference of the torus (circle p2

) and the winding angle
∼
αext on the outer circumference of the torus (circle p1 ) depending on the

major radius R of the torus, the minor radius r of the torus and the desired winding angle α.

Major
Radius

(R)
[mm]

Minor
Radius

(r)
[mm]

Aspect
Ratio

(a)

Winding
Angle

(α)
[◦] [rad]

tg α Parameter
ω

Angle
~
αint
[◦]

Angle
~
αext
[◦]

100

20 0.2 5 0.0815 0.0874 57.2082 3.9968 5.9872

50 0.5 30 0.5235 0.5773 3.4644 16.1007 40.8909

90 0.9 45 0.7853 1.0000 1.4148 4.4904 56.1712

50

10 0.2 5 0.0815 0.0874 61.3496 3.73040 5.5857

20 0.4 30 0.5235 0.5773 4.7755 17.4376 36.2379

30 0.6 45 0.7853 1.0000 1.6666 21.8021 57.9956

Table 3 clearly shows that the deviations
∼
αint and

∼
αext from the specified winding

angle α increase with increasing aspect ratio a.

3.4. Determination of Optimal Number of Rovings

Based on the knowledge of the winding of the rovings on the frame from a geometrical
point of view, the optimal number of rovings used in winding the new layer can be
determined. Knowledge of the major radius R and minor radius r of the torus and the
prescribed winding angle α is assumed. As shown in the previous Section 3.3, when the
roving is wound onto the torus, the circumference o(p1) (see Figures 6b and 11a) is larger
than the circumference o(p2). At the same time, it was shown that on the outer circle p1 the
roving is wound at a larger angle

∼
αext than on the inner circle p2 with angle

∼
αint.

For the optimum number n of rovings to be used for roving width d, it is desired to
create a winding without gaps and with zero or minimal overlap of two adjacent rovings
on the outer circle p1. At the same time, the size of the overlap of two adjacent rovings can
be determined on the inner circle p2. This overlap is always larger than on p1.

Table 4 shows the calculated values n of the optimal number of rovings used for a
given width d and values of R, r, and winding angle α. From the knowledge of values R, r,
α and Relation (22), the parameter ω can be determined. At the same time, the overlaps
of two adjacent rovings on the outer circumference p1 and the inner circumference p2 are
determined. By successively using Relations (17), (23), (25)–(28), the overlap

∼
ε 02. of two

adjacent rovings on the outer circumference p1 of the torus can be determined. Similarly, by
successively using Relations (18), (24), (29)–(31), the overlap

∼
ε 13 on the inner circumference

p2 of torus can also be determined.
Note 5.
The carbon rovings are from Toho Tenax, a widespread manufacturer of winding

rovings. Carbon roving 24 K consists of twenty-four-thousand carbon filaments about
a diameter 7 [µm], creating a rectangular cross-section with a width of 9 [mm]. Carbon
rovings marked 12 K and 6 K have a width of 12 K = 5 [mm] and 6 K = 2 [mm].

The curved part of a polymer-composite frame after the simultaneous successive
winding of three layers of carbon rovings on a non-load-bearing frame under specified
winding angles α equal to 45◦, −45◦, and 45◦ is shown in Figure 15. The curved part of the
frame forms one-quarter of the torus. Subsequently, the wound frame is thermally treated.
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Table 4. Optimized number of rovings n used in winding and the size of overlaps
∼
ε 02 on the outer

and
∼
ε 13 on the inner circumference of the torus for given values of R, r, d and α.

Outer
Radius

(R)
[mm]

Inner
Radius

(r)
[mm]

Param.
a

Angle
Winding

(α)
[◦]

Param.
ω

Roving
Width

(d)
[mm]

Optimized
Number

of Rovings
(n)

Outer
Overlap

(
~
ε02)

[mm]

Inner
Overlap

(
~
ε13)

[mm]

100

20 0.2 10 28.3607

9

3 0.3378 3.1811

25 0.25 30 6.9282 11 0.7944 3.6238

30 0.3 45 3.3333 17 0.3467 3.2236

200 10 0.05

10 113.4429

5

3 1.2083 1.5621

30 34.6410 7 0.4055 0.7795

45 20.0000 10 0.6526 0.9274
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Figure 15. Example of the curved part of polymer composite frame with the following parameters:
major radius R = 102.5 [mm], minor radius r = 17.5 [mm], width of roving d = 5 [mm]. The non-load-
bearing polyurethane frame is visible in the vertical section (light colour of the cross-section).

3.5. Recommended Procedure before Starting Winding

Before starting the actual winding procedure on a frame with a curved section in the
shape of a torus part, it is advisable to carry out the following preparatory steps.

1. Determine the suitability of winding the rovings on the non-load-bearing frame
(Relations (3), (7), and (8) can be used, see Table 1). If the winding conditions are
unfavorable, consider whether, for example, to use a differently shaped frame or to
choose a different composite manufacturing technology.

2. Calculate parameterω using Relation (22). Based on the knowledge of this parameter,
an estimate of the number of roving revolutions on the whole toroidal helix can be
obtained.

3. Determine the maximum winding angle of the roving
∼
αext on the torus at the outer

circumference p1 (see Figure 6b) using Relations (17) and (20). At the same time,
determine the minimum winding angle

∼
αint on the inner circumference of p2 by

applying Relations (18) and (21). For the required winding angle α for a given layer,
the following relation holds:

∼
αint < α <

∼
αext. During the winding procedure, the

winding angle
∼
α on the torus changes continuously and

∼
αint ≤

∼
α ≤ ∼

αext. Due
to the continuously changing winding angle

∼
α, it is useful to determine whether

the changing winding angle satisfies the winding requirements with respect to the
planned loading of the polymer composite frame using a suitable modelling software
tool (e.g., ABAQUS, ANSYS).

4. Determine the optimized number of rovings n for the winding of the layers at their

specified width d. To the selected value of n, calculate the overlap
∼
ε 02 of two adjacent
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rovings on the outer circumference p1 and the overlap
∼
ε 13 on the inner circumference

p2. Following this, select the winding of the roving with the most suitable width d
provided by the supplier of rovings.

Based on the above procedure, it is possible to define the optimized the winding
procedure.

4. Conclusions

The article focuses on the problem of winding rovings on a non-load-bearing frame
with a circular cross-section, and the problem of winding the curved part of the frame is
solved. In particular, attention is paid to the case where the curved section of the frame
forms part of the torus. The problem is solved from a geometric point of view. Based
on the geometric parameters of the torus and the relations derived in the paper, the level
of difficulty of the roving layer winding, including the real feasibility of homogeneous
winding, can be determined. Based on the given torus and using the relations derived in
Chapter 2, the parametric expression of the wound toroidal helix can be determined. As a
result, the behavior of the roving when winding on a torus can be described analytically.
The winding angle changes continuously within one turn of the roving.

In Section 2.2. we provide three alternative quantities, specifically a = r/R, s2/s1, and
o(p2)/o(p1), that describe the level of difficulty of winding on given toroidal part of the
frame. However, we recommend the quantity o(p2)/o(p1) as the most practically oriented
measure of the winding difficulty.

When winding the roving layer, it is necessary to avoid gaps in the winding on the
outer circumference of the torus and at the same time it is necessary to minimize overlaps
of adjacent rovings on the inner circumference of the torus. Using the relations from the
previous section, the optimal number of rovings used to wind the layer onto the torus can
be determined for a given roving width. At the same time, the overlap size of two adjacent
wound rovings can be determined.

A greater number of rovings and their shorter length are required when the frame is
wound at a greater angle (for a curved section of the frame in the shape of a torus section, a
smaller ω parameter corresponds to a greater winding angle). When winding at a smaller
winding angle, fewer rovings of greater length are required. The total amount of material
required is practically the same, unless we consider the issue of overlapping adjacent
rovings. Of course, different frame loads (tension, torsion, etc.) correspond to different
suitable winding angles. Practical tests show that it is not advisable to wind the roving on
the torus at an angle greater than 45◦, as this usually causes the roving to “slide” on the
surface of the frame and degrade the entire winding.

Meeting the necessary geometric conditions of winding is a prerequisite for a quality
winding of the roving layer. As the frame passes through the winding head, three layers
of roving are wound simultaneously at different angles (the winding head contains three
rotating rings with coils of wound roving). If more layers of windings are required on the
frame, the frame can be passed through the winding head repeatedly.

The problems of winding straight frames with circular cross-sections (especially the
smooth transition to another winding angle, the distance of winding roving from the
rotating ring of the winding head, and the determination of the optimal number of rovings
when winding a layer of rovings) are analyzed mainly in previous published works [25,26].
These articles, together with this paper, comprehensively describe the problem of winding
composite frames using rovings. The fulfillment of the required geometrical conditions of
winding is a prerequisite for ensuring the production of high-quality polymer composite
frames. A detailed procedure for calculating the optimal trajectory of the industrial robot
during the winding process even for curved frames is described in [23,33].
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26. Mlýnek, J.; Petrů, M.; Ryvolová, M.; Rahimian Koloor, S.S. Winding optimization of composite frame by dry fiber rovings. J. Ind.
Text. 2022, 52, 15280837221114639. [CrossRef]

27. Shifrin, T. Differential Geometry: A First Course in Curves and Surfaces; University of Georgia: Athens, GA, USA, 2015; p. 24.
28. Olsen, K.; Bohr, J. Geometry of the toroidal N-helix: Optimal-packing and zero-twist. N. J. Phys. 2012, 14, 023063. [CrossRef]
29. Benenson, W.; Harris, J.W.; Stöcker, H.; Lutz, H. Handbook of Physics; Springer Science & Business Media: Berlin/Heidelberg,

Germany, 2006.
30. Jeffrey, A.; Dai, H.H. Handbook of Mathematical Formulas and Integrals; Elsevier: Amsterdam, The Netherlands, 2008.
31. Do Carmo, M. Differential Geometry of Curves and Surfaces; Prentice-Hall, Inc.: Englewood Cliffs, NJ, USA, 1976.
32. Kiselev, A.P. Kiselev’s Geometry: Stereometry; Sumizdat: El Cerrito, CA, USA, 2008.
33. Petru, M.; Mlynek, J.; Martinec, T.; Broncek, J. Mathematical modelling of fibre winding process for composite frames. Commun.

Sci. Lett. Univ. Zilina 2016, 18, 103–111. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.compstruct.2016.12.061
https://doi.org/10.1016/j.promfg.2018.10.145
https://doi.org/10.1016/j.rcim.2015.02.004
https://doi.org/10.21062/ujep/59.2018/a/1213-2489/MT/18/1/90
https://doi.org/10.3390/polym13040497
https://doi.org/10.1177/15280837221114639
https://doi.org/10.1088/1367-2630/14/2/023063
https://doi.org/10.26552/com.C.2016.4.103-111

	Introduction 
	Materials and Methods 
	Torus-Shaped Part of the Frame 
	Level of Difficulty of Roving Winding 
	Mathematical Description of Roving Winding on the Torus 
	Determination of Winding Angle on Torus 
	Determination of Torodial Helix Parameter  
	Optimal Number of Rovings Used during Winding 

	Results and Discussion 
	Determining the Difficulty of Torus Winding 
	Relations between Winding Parameters 
	Winding Angle of Rovings on the Torus 
	Determination of Optimal Number of Rovings 
	Recommended Procedure before Starting Winding 

	Conclusions 
	References

