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2. Prof. Stéphane Cotin, Ph.D., HDR

3. Prof. Paolo Zunino, Ph.D.

Die Dissertation wurde am 12. April 2023 bei der Universität der Bundeswehr München
eingereicht und durch die Fakultät für Bauingenieurwesen und Umweltwissenschaften
am 21. August 2023 angenommen. Die mündliche Prüfung fand am 04. September 2023
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Abstract

Cardiovascular diseases (CVDs), a group of disorders impeding the blood supply to heart,
brain, or arms and legs, represent the leading cause of death worldwide. The high num-
ber of deaths motivates the desire for minimally invasive procedures and accounts for the
success of image-guided catheter-based treatment procedures such as balloon angioplasty
and stent insertion. However, the risk of post-surgical complications and follow-up surg-
eries due to pathological tissue responses such as restenosis is relatively high. This mo-
tivates computational methods as a tool to enhance the understanding of the underlying
causes and for the computer-aided design of new endovascular devices in order to prevent
post-operative complications in the future. Especially because of their complex geometry,
high slenderness, and large deformations during insertion, the efficient simulation of stent
structures and the interaction with their surroundings still pose a challenge.

Within this thesis, a reduced-dimensional model to represent the stent structure, based on
geometrically exact beam theory, is adopted, and the applicability of a mixed-dimensional
framework in the context of balloon angioplasty and stented arteries is investigated. In
particular, a novel coupling of 1-dimensional (1D) geometrically exact beam equations
to a 3-dimensional (3D) background fluid mesh is developed, and arising numerical and
algorithmic challenges connected to its multi-physics nature and large dimensionality gap
are addressed. The high efficiency gained by the employment of a reduced-dimensional
model allows the design of an efficient mixed-dimensional model taking into account the
interactions between all components of a stented artery, namely the blood flow, the stent
structure, and the vessel wall, making it the first model of its kind.

In the first part of this thesis, the computational framework for the embedding of geometri-
cally exact beam theory in 3-dimensional fluid flow is presented. The consequently arising
truly mixed-dimensional 1D-3D coupling scheme constitutes a novel numerical strategy
that naturally necessitates consistent discretization methods and specifically tailored algo-
rithmic solution schemes to ensure accurate and efficient computational treatment. Two
state-of-the-art interface discretization methods, a Gauss-Point-to-Segment (GPTS) and a
mortar-type method, as well as a specially-tailored strongly-coupled Quasi-Newton based
partitioned solution algorithm for applications involving fibers with high slenderness ra-
tios, are presented. The influence of all employed algorithmic and numerical parameters
on efficiency and results of the solution procedure as well as the limit of the method’s mod-
eling assumptions are studied through appropriate examples. Finally, the convergence of
the mixed-dimensional problem solution under uniform mesh refinement is demonstrated
and the method’s capabilities in capturing flow phenomena at large scale are illustrated.
Further, an extension of the proposed fluid-beam interaction (FBI) method to a full fluid-
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beam-structure interaction (FBSI) framework, allowing the representation of additional ef-
fects in regard to the interaction of fluid flow with 3D continuum structures, is presented.

Next, the focus lies on the mixed-dimensional modeling of balloon angioplasty based on
state-of-the-art approaches to beam-to-solid-surface (BTSS) interactions and mortar finite
element-based contact mechanics. The model is validated by chosen numerical examples
and used as the foundation for the proposal of a novel patient-specific balloon-catheter
technology for the stenting of curved or asymmetrically stenosed arteries. An optimization
procedure for the automated adaptation of the proposed technology to patient-specific
geometries is presented, and the benefit of the improved devices is demonstrated through
numerical experiments.

Eventually, the core capabilities of the newly developed solution algorithm for mixed-
dimensional multi-physics problems and the mixed-dimensional structure model for bal-
loon angioplasty are combined to form a novel fluid-beam-structure interaction frame-
work that takes beam-to-solid-surface mesh tying into account, and the resulting proce-
dure is applied to an idealized model of a stented artery. All in all, the results obtained in
this thesis demonstrate the substantial potential of mixed-dimensional modeling not only
in the context of balloon angioplasty but as a general-purpose tool for the interaction of
slender structures with 3-dimensional continua. Possible extensions and exciting future
application scenarios are outlined at the end of this thesis.

ii



Zusammenfassung

Herz-Kreislauf-Erkrankungen stellen eine Gruppe von Erkrankungen dar, die die Blutver-
sorgung des Herzens, des Gehirns oder der Arme und Beine beeinträchtigen, und sind
die häufigste Todesursache weltweit. Die hohe Zahl der Todesfälle motiviert das Streben
nach minimal-invasiven Verfahren zu ihrer Behandlung und erklärt den Erfolg Katheter-
gestützter Behandlungsverfahren wie der Ballonangioplastie und dem Einsetzen von Stents.
Bedauerlicherweise ist für diese Behandlungen das Risiko von postoperativen Komplika-
tionen und Folgeoperationen aufgrund von pathologischen Gewebereaktionen wie Re-
stenose noch immer relativ hoch. Der Einsatz von Computersimulationen als Instrument
zur Verbesserung des Verständnisses der zugrundeliegenden Ursachen und zur Computer-
gestützten Entwicklung neuer endovaskulärer Geräte hat das Potential Abhilfe zu schaffen
und postoperative Komplikationen in Zukunft zu vermeiden. Aufgrund der komplexen
Geometrie, der hohen Schlankheit und der großen Verformungen während des Einsetzens
stellt die effiziente Simulation von Stentstrukturen und ihrer Interaktion mit umgebenden
Materialien noch immer eine Herausforderung dar.

In dieser Arbeit wird ein reduziert-dimensionales Modell, basierend auf geometrisch ex-
akter Balkentheorie, zur Repräsentation der Stentstruktur verwendet und die Anwend-
barkeit gemischt-dimensionaler Methoden im Kontext von Ballonangioplastie und ges-
tenteter Arterien untersucht. Insbesondere wird eine neuartige Kopplungsmethode für
die Einbettung von eindimensionalen (1D) geometrisch exakten Balkengleichungen in eine
dreidimensionale (3D) Fluidströmung entwickelt und die sich daraus ergebenden nume-
rischen und algorithmischen Herausforderungen, die mit der Multiphysik und den un-
terschiedlichen Dimensionalitäten zusammenhängen, werden behandelt. Die hohe Ef-
fizienz, die durch die Verwendung eines reduziert-dimensionalen Modells erreicht wird,
ermöglicht die Entwicklung eines effizienten gemischt-dimensionalen Modells, das die
Wechselwirkungen zwischen allen Komponenten einer gestenteten Arterie, nämlich der
Blutströmung, der Stentstruktur und der Gefäßwand, berücksichtigt und somit das erste
Modell seiner Art darstellt.

Im ersten Teil dieser Arbeit wird das numerische Modell für die Einbettung geometrisch
exakter Balkentheorie in dreidimensionale Fluidströmungen vorgestellt. Das sich hier-
aus ergebende gemischt-dimensionale 1D-3D-Kopplungsschema stellt eine neuartige nu-
merische Strategie dar, die konsistente Diskretisierungsmethoden und speziell zugeschnit-
tene algorithmische Lösungsschemata erfordert, um eine genaue und effiziente Behand-
lung zu gewährleisten. Zwei hochmoderne Diskretisierungsmethoden für das Kopplungs-
gebiet, eine Gauß-Punkt-zu-Segment-Methode (GPTS) und eine Mortar-ähnliche Meth-
ode, sowie ein speziell zugeschnittener, stark gekoppelter, auf Quasi-Newton-Methoden
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basierender partitionierter Lösungsalgorithmus für Anwendungen, die höchst schlanke
Fasern enthalten, werden vorgestellt. Der Einfluss aller verwendeten algorithmischen
und numerischen Parameter auf die Effizienz und die Lösungen des Verfahrens sowie
die Modellgrenzen der Methode werden anhand geeigneter Beispiele untersucht. An-
schließend wird die Konvergenz der Lösung des gemischt-dimensionalen Problems unter
uniformer Netzverfeinerung demonstriert und die Anwendbarkeit der numerischen Im-
plementierung auf große Probleme veranschaulicht. Des Weiteren wird eine Erweiterung
der vorgeschlagenen Fluid-Balken Interaktionsmethode (FBI) zu einem vollständigen Fluid-
Balken-Struktur Interaktionsmodell (FBSI), das die Erfassung zusätzlicher Effekte in Bezug
auf die Interaktion von Fluidströmungen mit 3D-Kontinuumsstrukturen ermöglicht, vor-
gestellt.

Im Weiteren, wird der Schwerpunkt auf die gemischt-dimensionale Modellierung von Bal-
lonangioplastie auf der Grundlage modernster Ansätze zur Balken-Festkörper Interaktion
und zur voll aufgelösten Kontaktmechanik gelegt. Das Modell wird anhand ausgewählter
numerischer Beispiele validiert und als Grundlage für die Vorstellung einer neuartigen
patienten-spezifischen Ballonkathetertechnologie für das Stenting von gekrümmten oder
asymmetrisch verengten Arterien verwendet. Ein Optimierungsverfahren für die automa-
tische Anpassung der vorgeschlagenen Technologie an patienten-spezifische Geometrien
wird vorgestellt und der Nutzen der verbesserten Geräte wird durch numerische Experi-
mente demonstriert.

Schließlich werden die Kernstücke des neu entwickelten gemischt-dimensionalen Multi-
physik-Problems und des gemischt-dimensionalen Strukturmodells für die Ballonangio-
plastie zu einer neuartigen Fluid-Balken-Struktur Interaktionsmethode unter Berücksichti-
gung von Balken-Festkörper Interaktion kombiniert und das resultierende Verfahren wird
auf ein idealisiertes Modell einer gestenteten Arterie angewendet. Insgesamt zeigen die
in dieser Arbeit erzielten Ergebnisse das erhebliche Potenzial des gemischt-dimensionalen
Modellierungansatzes, nicht nur im Kontext der Ballonangioplastie, sondern als verall-
gemeinertes Werkzeug zur Abbildung der Interaktion von schlanken Strukturen mit 3-
dimensionalen Kontinua. Weitere mögliche Erweiterungen und interessante zukünftige
Anwendungsszenarien werden am Ende dieser Arbeit skizziert.
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ûfh Vector of fluid mesh motion displamcent nodal values
v̂ale Vector of fluid mesh motion velocity nodal values
λfsi Vector of fluid-structure interaction Lagrange multiplier nodal values

λ̂
fsi

Vector of fluid-structure interaction Lagrange multiplier nodal values
f s,fsih Vector of fluid-structure interaction force values on structural nodes
ff,fsih Vector of fluid-structure interaction force values on fluid nodes
τ Parameter relating displacements and velocities
λfbi Fluid-beam interaction Lagrange multiplier
λfbi
h Finite element approximation of the fluid-beam interaction Lagrange

multiplier

λ̂
fbi
h Vector of fluid-beam interaction Lagrange multiplier nodal values

λ̂
fbi,k
h Nodal fluid-beam interaction Lagrange multiplier values

fF ,fbih Fluid-beam interaction force acting on the fluid
fB,fbih Fluid-beam interaction force acting on the beam
ffbsih Vector of fluid-beam-structure interaction force values on fluid nodes

Linear Forms

a (·; ·) Semi-linear form
b (·) Linear form
c (·, ·) Bi-linear form

Matrices and Vectors

A Nonlinear or linear operator
D, M Matrix arising from the mortar finite element method
xfbsi Vector containing all FBSI related states
f Right hand side vector

Partitioned fluid-structure interaction algorithm

rfbi Fluid-beam interaction residual
ffbih Fluid-beam interaction force
J̃kfbi Jacobian
γ Step size parameter for finite differences approximations
δy Step size for finite differences approximations

xix



List of Tables

Abbreviations

0D 0-dimensional
1D 1-dimensional
2D 2-dimensional
3D 3-dimensional
a.e. almost everywhere
AMG Algebraic multigrid
BFGS Broyden-Fletcher-Goldfarb-Shanno
BTSS Beam-to-solid-surface
CT Computed tomography
CVD Cardiovascular disease
DES Drug-eluding Stent
DoF Degree of freedom
FBI Fluid-beam interaction
FBSI Fluid-beam-structure interaction
FD Finite differences
FE Finite element
FEM Finite element method
FSI Fluid-structure interaction
GPTS Gauss-point-to-Segment
HPC High performance computing
IBM Immersed boundary method
L-BFGS limited-memory Broyden-Fletcher-Goldfarb-Shanno
LAD Left anterior descending artery
LBB Ladyzhenskaya-Babuška-Brezzi
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1. Introduction

1.1. Motivation

”An estimated 17.9 million people died from [cardiovascular diseases] in 2019, represent-
ing 32% of all global deaths” according to the World Health Organization (WHO) [3]. This
makes cardiovascular diseases (CVDs) the leading cause of death worldwide, cf. Figure
1.1a, and the number is increasing from year to year as shown in Figure 1.1b. CVDs are
a group of disorders involving the heart and/or blood vessels. Examples include cere-
brovascular, coronary heart, and peripheral arterial diseases, which impede the blood sup-
ply to brain, heart, and arms and legs, respectively. The high number of deaths motivates
the desire for minimally invasive procedures that reduce the risk of peri-operative compli-
cations during arterial and coronary repairs. This accounts for the success of image-guided
catheter-based minimally invasive treatment procedures, or interventional radiology, as
these interventional surgeries may represent a low-risk treatment option and an alterna-
tive to established open vascular surgical procedures [96].

(a) Leading causes of death worldwide 2016.
Taken from [3].

(b) Trend in global cause of death. Taken from
[2].

Figure 1.1.: Data on cardiovascular diseases provided by the World Health organization

One such intervention, which is used to treat coronary artery disease and atherosclerosis, is
balloon angioplasty. During balloon angioplasty, a catheter with a small balloon is guided
through the artery to the blockage and is inflated in order to widen narrowed or blocked
arteries. Often a wire-like structure, a bare-metal stent or, more recently, a drug eluding
stent (DES), is placed inside the artery to keep the vessel open after the balloon is removed.
The process is shown in Figure 1.2 for a DES. Even though the minimally invasive nature
of this procedure generally reduces the risk of peri-operative complications compared to
traditional bypass procedures, the risk of post-surgical complications and required follow-
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up surgeries due to:

• damage to the arterial wall,

• stent migration, where the stent becomes loose and starts moving through the artery,

• restenosis and renarrowing, where the artery grows shut again,

• and artery rupture,

is still relatively high.

Figure 1.2.: The process of balloon angioplasty. Insertion of the stent (top), expansion of
balloon and stent (middle), deflation of the balloon (bottom). Taken from [127].

In a study of 1, 058 patients the rate of failure for a standard bare-metal stent was found to
be 21.0 %, and 8.6 % for a DES [140]. Adverse wall shear stress (WSS) and arterial injury
during stenting have been found to be contributing factors. However, the reasons for these
complications and pathological tissue responses are not fully understood yet.

Avoiding these unfavorable outcomes still represents a challenge, thus, motivating com-
putational methods as a tool to enhance the understanding of the underlying causes and
for the computer-based training of surgeons to prevent post-operative complications in
the future [38, 40]. Furthermore, simulating the interaction of the stent with the arterial
system may benefit the process of image-based surgery planning by reducing the neces-
sity of taking undesirably frequent images for catheter guidance [121]. In addition, a great
variety of stent and balloon catheter products is currently available on the market. See-
ing that in many instances stent design may have a larger influence on thrombosis and
restenosis than the stent deployment procedure itself, cf. [162], numerical experiments to
choose the one best suited for a specific patient or situation may prove advantageous in
terms of long-term outcomes of interventions. Last but not least, computer-aided design
of new endovascular devices based on the understanding of post-operative complications
may provide a useful tool in the future.
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1.2. Numerical modeling of balloon angioplasty and stented arteries

1.2. Numerical modeling of balloon angioplasty and stented
arteries

The idea of using numerical experiments based on the finite element method (FEM) as a
tool to aid in the design phase of engineering products in general, and the design of en-
dovascular devices specifically, is not new. For instance, in [13], numerical investigation
is used to propose new stent designs that reduce adverse WSS with the goal to reduce
WSS-related in-stent restenosis. Further works, such as [94, 147], study the influence of
stent design on hemodynamic features associated with restenosis with the goal of finding
the best stent design characteristics to improve long-term outcomes of balloon angioplasty.
Another mechanism generally associated with restenosis is stenting-induced arterial wall
injury. [115] stipulates that the reduction of stent-induced arterial wall injury needs to
play an essential part in the design of new endovascular devices. This topic is picked up
by works such as [80], where a strong effect of stent design on stenting-induced damage
is demonstrated. Based on that, works such as [139] adopt numerical simulation as a tool
to propose novel stent designs that lead to reduced peak stresses, thus, demonstrating the
potential of computer-aided design for endovascular devices. However, not only the de-
sign of stents but also their material has an influence on its mechanical behavior. Materials
and coatings generally influence the expansion and recoil behavior as well as the build-up
of micro stresses that may further affect the longevity of stents [170, 168]. Furthermore,
the stent is not the only component influencing the outcome of balloon angioplasty. The
outcome of interventions is also affected by the specific patient’s vessel geometry and the
composition of plaque and stenosed regions [170, 169].

However, complete modeling of the effects of balloon angioplasty leads to very complex
systems incorporating not only fluid-structure interaction (FSI) of the medical device with
the hemodynamics but a multitude of additional interactions. These interactions include
contact between the stent structures and the arterial wall and the interaction between the
vessel walls and the pulsatile blood flow. The high complexity of the mechanics gov-
erning balloon angioplasty generally necessitates the incorporation of simplifications for
the numerical simulations to yield results in adequate time. Frequently applied modeling
simplifications include the assumption of symmetry and symmetric expansion behavior
of the stent [49, 206, 147, 33], the use of generic pipe geometries instead of patient-specific
ones to assess new stent designs [80, 206, 59, 147], the analysis of the stent’s free expan-
sion behavior without any interactions with the vessel wall [103], the neglect of blood
flow [103, 139, 49, 80, 206] or pre-stressing [139], as well as the assumption of rigid ves-
sels [59, 147] and the simplification of the considered constitutive laws [49, 206, 33]. While
these simplifications lead to valid approaches for many research questions, there are other
phenomena that one may only capture via modeling the interplay of a multitude, or even
all, of the interactions and complexities characterizing balloon angioplasty.

One highly complex component of balloon angioplasty models is the stent structure it-
self. Because of their intricate geometries, high slenderness, and the large deformations
during insertion, the stent meshes generally require a large number of 3-dimensional (3D)
finite elements (FEs). To address this issue, in [183], Tambača et al. propose a general
1-dimensional vascular stent model, which is utilized in [184] to efficiently simulate the
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behavior of coronary stents under physiologically reasonable conditions. As an extension
of that, the behavior of this 1-dimensional (1D) stent model is compared to the results of
a fully resolved 3-dimensional simulation in [215]. A difference of less than 6% in the dis-
placement magnitude at a complexity reduction, in terms of degrees of freedom (DoFs),
of more than 400 is observed. These results motivate the use of a reduced-dimensional
model, which exhibits desirable properties addressing the aforementioned challenges of
3D modeling, for the stent structure. In particular, within this thesis, the stent is modeled
as a 1D Cosserat structure, governed by geometrically exact beam theory, embedded in 3D
space.

In the case of balloon angioplasty, not only the behavior of the stent but especially its
interaction with the arterial wall, be it chemical in the case of DESs, or mechanical in na-
ture, is of interest. In general, this necessitates mixed-dimensional models to capture the
interaction between the 1D beam equations with classical 3D continuum-based models de-
scribing the blood flow and the mechanics of the vessel wall. The upcoming section gives
an overview of recent developments in reduced-dimensional models and their interaction
with continuum fields.

1.3. Reduced- & mixed-dimensional modeling

The application of dimensionally-reduced models to adequately describe complex behav-
iors of slender bodies has a long-standing history. The formulations in this paper greatly
build on the extension of such models to the nonlinear regime of finite deformations in
three dimensions. Important to mention in this context is the extension to a finite strain
problem in 3D by Simo in [175] based on the work by Reissner in [158]. The formulations
proposed in these works fall in the group of geometrically exact beam theories and consti-
tute the basis of computationally efficient and rather well-posed problems for systems of
slender bodies. The actual beam implementations used in the remainder of this thesis are
described in detail in [134, 135, 133].

These reduced-dimensional formulations can be used to model highly complex systems
of slender structures. To further capture their interaction with their surroundings, mixed-
dimensional modeling approaches are required. Such mixed-dimensional models are not
restricted to endovascular devices but naturally arise in a multitude of applications that
include structures with high slenderness ratios. Applications of mixed-dimensional mod-
els in the literature include the coupling of water reservoirs with wells [30], the modeling
of blood vessels within tumors [110], and reaction-diffusion as well as action potential
models [37, 167, 20]. Nevertheless, the most prominent examples are the coupling of beam
theory with solid and fluid continua.

The interaction of rod-like structures with fluid flow plays an important role in a broad
spectrum of applications varying from biomechanical to industrial processes. Applications
in which immersed fibers have a significant impact on the fluid flow include the modeling
of optimal flow control. In [114], an experimental analysis of different coatings of hairy
flaps to control vertex shedding behind an immersed cylinder is reported, and in [55], a
homogenized model is used to model the hairy coating. A similarly global effect on the
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(a) The schematics of a submerged
canopy. Taken from [15].

(b) The geometry of a stent-graft. Taken
from [78].

Figure 1.3.: Examples of slender structures interacting with 3D continua

flow can be observed in the case of terrestrial canopies and submerged vegetation. Even
though one immersed fiber does not affect the fluid flow considerably, the movement and
interaction of a large patch of fibers has a significant impact on the vorticity of the overall
flow [192, 193, 145, 54]. In this context, the application of mixed-dimensional models, such
as [198, 193], leads to a more accurate solution than homogenized methods, cf. [29, 44,
204], while simultaneously leading to computationally more efficient methods than fully
resolved ones [145, 54].

In contrast, the interaction of rod-like structures with structural continuum equations has,
first and foremost, been studied in the context of fiber-reinforced materials. In [150, 32,
48, 155, 67, 97] string-like models have been placed into solid continua with limited in-
corporation of modes of deformation such as bending and torsion. Such methods have
been extended to couplings of full beam theories with structural continua more recently,
e.g., in [177, 43, 179, 98]. However, little research exists on the interaction of beams with
2-dimensional (2D) surfaces of structural bodies. While node collision methods can gen-
erally be used to model the interaction of slender structures with surfaces [16], methods
specifically tailored to the mixed-dimensional interaction of 2D surfaces with 1D beams
are still rare [109, 176].

The solution to all these mixed-dimensional interaction problems leads to new challenges
compared to equal-dimensional formulations. General assurance of well-posedness of
mixed-dimensional problems as well as recovering theoretical optimal convergence are
still elusive topics of interest [19, 84, 113, 118, 27, 167, 138]. From a numerical perspective,
some of the most prominent research questions include the challenge of how to couple
3D variables with 1D stress resultants and how to transfer values between unavoidably
geometrically non-matching meshes. In the realm of FSI, [91] represents one of the first
contributions on mixed-dimensional coupling methods for 1D equations with 3D fluid
flow. The coupling is based on an immersed boundary-type (IBM) method. The beam is
coupled with the Navier-Stokes equations on the reconstructed beam’s surface, making it
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a surface-to-volume coupling scheme as categorized in [177]. Within surface-to-volume
coupling approaches, the slender body is modeled using 1D equations, the fluid domain
consists of the entire simulation domain, and the fluid-beam interaction (FBI) quantities
are coupled on the beam’s reconstructed surface. This makes it necessary to reconstruct
the beam’s surfaces to be coupled with the fluid equations, and in turn, to exchange rele-
vant data between the beam’s· surface and its centerline. As a result, the fluid domain has
to be massively refined in order to resolve the surface mesh tying, and also the coupling
procedure itself rapidly grows more complex in terms of computational efficiency. This
reduces the computational advantages of employing a reduced-dimensional beam model.
The work of Tschisgale et al. [192] represents an intermediate step since the beam’s surface
does not have to be reconstructed. Instead, classical regularized delta functions, which de-
pend on the beam’s radius, are used to add FBI forces to the overall problem. This method,
nevertheless, also necessitates the use of finely resolved background meshes in order for
the delta functions to have a width of multiple fluid elements. A truly mixed-dimensional
FBI method, that directly couples the two fields on the 1D beam centerline and, therefore,
allows for relatively coarse background meshes, was discussed only in [205]. Here, the
coupling was applied to the simulation of a transcatheter heart valve. The computational
results of the biomechanical problem look promising, however, no numerical study of the
necessary assumptions for the validity of the method nor its limitations are presented.

1.4. Research objectives

The aim of this thesis is to provide an efficient computational framework for the investi-
gation of long-term outcomes of balloon angioplasty and stent insertion based on mixed-
dimensional finite element modeling. To target this goal, two work packages can be iden-
tified:

• the development of a novel fluid-beam interaction (FBI) approach that can be used
to capture the interaction of stents with blood flow, and that can be applied to appli-
cations beyond that,

• and the design of an efficient, accurate computational model for the simulation of
balloon angioplasty based on mixed-dimensional interactions.

As outlined in Section 1.3, the application of reduced-dimensional models and their cou-
pling to fluid flow has been studied for many years. However, a truly mixed-dimensional
1D-3D coupling approach under an explicit statement of its model assumptions and anal-
ysis of its limitations is still missing. While the true 1D-3D coupling raises a multitude
of questions and challenges, this type of coupling is essential for the resulting method of
maintaining the efficiency benefits of employing a reduced-dimensional structure model.
For a truly efficient mixed-dimensional framework, the fluid mesh is required to be in-
dependent of the beam geometry in the sense that the finite element size should not be
required to be smaller than the beam’s diameter. Such a dependence leads to a dispropor-
tionate complexity for the envisioned application regime, where applications may contain
large numbers of very slender interacting fibers. Further, to be able to model complex ge-
ometries such as stents, the method should not have any requirements when it comes to
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the position of the fibers relative to the background mesh.

Moreover, it is not uncommon for slender fibers in general, and stents during balloon an-
gioplasty in particular, to display large displacements. The FBI approach is, thus, required
to be robust with respect to large displacements of the immersed fibers and their inter-
action. Especially in the case of balloon angioplasty with stent insertion, the interaction
of the stent with blood flow is not the only phenomenon worth capturing. Rather, the
FBI approach has to be sufficiently flexible to be extended to include additional complex
interaction effects. Such effects include the contact of the stent with the arterial wall, inter-
actions between individual stent struts, and interaction of the arterial wall with the flow.
The method, thus, has to be able to also handle unstructured as well as moving meshes.

Furthermore, as the goal of this thesis is the development of a FBI framework specifically
tailored to the interaction of very slender bodies with 3D fluid flow, the application regime
and underlying assumptions have to be clearly stated and the accuracy and limitations of
the approach have to be well analyzed.

Last but not least, a unified framework of specifically tailored mixed-dimensional models
as an efficient simulation tool that is able to capture the various mechanical interactions
that occur during balloon angioplasty is still missing. To aid in the design of new endovas-
cular devices and to find solutions on a patient-specific basis, high accuracy, efficiency, and
simplicity of the model setup are crucial requirements for a useful computational frame-
work.

1.5. Scientific novelties

This thesis describes a novel mixed-dimensional interaction framework that addresses all
aforementioned requirements which, to the best of the author’s knowledge, makes it the
first of its kind. The novel highly accurate mixed-dimensional methods are applied in the
context of balloon angioplasty. A model based on geometrically exact beam theory is pro-
posed to significantly reduce the number of required DoFs without an unacceptable loss of
accuracy. Mixed-dimensional methods are used to model the interaction of the stent with
fluid flow, cf. [75] and Chapter 7, and for the interaction of the stent with the balloon and
vessel wall, cf. [176] and Chapter 5. The contact interactions between the balloon and the
vessel wall are modeled using state-of-the-art mortar finite element methods. To show-
case the robustness of the novel mixed-dimensional and general interaction methods with
respect to physically meaningful parameters and situations, highly accurate constitutive
artery models, pre-stressing and as pre-stretching is included in the considered simula-
tions of balloon angioplasty-related simulations. The capability of the applied methods in
the context of biomedical applications is illustrated by their ability to answer common re-
search questions as well as their validation with respect to real-life observations and fully
resolved numerical examples. To the author’s knowledge, this constitutes the first applica-
tion of a truly mixed-dimensional model to the simulation of balloon angioplasty. Finally,
based on the developed angioplasty model, a novel balloon-catheter technology for the
use in patient-specific, curved, and asymmetric vessels is proposed and its usefulness is
demonstrated by numerical examples.

7



1. Introduction

To summarize, this work constitutes:

• the first successful application of a mortar-type discretization approach to couple 1D
fibers embedded into a fluid continuum,

• the first implementation of a mixed-dimensional coupling scheme on a moving fluid
mesh,

• the first analysis of the modeling assumptions and limitations of a true 1D-3D cou-
pling approach in the context of fluid-structure interaction,

• the first application of a mixed-dimensional model to the simulation of balloon an-
gioplasty,

• and the first time a balloon-catheter model based on an anisotropic material is pro-
posed to address asymmetric arterial geometry features.

1.6. Outline

The remainder of this thesis is structured as follows: In Chapter 2 the relevant governing
equations for a mixed-dimensional model of balloon angioplasty, namely for nonlinear
solid mechanics, geometrically exact beam theory, and fluid mechanics, are recounted. In
addition, the main mathematical concepts of weak solutions, the finite element method
(FEM), constraint enforcement techniques and their spatial discretization, and optimal
control problems are briefly reviewed. Afterward, state-of-the-art numerical formulations
and important algorithmic details for contact mechanics and FSI are summarized.

The subsequent developments of a mixed-dimensional model for balloon angioplasty and
stented arteries are structured into three distinct parts. In Part I, a computational FBI
framework is developed. In Chapter 3, a mixed-dimensional approach to couple geomet-
rically exact beam theory with fluid flow on a fixed background mesh is introduced. The
weak forms for two different constraint enforcement techniques are presented and the non-
linear systems of equations arising from application of the FEM are stated. Subsequently,
a novel partitioned algorithm strategy specifically tailored to the FBI methodology is pro-
posed. In the end, numerical examples validate the proposed approach and illustrate its
envisioned application regime as well as its limitations. In Chapter 4, the introduced FBI
approach is extended to fluid flow on moving meshes. In particular, an algorithm is out-
lined which allows capturing the FBI on a fluid mesh which is updated by a moving mesh
partial differential equation (MMPDE) based on the fluid’s interaction with a 3D structure.
The algorithm, therefore, allows to capture FBI related phenomena and classical FSI within
the same simulation. The approach is validated by a numerical example.

Part II focuses on a mixed-dimensional structural model to simulate the process of bal-
loon angioplasty and stent insertion. Chapter 5 introduces the mixed-dimensional model
problem including the employed numerical method to represent the stent’s interaction
with balloon and artery. The model is validated by demonstrating the its ability to capture
well-known phenomena from literature and medical practice. In Chapter 6, the developed
model is applied to the computer-aided design of endovascular devices. Specifically, a
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novel patient-specific technology for balloon angioplasty in curved blood vessels is pro-
posed. As a proof of concept, optimal control concepts are applied to optimize the novel
balloon design for the treatment of generic curved vessels and vessels with asymmetric
cross-sections. In the end, a numerical experiment, which compares the optimized de-
vice’s behavior to that of classical balloons, is conducted.

Finally, in Part III the results from Parts I and II are consolidated and a model to analyze
the influence of stent placement on blood flow including FBI, FSI as well as interactions of
the stent with the vessel wall, is presented. The model is validated by demonstrating its
ability to capture effects known from the literature and medical practice.

To conclude the thesis, the novelties and achievements therein are summarized and an
outlook on ongoing and future research is given.
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2. Governing equations & numerical
methods

The simulation of balloon angioplasty and stent insertion necessitates the accurate mod-
eling of a multitude of individual components as well as their interactions. Within this
chapter, first, some of the most important definitions and theorems that build the basis of
the FEM for the solution of Partial Differential Equations (PDEs) are reviewed. In order
to provide a basis for the treatment of interface and optimization problems, the funda-
mentals of constraint enforcement optimal control techniques are supplied before review-
ing the single field equations used within the remainder of this thesis. The formulations
include the applied nonlinear solid continuum model, the incompressible Navier-Stokes
equations, and the used variants of geometrically exact beam theory. Then, the computa-
tional contact and FSI frameworks used in subsequent chapters are stated. This chapter
is not intended to give an elaborate review of the finite element methods and continuum
mechanics. Instead, throughout this chapter, the interested reader is referred to more ex-
tensive literature on the discussed topics.

2.1. Mathematical concepts for weak solutions & the finite
element method

Within this section, some of the mathematical basics of the finite element method are re-
counted. In particular, the definition of the most important function spaces used within
the remainder of this work as well as important theorems ensuring well-posedness for
classical applications, are recapitulated. The following definitions and theorems are based
on the introductions in [82].

The finite element method is based on the so-called weak form of the balance equations. In
general, existence of a solution that fulfills the equations in a strong, or point-wise, sense
cannot be guaranteed. However, depending on the problem and its geometry, the existence
of a solution that fulfills the equations in a weak, or integral, manner can be proven. For the
weak form, the requirements on the regularity of the solutions can be loosened. In order to
define the weak forms of the continuum equations, and the form of their solutions, within
this work, some useful function spaces are defined here. Furthermore, some important
properties that will be used within subsequent chapters are recapitulated.
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2. Governing equations & numerical methods

Definition 2.1 (Lebesgue Spaces) For 0 ≤ p < ∞, let the spaces of equivalence classes for
Lebesgue measurable functions be

Lp (Ω) :=

w : Ω → R Lebesgue measurable :

Ñ∫
Ω

|w|p dΩ

é 1
p

<∞


/

∼, (2.1)

with the equivalence relation

w ∼ v ⇔

Ñ∫
Ω

|w − v|p dΩ

é 1
p

= 0 ⇔ w = v almost everywhere (a.e). (2.2)

Here, almost everywhere is defined as everywhere in the integration domain up to a domain of
measure zero. Then, the function spaces can be equipped with the norm

∥·∥Lp(Ω) :=

Ñ∫
Ω

|·|p dΩ

é 1
p

. (2.3)

Additionally, the space L2 (Ω) can be equipped with the inner product

(w, v)L2(Ω) :=

∫
Ω

w · v dΩ. (2.4)

The function space L2 (Ω) is required in the following to ensure that all equations devel-
oped in the remainder of this thesis are well-defined.

In addition to the function w, PDEs generally contain the function’s partial derivatives.
In order to allow for a lower regularity of the weak solution, as compared to the classical
strong form, the concept of weak derivatives is introduced.

Definition 2.2 For k ∈ N0, let the function space of ”nice” infinitely often differentiable functions
with compact support in Ω be denoted by

C∞
c (Ω) :=

{
w ∈ C∞ (

Ω̄
)
: supp (w) ⊂ Ω is compact

}
. (2.5)

Definition 2.3 (Weak Derivatives) Let Ω be an open domain and, for all K ⊂ Ω compact, let
u ∈ L1 (K) be a function. If there exists a function w ∈ L1 (K), for all K ⊂ Ω compact, such that

∫
Ω

(v · ψ) dΩ = (−1)|α|
∫
Ω

Ç
w · ∂|α|ψ

∂α1x1 ... ∂αnxn

å
dΩ ∀ ψ ∈ C∞

c (Ω) , (2.6)

then v is called the |α|-th weak derivative of w and denoted as Dαw := v within this chapter.
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2.1. Mathematical concepts for weak solutions & the finite element method

The concept of a weak derivative can then be used to define the Sobolev spaces:

Definition 2.4 (Sobolev Spaces) Under the same requirements as above, the Sobolev space
W k,p (Ω) can be defined as:

W k,p (Ω) := {w ∈ Lp (Ω) : Dαw ∈ Lp (Ω) ∀ |α| ≤ k} , (2.7)

and its inner product takes the form

(w, v)Hk(Ω) :=
∑
|α|≤k

(Dαw,Dαv)L2(Ω) . (2.8)

Further, the following notation will be used in the remainder of this thesis: Hk (Ω) :=W k,2 (Ω).

The Sobolev spaces will be used to ensure well-posedness of the subsequent weak so-
lutions. A drawback of Lebesgue and Sobolev spaces is the fact that functions are only
defined up to a subset of measure zero. This poses a problem when it comes to bound-
ary conditions, i.e., if a certain displacement or velocity fields needs to be prescribed on a
boundary. Since boundaries represent a subset of measure zero, boundary conditions are
a priori not well-defined. The upcoming definition and theorem represent a mathematical
technique to still enable the imposition of boundary conditions under specific prerequi-
sites.

Definition 2.5 For k ∈ N0, let the closure of C∞
c (Ω) in Hk (Ω) be denoted as Hk

0 (Ω).

The space Hk
0 (Ω) can be interpreted as the space of all functions in Hk (Ω) that are zero

themselves, and that posses k weak derivatives that are zero, on the boundary ∂Ω. All
other, non-zero, boundary conditions can be recovered by adding a function conforming
with the weak problem, and the desired values on the boundary, to the solution. The well-
posedness of this action is ensured by the use of a trace operator. For Lipschitz boundaries
∂Ω, the existence of a trace is postulated by the trace theorem:

Theorem 2.6 (Trace Theorem) Assume that Ω ⊂ Rn is open and bounded with Lipschitz bound-
ary ∂Ω. Then for all p ∈ (0,∞) there exists a unique bounded linear operator

T :W 1,p (Ω) → Lp (∂Ω) (2.9)

such that

Tw = w|∂Ω ∀ w ∈W 1,p (Ω) ∩ C
(
Ω̄
)
, (2.10)

where w|∂Ω represents the restriction of w to the boundary ∂Ω. Then, Tw is called the trace of w
on ∂Ω.

The trace theorem ensures that boundary conditions are well defined. This is not necessar-
ily the case if the above requirements are not fulfilled, particularly if the boundary ∂Ω does
not represent a Lipschitz boundary of a domain Ω. Theorem 2.6 also enables the definition
of the trace space H

1
2 (∂Ω) as the space of traces of the functions contained in H1 (Ω).
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2. Governing equations & numerical methods

Definition 2.7 Under the assumptions of Theorem 2.6, the trace space of H1 (Ω) can be defined as
the image of the trace operator, i.e.,

H
1
2 (∂Ω) :=

{
Tw | w ∈ H1 (Ω)

}
. (2.11)

The definition of trace spaces is essential for the well-posedness of interface problems.
Further, the concept of dual spaces and dual pairings will be necessary in order to define
the constraint enforcement techniques in Section 2.2:

Definition 2.8 (Dual Pairing) Let X be a Banach space. Further, let X∗ denote the space of
bounded linear functionals on X , i.e.,

X∗ :=

®
f : X → R linear : sup

∥w∥X=1
|f (w)|R <∞

´
(2.12)

Then, X∗ is called the dual space of X , and the dual pairing of w∗ ∈ X∗ and w ∈ X is defined as

⟨w∗, w⟩X∗,X := w∗ (v) . (2.13)

Dual pairings, thus, represent the evaluation of a linear functional. In the subsequent
chapters, particularly the dual space H− 1

2 (∂Ω) of H
1
2 (∂Ω), and the dual space H−1 (Ω)

of H1
0 (Ω) will be required. To simplify the notation in the remainder of this thesis, and

to ensure consistency with other scientific works, the following theorem will be implicitly
utilized:

Theorem 2.9 (Riesz Representation Theorem) Let X be a Hilbert space. For every v ∈ X
there exists a linear functional w∗ ∈ X∗ such that

⟨w∗, w⟩X∗,X = (v, w)X ∀w ∈ X, (2.14)

and it holds ∥w∗∥X∗ = ∥v∥X .

Vice versa, for every w∗ ∈ X∗ there exists v ∈ X such that (2.14) holds and ∥w∗∥X∗ = ∥v∥X .

The implicit application of the Riesz representation theorem allows the use of the inner
product to denote the dual pairing of w ∈ X and v ∈ X∗ in the remainder of this thesis, as
it is common practice.

With these basic building blocks, the general idea of the finite element method can be
summarized, starting from the weak form. In order for the equilibrium equations q (w)
to be fulfilled a.e., the continuum equations have to hold on any smooth non-zero subset
of Ω ⊂ R3, i.e.,

(q (w) , ψ)L2(Ω) = 0 ∀ ψ ∈ L2 (Ω) , (2.15)
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2.1. Mathematical concepts for weak solutions & the finite element method

where ψ can be interpreted as the density of a measure dψ such that dψ = ψ · dΩ. The
equation can, thus, be interpreted as enforcement of the equations on any smooth non-
zero subset of Ω. For nonlinear equations q (w), (2.15) generally leads to an operator a :
W × L2 (Ω) → R, which is nonlinear in the first and linear in the second argument. Such
operators are denoted as semi-linear forms in the remainder of this work. In general, more
regularity on the test functions ψ is imposed in order to shave off regularity requirements
on the solution w, i.e., w ∈ H1 (Ω).

The idea of the finite element method is to find the (best) solution in a finite dimensional
function space Vh with dimension N and basis ψih, i ∈ [N ]. In this case, a general function
wh ∈ Vh can be written as

wh :=
N∑
i=0

wihψ
i
h (x) , (2.16)

where the function is uniquely determined by the coefficients wih, i ∈ [N ].

With such a finite dimensional basis of the employed function space, the test functions in
Vh can be represented as linear combination of finitely many basis functions, leading to the
discretized relation

(
ah (wh) , ψ

i
h

)
L2(Ωh)

= 0 ∀ ψih ∈ Vh. (2.17)

In the case of the finite element method, this space is generally chosen in such a way
that functions can be approximated by piece-wise polynomial functions. The basis itself
is, thus, fully determined by the chosen finite element technology and the employed finite
element mesh. A comprehensive review of the finite element method can be found in [214].

Within the remainder of this work the weak form of the problems at hand is chosen as the
starting point. Where appropriate, the interface conditions are stated in strong form before
being incorporated into the overall system. For the discretization in time, a finite differ-
encing (FD) scheme is applied to all considered problem descriptions. In the following, the
finite differencing schemes are assumed to be representable as a linear combination of the
state during two successive time steps n and n+ 1, respectively. For the sake of a compact
notation, the discrete systems of equations are, thus, only given for the state of one time
step [·]n+1.

Remark 2.10 In the remainder of this work, to be consistent with the notation found in literature,

the weak derivative Dαw is denoted as
∂αw

∂xα
.

Furthermore, for a given domain Ω, the notation (·, ·)Ω := (·, ·)L2(Ω) is frequently used to denote
the L2 inner product on the domain Ω, and, for the reader’s convenience, vector-valued variables
and operators are denoted by a bold symbol.
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2. Governing equations & numerical methods

2.2. Methods of constraint enforcement

The solution of interface problems as they are considered within this thesis requires the
fulfillment of interface constraints. In general, such types of constraint problems can be
interpreted as cases of constrained optimization, i.e., as the minimization of a potential
function

min
w∈W

Q (w) ,

G (w) = 0,
(2.18)

where Q : W → R represents a positive definite potential that depends on the variable
w ∈W and G :W → R denotes a constraint on w.

In the following, two mathematical techniques commonly used to incorporate the con-
straint G into the finite element system are presented. The remainder of this section follows
the review given in the thesis [152].

2.2.1. Lagrange multiplier method

The Lagrange multiplier method represents a stat-of-the-art method for the exact enforce-
ment of interface constraints, cf. [105, 9, 130, 177, 153], among others. The Lagrange mul-
tiplier method introduces an additional variable λ ∈ W ∗ to the constrained problem. The
Lagrange multiplier variable is used to combine the constraint function and the potential
functional into the constrained functional

Qlm (w) := Q (w) + ⟨λ,G (w)⟩W ∗,W . (2.19)

Building the Gateaux derivative of Qlm in direction (δw, δλ) ∈ W ×W ∗ leads to the fol-
lowing system of equations to be solved:Ç

∂Q (w)

∂w
+

≠
λ,
∂G (w)

∂w

∑
W ∗,W

å
δw + ⟨δλ,G (w)⟩W ∗,W = 0. (2.20)

The application of Lagrange multipliers gives rise to a primal-dual problem, meaning that
the optimization can be viewed as a minimization with respect to the primal variable w,
and as a maximization problem with respect to the dual variable λ. The overall problem
can, therefore, be viewed as a saddle point problem of the general form

a (w; δw) + c (δw,λ) = 0,

c (w, δλ) = 0,
(2.21)

where a (w; δw) represents a generic semi-linear form and c (δw,λ) denotes a bi-linear
form. To guarantee a stable solution, such saddle point problems have to adhere to the
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2.2. Methods of constraint enforcement

Ladyzhenskaya-Babuška-Brezzi (LBB), or inf-sup, condition [23]. For the inf-sup condition
to be fulfilled, the function spaces W ∋ w and M ∋ λ must be chosen in a way such that
the relation

inf
w∈W

sup
λ∈M

c (w,λ)

∥w∥W ∥λ∥M
≥ γ, (2.22)

holds for a γ > 0. Here, ∥·∥W and ∥·∥M are norms on the function spaces W and M ,
respectively.

Within the remainder of this work, the inf-sup condition will be frequently brought up
and the LBB-stability, or its circumvention, will be discussed for all considered interface
problems and their discretizations.

2.2.2. Penalty method

Another frequently applied method of constraint enforcement is the penalty method [126].
For the penalty method, a penalty potential is added to the functional to be minimized
such that the overall potential takes the form

Qpen (w) = Q (w) +
ϵ

2
G (w) · G (w) . (2.23)

The method can be interpreted as a penalization of violations of the constraint G (W) via
scaling with the penalty parameter ϵ > 0. Building the Gateaux derivative in direction
δw ∈W gives rise to the following system of equations to be solved:

∂Qpen (w)

∂w
=

Å
∂Q (w)

∂w
+ ϵG (w)

∂G (w)

∂w

ã
δw = 0. (2.24)

Constraint enforcement via the penalty method, generally, leads to a more or less moderate
violation of the enforced constraint for any ϵ > 0 and can only be interpreted as exact for
the limit case ϵ → ∞. Besides the violation of the constraint, in the general case, a further
drawback is the deterioration of the condition number of the arising system matrix, espe-
cially as ϵ → ∞. These two opposing challenges, reducing the constraint violation while
keeping the condition number of the problem rather low, make the choice of a reasonable
penalty parameter non-trivial. However, for suitable penalty parameters ϵ, the penalty
method represents a simple and robust approach for the enforcement of constraints.

Remark 2.11 The penalty method as a constraint enforcement method is often described as infe-
rior to the Lagrange multiplier approach as, for any penalty parameter ϵ > 0, the constraint is
never exactly fulfilled. Nevertheless, the regularization parameter can also be interpreted as a mod-
eling parameter to allow for some penetration. An example is given by the modeling of micro-scale
roughness of the surface, as presented in the author’s own work in [18].
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2. Governing equations & numerical methods

2.2.3. Discrete enforcement of constraints & numerical integration

Analogously to the various methods of constraint enforcement in the continuous regime
presented above, there also exist numerous methods for their numerical and computa-
tional realization. This section is dedicated to giving some remarks on the manner in
which the discretized constraints are enforced and on the integration procedure applied to
the arising coupling contributions. In general, all coupling approaches considered within
this work are applicable to non-matching meshes. The numerical integration of these cou-
pling contributions, therefore, requires the choice of a suitable integration domain as well
as the decision on how to enforce fulfillment of the constraint G (w) in the discrete regime.

An obvious strategy for the integration of the coupling contributions, with respect to a
chosen integration mesh, is the element-wise integration. However, this approach intro-
duces integration errors due to weak discontinuities at the finite element boundaries of the
projected mesh. In contrast, within a segment-wise integration approach, numerical inte-
gration is applied to each segment on the integration mesh, or slave side, corresponding to
exactly one finite element on the projected mesh, or master side. This approach requires a
segmentation of the integration side but also leads to smaller integration errors. Especially
for meshes moving relative to each other, as is the case for contact mechanics and IBM-
type approaches, segment-wise integration leads to a more consistent method compared
to element-wise integration.

Remark 2.12 In the case of beams interacting with a continuum field, Figure 2.1 illustrates both
cases, element-wise as well as segment-wise integration. In the remainder of this thesis, if not stated
otherwise, the more accurate segment-based integration approach is adopted from [177] to evaluate
any beam-to-continuum field contributions.

beam node Gauss pointsegmentation point

element-based integration segment-based integration

Figure 2.1.: Segmentation of the beam element for stable and accurate numerical integra-
tion as presented in [177]: circles and crosses denote beam nodes and quadra-
ture points, respectively. The squares subdivide the beam into integration seg-
ments, such that an integration cell on the beam does not cross element bound-
aries of the fluid mesh to not integrate across weak discontinuities.
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Closely related to the question of numerical integration is the choice of where to enforce the
constraint in the discrete case. A classical method is the Gauss-Point-to-Segment (GPTS)
approach. For GPTS-type approaches, the coupling contributions are integrated over the
integration mesh but the constraint is only enforced on distinct Gauss points on the pro-
jected mesh. The satisfaction of patch tests can in general not be guaranteed. In contrast,
when employing the Segment-to-Segment (STS) approach, the constraints are enforced
in a weak sense on the whole coupling domain. This type of method, most recently the
mortar finite element method [202, 153], enables a rather smooth representation of the con-
tact forces while requiring the introduction of a separate discretization field, e.g., for the
Lagrange multipliers introduced in Section 2.2.1.

Given conforming surfaces, the mortar finite element method ensures a straightforward
choice of shape functions for the Lagrange multiplier field to obtain an inf-sup stable
mixed finite element formulation. Namely, the shape functions for the Lagrange multi-
plier field can be chosen as the shape functions of the primal field on the surface of one of
the interacting bodies.

Remark 2.13 Note that the above stated simple choice of shape functions for the Lagrange multi-
plier field only leads to an inf-sup stable mixed finite element formulation in the case of conforming
surfaces. This requirement does not hold in the case of immersed meshes nor in the case of complex
geometries, for which the discretized geometry additionally depends on the choice of finite element
shape functions. In these cases, the surfaces are in general not conforming. Nevertheless, the mor-
tar finite element method constitutes the first mesh coupling method that passes patch tests and,
therefore, represents the state of the art when it comes to discretization methods for mesh tying and
computational contact mechanics.

2.3. Optimal control

Optimal control describes the problem of finding a control that optimizes a given dynam-
ical system with respect to a quantity of interest. This quantity of interest is described by
the so-called goal function. In general, such a goal function depends on the state of the
system as well as the control itself. Using the state w and the control p, the goal function
is denoted as J (p,w). The objective is to find the optimal parameter p within a given
set of parameters P such that the state of the investigated system exhibits some desired
behavior. The goal function has to represent a positive definite functional in order for the
optimal control problem

Problem 2.14

min
p∈P

J (p,w) ,

a (p,w) = 0,
(2.25)

to be solvable. Here, a (p,w) represents the state equation of the system. The state equa-
tion serves as a dynamic constraint that relates the control p to the state w. For simplicity,
within this thesis the control p is assumed to contain a finite number of parameters.
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2. Governing equations & numerical methods

If a is such that it allows for a unique solution (p,w), the state of the system can be rewrit-
ten in dependence of the control p as w := w (p), and the reduced goal functional

j (p) := J (p,w (p)) , (2.26)

can be defined. A solution to Problem 2.14 (within the interior of the domain P) is then
given as solution of

∂j (p)

∂p
= 0. (2.27)

In general, the reduced goal functional j (p) represents a nonlinear problem. Within the
remainder of this work, some variant of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) al-
gorithm will be applied to treat that nonlinearity without having to explicitly compute the

Hesse matrix
∂2j (p)

∂p2
. The BFGS algorithm can be classified as a quasi-Newton algorithm

meaning that the solution of the system is found by finding the root of (2.27) using an
approximation of the Hessian matrix.

2.4. Structure field

Xs xs (Xs, t)

x

y

z

us (Xs, t)
Ω0
s Ωs

Figure 2.2.: Kinematics of nonlinear solid mechanics and the relationship between the ini-
tial configuration Ω0

s and the current configuration Ωs

For nonlinear solid mechanics a Lagrangian description in material coordinates Xs, where
Xs is contained in the reference configuration Ω0

s ⊂ R3, is used. Every point in the refer-
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2.4. Structure field

ence configuration is related to its current position xs ∈ Ωs using the displacement field
us (t,Xs) via the relation

xs (t,Xs) = Xs + us (t,Xs) . (2.28)

This relation is illustrated in Figure 2.2. Furthermore, based on the displacement, the de-
formation gradient can be specified as

F =
∂xs (t,Xs)

∂Xs
= I+

∂us (t,Xs)

∂Xs
, (2.29)

where I ∈ R3×3 denotes the identity matrix. The deformation gradient represents a fun-
damental measure for the deformation in nonlinear continuum mechanics and relates in-
finitesimal line elements in the reference configuration to their counterparts in the current
configuration. The deformation gradient can, therefore, be used to define strain measures.
In particular, within the remainder of this thesis the Green-Lagrange strain tensor

E =
1

2

Ä
F TF − I

ä
, (2.30)

is employed to describe finite strains. The Green-Lagrange strain tensor is an objective
strain measure, i.e., it is independent of rigid body modes including rotations, making it
well suited for various nonlinear application scenarios. Its energy conjugate stress tensor
is the second Piola-Kirchhoff stress tensor S. Based on the right Cauchy-Green tensor
C = FTF, and assuming a hyperelastic constitutive behavior with strain energy function
Ψ, the second Piola-Kirchhoff stress tensor is given by the relationship

S = 2
∂Ψ

∂C
. (2.31)

In the remainder of this work, the first Piola-Kirchhoff stress tensor P will be used, which
can be expressed as

P = FS. (2.32)

With these considerations, the semi-linear form for the nonlinear continuum model in
weak form can be written as

as (us; δus) := ρs

Å
∂2us

∂t2
, δus
ã
Ωs

+ (P,∇δus)Ωs
, (2.33)

and, for a Neumann boundary ΓsN ⊂ ∂Ωs and corresponding value hs as well as the body
force fs, the linear form defaults to

bs (δus) := − (fs, δu
s)Ωs

− (hs, δu
s)Γs

N
. (2.34)

For a function usD that conforms to the Dirichlet boundary condition on the Dirichlet
boundary ΓsD ⊂ ∂Ωs, and the function space of admissible structure displacement solu-
tions on the time interval I := (0, T )
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2. Governing equations & numerical methods

WS :=

ß
u ∈ L2

Ä
I,H1

0 (Ωs)
3 + usD

ä
:
∂2u

∂t2
∈ L2

Ä
I, L2 (Ωs)

3
ä™

,

the state of a solid body is given by the solution of the following problem:

Problem 2.15 Find us ∈ WS such that
t∫

0

as (us; δus)− bs (δus)dt = 0 (2.35)

for all δus ∈ L2
Ä
I,H1

0 (Ωs)
3
ä

.

Using the finite element method, the discretized solution of the solid displacement can be
approximated as the sum of the finite element shape functionsNi, i ∈ [ns], multiplied with
the nodal displacement values ûs,ih , i ∈ [ns], i.e.,

ush :=
ns∑
i=1

Niû
s,i
h . (2.36)

Insertion of (2.36) into the discretized version of Problem 2.15 and subsequent numerical
integration leads to the following system of nonlinear equations

ASS (ûsh) û
s
h = fSh . (2.37)

Here, ûsh is made up of the nodal displacement values ûs,ih , ASS (ûsh) represents the non-
linear equations arising from the discretization of the semi-linear form as (·; ·), and fSh con-
tains all nodal contributions of the external forces and body loads acting on the solid.

Remark 2.16 To distinguish structural components satisfying the above equations of nonlinear
solid mechanics from reduced-dimensional models, in the remainder of this thesis such bodies will
frequently be denoted as solids and continuum-based, or 3D, structures.

2.5. Geometrically exact beam theory

The applied beam models constitute geometrically exact beam models in the sense that
”the relationships between the configuration and the strain measures are consistent with
the virtual work principle and the equilibrium equations at a deformed state regardless of
the magnitude of displacements, rotations and strain” [36, p. 1126]. The two geometrically
exact beam formulations treated within this work fall into the category of semi-induced
beam theories, meaning that the kinematic equations are consistently derived from the
three-dimensional continuum theory while the constitutive equations are directly postu-
lated on the one-dimensional geometry. In contrast to fully induced methods this ap-
proach ensures the fulfillment of important mechanical principles such as the equilibrium
of forces [134].
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2.5. Geometrically exact beam theory

0 l

r (t, ·) Ωb

Ωs

Figure 2.3.: Depiction of a beam and its centerline representation by a curve

In order to write the two particular beam formulations in the upcoming subsections, namely
the Simo-Reissner (SR) model and a torsion-free (TF) variant, in a compact form, let

Vp
B :=

ß
v : [0, l] → R3 :

∥∥∥∥∂αv∂s
∥∥∥∥
B
<∞, α ≤ p

™
for p ∈ {1, 2} , (2.38)

be two different spaces of curves on [0, l] with additional requirements on the smoothness
of higher order derivatives of the contained curves. Both spaces shall be endowed with
the inner product (·, ·)B :=

∫
R
(·, ·)R3 ds and the associated norm ∥·∥B :=

√
(·, ·)B. Anal-

ogously, (·, ·)R3 denotes the scalar product of two vectors in 3D and its associated norm
∥·∥R3 :=

√
(·, ·)R3 will be used throughout the remainder of this thesis. Furthermore, in

the upcoming subsections, the cross product of two vectors a and b will be denoted by
cross product operator S (a) b := a× b.

In general, the state of a beam at each time t ∈ I := [0, T ] can be characterized by the
position of its centerline r (t, ·) ∈ Vp

r := Vp
B, for p ∈ {1, 2}, and the cross-section rotation

vectorψ (t, ·) ∈ Vθ := V1
B. With the help of Rodrigues’ rotation formula, the rotation vector

can be used to define a rotation matrix Λ = Λ (ψ (t, s)) ∈ SO (3) in the special orthogonal
group SO (3) for all s ∈ [0, l], t ∈ I . Figure 2.3 visualizes the image of the centerline curve
Ωb := Ωb (t) := r (t, [0, l]) ⊂ R3, as well as the 3-dimensional domain Ωs := Ωs (t) ⊂ R3

denoting the beam’s current configuration, at a specific time t.

To maintain a compact notation where possible, the solution state ηb ∈ VB summarizing
all relevant unknowns, such as the centerline position r and the rotation vector ψ, is intro-
duced to represent the state of the regarded beam. The exact form of ηb and VB depends
on basic modeling assumptions and therefore differs for the two beam models, which will
be introduced in the upcoming subsections.

For now, using the presented general notation, the general beam problem can be completed
by introducing the Dirichlet boundary conditions ηD, an initial state η0, and the function
space of admissible solutions

WB :=
{
η ∈ L2 (I,VB + ηD) : r̈ ∈ L2

(
I, L2 ([0, l])

)}
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2. Governing equations & numerical methods

Then, the state of the beam can be characterized as solution ηb of the following problem:

Problem 2.17 Find ηb ∈ WB such that

T∫
0

ab
Ä
ηb; δηb

ä
− bb

Ä
δηb
ä

dt = 0, (2.39)

for all δηb ∈ L2 (I,VB) and with ηb = η0 a. e. for t = 0, and ∥r′ (0, ·)∥R3 = 1 a. e. on [0, l].

The exact form of the semi-linear form ab
(
ηb; δηb

)
, the linear form bb

(
δηb

)
, and the corre-

sponding solution space VB will be given in the upcoming subsections for two particular
beam models.

Remark 2.18 In problem 2.17, the additional condition ∥r′ (0, ·)∥R3 = 1 means that r (0, ·) repre-
sents an arc-length parameterized curve on [0, l], or, in other words, l defines the initial length of
the beam.

2.5.1. Simo-Reissner beam model

The Simo-Reissner (SR) model is based on the assumptions of plane, rigid cross-sections,
but does not introduce any additional kinematic constraints on the beam. For further
details on the derivation, see e.g., [175].

For the density ρb, shear and Young’s modulus Gb and Eb, respectively, the cross-section
areaA, the reduced cross-section valuesA1 andA2, the torsional moment of inertia IT , and
the principal moments of inertia I2, I3, the constitutive matrices CM , CF , and the inertia
tensor Cρ are given as follows:

CM :=

Ñ
GbIT 0 0
0 EbI2 0
0 0 EbI3

é
,CF :=

Ñ
EbA 0 0
0 GsA2 0
0 0 GsA3

é
,

and Cρ :=

Ñ
ρb (I2 + I3) 0 0

0 ρbI2 0
0 0 ρbI3

é
.

(2.40)

With the deformation measures Γ := ΛT r′ − e1, and the solution state ηb := (r,ψ), the
semi-linear form in Problem 2.17 is defined as

ab
Ä
ηb; δηb

ä
:= (ρbAr̈, δr)B +

(
ΛCFΓ, δr

′)
B

+
(
ΛCMΩ, δθ′

)
B −

(
ΛCFΓ,S (δθ) r′

)
B

+ (S (w) cρw + cρẇ, δθ)B ,

(2.41)

24



2.5. Geometrically exact beam theory

and the linear form defaults to

bb
Ä
δηb
ä
:= (f , δr)B +

î
f̃T δr

∣∣∣l
0
+ (m, δθ)B +

î
m̃T δθ

∣∣∣l
0
. (2.42)

Here, the external forces f , the external moments m, the point forces f̃ , the point moments
m̃, the angular velocity vector w such that S (w) = Λ̇ΛT , and the material curvature vector
Ω such that S (Ω)a = ΛTΛ′a for all a ∈ R3, are used.

For the above integrals to be well defined, the appropriate function space for test and trial
functions has to take the form of the product space VB := V1

r × Vθ.

2.5.2. Torsion-free beam model

In the case of initially straight beams with isotropic cross-section, under the assumption
of vanishing shear strains, and assuming that torsional components of distributed and
discrete external moments acting on the beam are negligible, the SR beam formulation
can be simplified to a torsion-free (TF) model. The following formulation was originally
introduced in [135] for static problems, and extended to transient problem types in [133].

The above assumptions lead to exactly vanishing torsion only in static problems. Never-
theless, it is suggested in [133] that under the mentioned restrictions, torsional values are
”very small” also in dynamic applications. Thus, the kinematic assumptions of the beam
can be reformulated such that the unknown vector of rotationsψ can be removed from the
system and only the unknowns ηb := r remain. The semi-linear form then takes the form

ab
Ä
ηb; δηb

ä
:= (ρbAr̈, δr)B +

Å
EbA

(∥r′∥ − 1) r′

∥r′∥
, δr′
ã
B

+

Ç
EbI

∥r′∥4
S
(
r′
)
r′′,S

(
δr′

)
r′′ + S

(
r′
)
δr′′
å

B

−
Ç
2EbI

∥r′∥6
S
(
r′
)
r′′, δ

Ä
r′T r
ä
S
(
r′
)
r′′
å

B
−
Ç
m,

S (r′)

∥r′∥2
δr′
å

B

−
ñ
m̃S (r′) δr′

∥r′∥2

∣∣∣∣∣
l

0

,

(2.43)

and the linear form is defined by

bb
Ä
δηb
ä
:= (f , δr)B +

î
f̃T δr

∣∣∣l
0
. (2.44)

The removal of rotational unknowns from the system of PDEs through enforcement of the
TF constraint comes with the cost of additionally required smoothness of the centerline
curves, namely r ∈ VB := V2

r .
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2. Governing equations & numerical methods

2.5.3. Discretization of the beam centerline

t̂1h

t̂2h

d̂1
h

d̂2
h

x

y

z

Figure 2.4.: Visualization of a Hermite beam centerline interpolation

The beam centerline and velocity discretization applied in this contribution is exclusively
based on 3rd-order C1-continuous Hermite shape functions as suggested in [135, 133]. C1-
continuity is required to capture the beam’s curvature and, thus, for the torsion-free beam
formulation presented above to be well-defined. Based on the nodal positions d̂jh, the
nodal tangents t̂jh, the initial length l0ele of the finite element, and the corresponding posi-
tional and tangential shape functions Hd

j and Ht
j , respectively, the semi-discrete centerline

position and beam velocity fields can be expressed as

rh :=
nb∑
j=1

Hd
j d̂

j
h +

l0ele
2

nb∑
j=1

Ht
j t̂
j
h, vbh := ṙh. (2.45)

Within the FBI framework proposed in Chapter 3 as well as the applied variant of the
beam-to-solid-surface coupling method employed in Chapter 5, only the centerline terms
will be coupled. As the centerline terms are independent of the employed beam theory,
the details of the cross-sectional rotation discretization will be skipped here. The inter-
ested reader may be referred to [133] for details on the applied Petrov-Galerkin method
for discretization in space.

Insertion of (2.45) into (2.39) and subsequent spatial integration leads to the nonlinear sys-
tem

ABB
Ä
η̂bh
ä
r̂h = fBh . (2.46)

Here, r̂h contains all beam-related degrees of freedom (DoFs) including positional and
tangential unknowns, and accordingly so do the system of nonlinear equations ABB

Ä
η̂bh
ä

and the vector fBh .

In the remainder of this thesis, the time evolution of the torsion-free variant is discretized
using a Generalized-α time integration scheme [34] with the spectral radius set to ρ∞ =
1, and all parameters set accordingly to produce a second-order accurate time stepping
scheme. For the Lie-group Generalized-α time stepping scheme, based on multiplicative
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updates of the rotational degrees of freedom of the employed beam finite elements, the
interested reader is referred to [24, 25].

2.6. Fluid field

To model the fluid field, the instationary, isothermal incompressible Navier-Stokes equa-
tions for Newtonian fluids on fixed meshes are used. Within this section, the weak form
of the Navier-Stokes equations, their spatial discretization with finite elements, and the
arising nonlinear system of equations, is recounted. For a more comprehensive overview
of challenges and methods in the context of the finite element discretization for the incom-
pressibe Navier-Stokes equations, the interested reader is referred to [156].

2.6.1. Weak form of the Navier-Stokes equations

To define the weak form of the Navier-Stokes equations, the standard Sobolev space on the
fluid domain Ωf with zero trace on the boundary ∂Ωf ,H1

0 (Ωf ) is used. The fluid boundary
∂Ωf = ΓfN ∪ ΓfD can be partitioned into a Neumann boundary ΓfN and a Dirichlet bound-
ary ΓfD. On the Neumann boundary ΓfN , a traction hf is prescribed, and a function vfD
with prescribed velocity values on ΓfD is introduced as Dirichlet boundary condition. Fur-

ther, let Vp :=
{
p ∈ L2 (Ωf ) | ∥p∥L2(Ωf) = 0

}
be the space of normalized pressure solutions,

Wp
F := L2 (I,Vp) the space of admissible pressure solutions, and

Wv
F :=

ß
v ∈ L2

Ä
I,H1

0 (Ωf )
3 + vD

ä
:
∂v

∂t
∈ L2

Ä
I,H1 (Ωf )

3
ä™

,

the space of admissible fluid velocity solutions.

For the fluid field, the semi-linear form takes the form

af
Ä
vf , pf ; δvf , δpf

ä
:= ρf

Ç
∂vf

∂t
, δvf

å
Ωf

+ 2γf
Ä
E
Ä
vf
ä
,∇vf

ä
Ωf

−
Ä
pf ,∇ · δvf

ä
Ωf

+ ρf
ÄÄ

vf ·∇
ä
vf , δvf

ä
Ωf

+
Ä
∇ · vf , δpf

ä
Ωf

,

(2.47)

and the linear form is defined by

bf
Ä
δvf
ä
:= ρf

Ä
ff , δvf

ä
Ωf

+
Ä
hf , δvf

ä
Γf
N

, (2.48)

with the strain rate tensor E
(
vf

)
=

1

2

Ä
∇vf +

(
∇vf

)Tä, a body force ff , the dynamic
viscosity γf , and the fluid density ρf , respectively.

In the case of a divergence-free initial velocity field vf0 , the behavior of the fluid on the
domain Ωf is fully described by
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Problem 2.19 Find
(
vf , pf

)
∈ Wp

F ×Wv
F , with vf = v0 a. e. for t = 0, such that

T∫
0

af
Ä
vf , pf ; δvf , δpf

ä
− bf

Ä
δvf
ä

dt = 0, (2.49)

for all
(
δvf , δpf

)
∈ L2

Ä
I,H1

0 (Ωf )
3
ä
× L2 (I,Vp).

2.6.2. Discretization of the Navier-Stokes equations

Discretization of the Navier-Stokes equations leads to a mixed finite element formulation
in the fluid velocity and pressure, with the velocity as the primal variable and the pressure
representing a dual variable that ensures a divergence-free flow. Instead of the employ-
ment of inf-sup stable finite elements for the velocity-pressure pairs, stabilization terms
are added to the system in order to circumvent the LBB condition. This makes it possible
to use simple, equal-order P1/P1 shape functions for the fluid solution pairs, i.e.,

vfh :=

nf∑
i=1

Niv̂
f,i
h , pfh :=

nf∑
i=1

Nip̂
f,i
h . (2.50)

Within the remainder of this thesis, a PSPG stabilization is applied to the Navier-Stokes
equations to circumvent the inf-sup condition [189]. To further improve the numerical
properties of the resulting system of equations a div-grad stabilization term, and the SUPG
method to prevent instabilities in convection-dominated flows, are added [77, 57, 171]. To
specify the additional stabilization terms for the inf-grad, and SUPG/PSPG term, respec-
tively, the discrete residuals, rMh for the momentum, and rCh for the continuity equation,
are introduced as

rMh = ρf
∂vfh
∂t

+ 2γfE
Ä
vfh

ä
−∇pfh + ρf

Ä
vfh ·∇

ä
vfh, (2.51)

and
rCh = ∇ · vfh. (2.52)

With these definitions, the overall stabilized (time-continuous) nonlinear fluid system reads

afh

Ä
vfh, p

f
h, δv

f
h, δp

f
h

ä
:= ρf

Ç
∂vfh
∂t

, δvfh

å
Ωh

f

+ 2γf
Ä
E
Ä
vfh

ä
,∇vfh

ä
Ωh

f

−
Ä
pfh,∇ · δvfh

ä
Ωh

f

+ ρf
ÄÄ

vfh ·∇
ä
vfh, δv

f
h

ä
Ωh

f

+
Ä
∇ · vfh, δp

f
h

ä
Ωh

f

+ ρf
Ä
τMrMh ,v

f
h · δv

f
h

ä
Ωh

f

+
Ä
τCr

C
h ,∇ · δvfh

ä
Ωh

f

+
Ä
τMrMh ,∇δp

f
h

ä
Ωh

f

.

(2.53)
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Here, τC and τM represent suitable stabilization parameters according to the definitions
in [187, 201]. Evaluation of the integrals over the trial and test functions in (2.53) leads to
the nonlinear system of equations

AFF
Ä
v̂fh

äÇ v̂fh
p̂fh

å
= fF , (2.54)

where the vectors v̂fh and p̂fh are made up of the components v̂f,ih and p̂f,ih , respectively, as
defined in (2.50). AFF

Ä
v̂fh

ä
is obtained by evaluation of (2.53), and fF contains all nodal

contributions of the applied forces introduced in (2.48).

2.7. Contact mechanics

Within this section, frictionless normal contact between two interacting bodies is pre-
sented. In the following, the two structural bodies are denoted as Ωs,1 ⊂ R3 and Ωs,2 ⊂ R3,
and the superscripts (·)1 and (·)2 are used to denote quantities related to the first and
second body, respectively. An extension to multi-body contact can be realized straightfor-
wardly. Furthermore, let Γc := Γc,1 ⊂ ∂Ω1

s be the potential contact area on ∂Ωs,1. Γc is in
general not the actual contact area. For a comprehensive review of computational contact
and impact mechanics, modeling and discretization approaches, the interested reader is
referred to [119, 12].

2.7.1. Contact conditions

The modeling of contact mechanics leads to a highly nonlinear problem based on inequal-
ity constraints. In contrast to equality constraints such as introduced in Section 2.2, in-
equality constraints only contribute to the system of equations when the solution variable
lies on a multi-dimensional surface of the region of admissible solutions. This distinction
is already obvious from the continuous constraint equations for frictionless normal contact
in strong form, which are described by the Hertz-Signorini-Moreau conditions:

gn ≥ 0 on Γc,

pc < 0 on Γc,

gn · pc = 0 on Γc.

(2.55)

Here, pc denotes the contact pressure in normal direction and the gap function gn describes
the minimal distance of one point Xs,1 on body Ωs,1 to body Ωs,2, i.e.,

gn (t,Xs,1) := −nc,1 · (xs,1 (t,Xs,1)) · (xs,1 (t,Xs,1)− x̄s,2 (xs,1 (t,Xs,1))) , (2.56)

where nc,1 (xs,1 (Xs,1, t)) represents the outward-facing normal on ∂Ωs,1 at xs,1, and the
contact point x̄s,2 ∈ ∂Ωs,2 is defined via the closest point projection
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x̄s,2 (xs,1) := arg min
xs,2∈∂Ωs,2

∥xs,1 − xs,2∥ . (2.57)

In the primal-dual system given by (2.55), the gap function gn represents the primal vari-
able and the contact pressure pc acts as the dual variable. Considering the physical inter-
pretation of (2.55), the conditions ensure non-penetration, the absence of adhesive stresses,
and represent a complementary condition.

2.7.2. Weak form of the contact problem

Following the approach in [153], a Lagrange multiplier-based constraint enforcement is
applied to model the contact between the two interacting bodies. Due to the inequality
constraint, the function space Mλ of admissible Lagrange multipliers takes the form of a
cone, i.e.,

Mλ :=
{
µ ∈ H− 1

2 (Γc)
3 | ⟨µ,w⟩

H− 1
2 (Γc)

3,H
1
2 (Γc)

3 ≤ 0 ∀ w ∈ H
1
2 (Γc)

3
}
. (2.58)

In the following, the semi-linear forms for body Ωs,1 and body Ωs,2 containing the struc-
tural equations presented in (2.33) are denoted as as1 (u

s
1; δu

s
1) and as2 (u

s
2; δu

s
2), respec-

tively. Furthermore, the linear forms for body Ωs,1 and body Ωs,2 containing the forces
acting on the two structures, as introduced in (2.34), are denoted as bs1 (δus1) and bs2 (δus2),
respectively. Additionally, WS,1 and WS,2 denote the function spaces of admissible dis-
placement solutions for Ωs,1 and Ωs,2, respectively, and χs : xs,1 → x̄s,2 denotes the closest
point projection (2.57). Using (2.58) and the above defined notation, the problem of two
contacting bodies looks as follows:

Problem 2.20 Find (us1,u
s
2,λ

c) ∈ WS,1 ×WS,2 × L2 (I,Mλ) such that

t∫
0

as1 (u
s
1; δu

s
1)− bs1 (δus1)− (λc, δus1)Γc

dt = 0

t∫
0

as2 (u
s
2; δu

s
2)− bs2 (δus2)− (λc, δus2 ◦ χs)Γc

dt = 0

t∫
0

(δλc − λc,us1 − us2 ◦ χs)Γc
dt = 0

(2.59)

for all (δus1, δu
s
2, δλ

c) ∈ L2
Ä
I,H1

0 (Ωs,1)
3
ä
× L2

Ä
I,H1

0 (Ωs,2)
3
ä
× L2 (I,Mλ)
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2.7. Contact mechanics

2.7.3. Discretization of the contact constraints

To find a well-suited spatial discretization for the Lagrange multipliers, the mortar finite
element method, cf. [202, 153], is applied to the dual field. However, in the presence of
inequality constraints, the application of a so-called active set strategy is generally required
to find a solution of the overall problem. To avoid this requirement, the strategy in [207,
154] is applied, and the system is regularized by assuming a linear relationship between
the gap and the Lagrange multiplier field. As the Lagrange multipliers can be interpreted
as the contact pressure, this corresponds to the assumption of a linear relationship between
the contact pressure pc and the gap gn.

Therefore, the Lagrange multiplier field λc
h is approximated via nlm suitable shape func-

tions ϕk, k ∈
[
nlm

]
and the nodal Lagrange multiplier values λ̂

c,k
h as

λc
h :=

nlm∑
k=1

ϕkλ̂
c,k
h . (2.60)

Using the notation

⟨x⟩ =
ß
x, for x ≤ 0
0, for x > 0

, (2.61)

and assuming a linear relationship between the contact pressure and the gap, the nodal
DoFs of the Lagrange multiplier field can be rewritten using the gap function, or equiva-
lently the displacement functions of the two contacting bodies, as

λc
h :=

nlm∑
k=0

ϵc
〈
−ϕk

(
ush,1 − ush,2

)
· nc,h,1

〉
. (2.62)

Here, ϵc describes the slope of the linear relationship and nc,h,1 denotes the discretized
outer normal vector field on the surface γc.

Inserting (2.62) and the shape functionsNj,1, j ∈ [ns1] andNi,2, i ∈ [ns2] for the displacement
field on the first and second body, respectively, into (2.59), and integrating the coupling
contributions, gives rise to the following mortar matrices:

Dc (k, j) =

∫
Γc

ϕkNj,1 ds, Mc (k, i) =

∫
Γc

ϕkNi,2 ◦ χ ds,

for k ∈ [nlm], j ∈ [ns1], i ∈ [ns2].

(2.63)

Use of these matrices and the indices S1 and S2 for quantities related to Ωs,1 and Ωs,2,
respectively, leads to the following semi-discrete nonlinear system for the Problem 2.20:ñ

AS1S1 + ϵc (M
c)T κ−1Mc −ϵc (Mc)T κ−1Dc

−ϵc (Dc)T κ−1Mc AS2S2 + ϵc (D
c)T κ−1Dc

ô ñ
ûsh,1
ûsh,2

ô
=

ï
fS1
fS2

ò
. (2.64)
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Here AS1S1 and AS2S2 denote the nonlinear matrices introduced in 2.37, arising from the
structure continuum equations. The normalization matrix

κ (m,m) =

∫
Γc

ϕm ds, m ∈ [nlm], (2.65)

is required for the method to fulfill simple patch tests. In favor of a compact notation, the
explicit statement of dependencies of nonlinear matrices is dropped within the remainder
of this thesis.

2.8. Fluid-structure interaction

One of the big challenges in classical FSI simulations is the question of how to deal with
the different points of view commonly adopted when simulating the fluid and structural
domain, respectively. In fluid mechanics, the behavior of the flow field is commonly de-
scribed from a fixed point of view, in Eulerian coordinates x(x0, t). In structural mechan-
ics on the other hand, the observer follows the deformation of the solid in dependence
of a fixed reference domain, accordingly adopting a Lagrangian perspective. To over-
come this discrepancy, the Arbitrary Lagrangian-Eulerian (ALE) approach has been de-
veloped [83, 42]. The ALE frame introduces an extension function of the structural dis-
placement to the fluid domain to ”transform the Navier-Stokes equations to the reference
domain” [51, p.34].

This section is meant to recapitulate the ALE approach for solving the Navier-Stokes equa-
tions on moving meshes, the FSI coupling conditions, their enforcement through a mortar
finite element approach, and to review the concepts of strong and weak coupling algo-
rithms and related challenges. The interested reader is referred to [161] for a comprehen-
sive review of FSI in general, and to [105] and the thesis [129] for the application of mortar
finite element-based mesh tying to FSI systems.

2.8.1. Fluid formulation on deforming meshes

As stated above, an ALE observer is used to describe the fluid field governed by the in-
compressible Navier-Stokes equations on a moving domain. The ALE approach can be
interpreted as a compromise between the Eulerian and Lagrangian framework. Here, the
fluid domain is successively updated, similar to the Lagrangian frame, but the mesh does
not follow the movement of the fluid particles everywhere. Instead, a mesh velocity some-
where between the one of the Lagrangian and the Eulerian frame is applied. The ALE
mapping

A(x, t) : Ω0
f × I → Ωf (t) ,x 7→ x+ uf (x, t), (2.66)

is used to compute the updated mesh, effectively mapping the reference domain Ω0
f to the

current domain Ωf (t) at time t. The mapping relies on the fluid mesh displacement uf ,
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which is computed via the mesh motion PDE (MMPDE). For a suitable semi-linear form
ammpde (·; ·) and the space of admissible functions

Wu
F := {u ∈ L2

Ä
I,H1

0 (Ωf )
3
ä
: u = ûs|Γi on Γi × I}, ∂u

∂t
∈ L2

Ä
I, L2 (Ωf )

3
ä
,

the MMPDE reads as follows:

Problem 2.21 Find uf ∈ WF
u such that∫

I
ammpde

Ä
uf ; δuf

ä
dt = 0 (2.67)

for all δuf ∈ L2
Ä
I,H1

0 (Ωf )
3
ä

.

A typical PDE to compute the fluid displacement uf for the ALE transformation defined
above is the Laplace problem

ammpde :=
Ä
∇uf ,∇δuf

ä
. (2.68)

However, also other equations are possible. In general, the MMPDE should be as simple
as possible to be efficiently solved, while a smooth solution is desirable. In Chapter 4, for
instance, a hyperelastic constitutive law will be used to extend the displacements from the
FSI interface to the fluid mesh.

In order to compute the Navier-Stokes equations on a moving mesh, the mesh velocity

vale :=
∂uf

∂t
, (2.69)

is necessary Based on the mesh velocity the semi-linear form for the Navier-Stokes equa-
tions on moving meshes can ca be written as

afale

Ä
vf , pf ; δvf , δpf

ä
:= ρf

Ç
∂vf

∂t
, δvf

å
Ωf

+ 2γf
Ä
E
Ä
vf
ä
,∇vf

ä
Ωf

−
Ä
pf ,∇ · δvf

ä
Ωf

+ ρf
ÄÄÄ

vf − vale
ä
·∇
ä
vf , δvf

ä
Ωf

+
Ä
∇ · vf , δpf

ä
Ωf

.

(2.70)

For the Navier-Stokes equations on a moving mesh, evaluation of the integrals over the
trial and test functions in (2.70) leads to the nonlinear system of equations

Aale
FF
Ä
v̂fh, û

f
h

äÇ v̂fh
p̂fh

å
= fFh , (2.71)

where the vectors of unknowns and forces are as introduced in Section 2.6. Note that the
fluid matrixAale

FF contains an additional dependency compared to the matrix arising from
the Navier-Stokes equations computed on a fixed mesh, namely the dependence on the
fluid mesh displacement ûfh.
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2.8.2. Fluid-structure interaction coupling conditions

Ωf Γfsi Ωs

Figure 2.5.: Depiction of the fluid and structure domains Ωf and Ωs, respectively, and the
FSI interface Γfsi

Finally, the Navier-Stokes equations in ALE formulation as recounted in Section 2.8.1 have
to be coupled to the nonlinear elastodynamics equations. To model the interaction between
the two domains as defined in Figure 2.5, meaningful coupling conditions need to be en-
forced on the FSI boundary. Here, the coupling is enforced by a collection of continuity
conditions.

The first such condition is the geometric coupling condition

uf = us on Γfsi × I, (2.72)

which ensures continuity of the displacement variable on the FSI interface. Since the
displacement also describes the mesh movement, this geometric condition also ensures
matching domains and physically meaningful geometries.

Secondly, the kinematic coupling condition

vf = vs on Γfsi × I, (2.73)

ensures continuity of the velocity across the interface.

Last but not least, the surface traction on the fluid boundary has to equal the one on the
solid boundary in order to achieve an equilibrium of forces. This leads to the dynamic
coupling condition

hf = hs on Γfsi × I. (2.74)

Following the approach in [105, 130], relatinguf and vf on the interface Γfsi, and enforcing
the geometric coupling condition (2.72) using a Lagrange multiplier approach, gives rise
to the following continuous problem:
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Problem 2.22 Find
Ä
vf , pf ,uf ,us,λfsi

ä
∈ Wv

F ×Wp
F ×Wu

F ×WS × L2
Ä
I,H− 1

2 (ΓFSI)
3
ä

,
with vf = v0, rb = r0 a.e. for t = 0, such that

T∫
0

afale

Ä
vf , pf ; δvf , δpf

ä
− bf

Ä
δvf
ä
Γfsi

−
Ç
∂uf

∂t
− vf , δvf

å
dt = 0,

T∫
0

as (us; δus)− bs (δus)−
Ä
λfsi, δus

ä
Γfsi

dt = 0,

T∫
0

Ä
us − uf , δλfsi

ä
Γfsi

dt = 0

T∫
0

ammpde
Ä
uf ; δuf

ä
+
Ä
λfsi, δuf

ä
Γfsi

dt = 0

(2.75)

for all
Ä
δvf , δpf , δuf , δus, δλfsi

ä
∈ L2

Ä
I,H1

0 (Ωf )
3
ä
× L2 (I,Vp)× L2

Ä
I,H1

0 (Ωf )
3
ä
×

L2
Ä
I,H1

0 (Ωs)
3
ä
× L2

Ä
I,H− 1

2 (Γfsi)
3
ä

,

where ufD represents a Dirichlet boundary condition on the fluid mesh displacement uf .

Remark 2.23 It is noteworthy that the solution also fulfills the dynamic coupling condition (2.74)
via the Lagrange multiplier. In contrast, the kinematic coupling condition (2.73) is not naturally
built-in to the system. Instead, combination of the geometric coupling condition and the relationship

∂uf

∂t
= vf a.e. on Γfsi, (2.76)

ensures fulfillment of the kinematic coupling condition as

us = uf a.e. on I × Γfsi

⇒ ∂us

∂t
=
∂uf

∂t
a.e. on I × Γfsi

⇒ ∂us

∂t
= vf a.e. on I × Γfsi

(2.77)

2.8.3. Discretized nonlinear system of equations

In the following, the discrete system, discretized in space and time, is presented. Follow-
ing the approach in [105, 130], the Lagrange multiplier field is discretized according to the
mortar finite element method. The mortar matrices are build analogously to the case of
contact mechanics in Section 2.7, cf. (2.63). Analogously to the continuous case, the mor-
tar finite element method ensures enforcement of the geometric and dynamic coupling
conditions. In addition, the discretized version of (2.76) reads
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ûf,n+1
h := ûf,nh + τAF

Ä
v̂f,n+1
h − v̂f,nh

ä
, (2.78)

where τAF constitutes a parameter that depends on the employed time integration scheme.
Using this relation, discretization and integration of (2.75) in time and space leads to the
following nonlinear system of equations:


Aale

FF

Ä
v̂fh, û

f
h

ä
0 0 0

0 AAA 0 −
(
Dfsi

)T
0 0 ASS (ûsh)

Ä
Mfsi

Ä
ûsh, û

f
h

ääT
0 −τAFD

fsi Mfsi
Ä
ûsh, û

f
h

ä
0


n+1



Ç
v̂fh
p̂fh

å
ûfh
ûsh
λ̂
fsi


n+1

=


fFh

−fAF
h

fSh
−fΛFh


n+1

.

(2.79)

Here, the subscript AA highlights MMPDE related quantities, mixed subscripts AF denote
quantities coupling the fluid velocities to the mesh motion displacement.

Remark 2.24 In (2.78), the employed time integration scheme is used to relate the displacement to
the velocity in a strong manner. Due to the flexibility of using different time integration schemes
for the various fields the kinematic coupling condition will, therefore, not be exactly fulfilled, even
in a weak sense. For more details, the interested reader is referred to the thesis [129].

2.8.4. Solution algorithms

In general, solution schemes for FSI can be classified into two categories: strongly and
loosely coupled algorithms. The application of loosely coupled algorithms may lead to
artificial oscillations in the solution variables. The reason for these numerical instabilities
is the neglect of the added mass effect. Due to the incompressibility of the considered
flow, the fluid has to move along with every displacement of the solid. This added mass is
not taken into account when solving the solid problem separately. Especially for structure
models with small mass, i.e., because of a low density compared to the fluid density, these
loose coupling schemes are not suitable. Instead, a strongly coupled algorithm is required
to avoid these spurious effects.

To some extent related to the notion of strong and loose coupling is the division of FSI algo-
rithms into monolithic and partitioned solution procedures. Monolithic solution schemes
solve the entire global system of nonlinear equations at once, and always constitute strongly
coupled algorithms. The added mass effect is naturally accounted for by the applied non-
linear solutions algorithm, such as the Newton Raphson method. However, a consistent
linearization for all terms is required to ensure an efficient treatment, and the generally
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large system size makes the application of scalable linear iterative solvers such as alge-
braic multigrid (AMG) methods unavoidable. Due to the saddle-point like structure of
matrices arising from FSI problems, advance preconditioning is necessary to ensure the
efficiency of such iterative linear solvers.

Within partitioned solution schemes, the single fields are solved sequentially based cou-
pling information exchanged between the two fields. The most common partitioned scheme
is the classical Dirichlet-Neumann algorithm. Here, the fluid represents the Dirichlet par-
tition, for which the mesh displacement on the FSI boundary ûfh

∣∣∣
Γfsi

, based on the struc-

ture displacement solution ûsh, is prescribed as a Dirichlet boundary condition. The struc-
ture partition, conversely, serves as the Neumann partition, for which the interaction force
f s,fsih , based on the previous fluid solution, is applied on the interface Γfsi. If each field is
only solved once in each time step, the method constitutes a loosely coupled algorithm that
may lead to oscillation effects as described above. However, to recover strong coupling, a
staggered approach can be used. In such solution algorithms, the procedure of solving the
two subsystems in a staggered manner is repeated until a user-prescribed stopping crite-
rion is fulfilled. Nevertheless, models with particularly light structures may still present a
challenge, since the neglect of the added mass effect generally leads to convergence prob-
lems of the resulting fixed-point iteration. To facilitate and accelerate convergence in these
cases, an acceleration technique can be employed. Two such acceleration techniques in the
context of FBI will be shown in Section 3.3.

In the case of mortar mesh tying, and particularly for mortar dual shape functions, the
interface variables are easily calculated via the following equations:

ûfh =D−1
fsiM fsiû

s
h, (2.80)

and

f s,fsih =MT
fsiλ̂

fsi
= −MT

fsiD
−T
fsi f

f,fsi
h , (2.81)

where ff,fsih represents the interaction force acting on the fluid mesh. For more information
on the solution procedure in the context of FSI, the interested reader is referred to Chapter 4
and [105].
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Part I.

Fluid-beam interaction: a
computational framework
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In the area of FSI, the IBM [148, 149, 99] constitutes a well-studied method for mixed-
dimen-sional interactions. Nearly five decades ago, Peskin first explored the idea of em-
bedding a 1D body representing the response of a thin structure within a 2D fluid domain
to simulate the blood flow in the vicinity of a heart valve [148]. At the time, Peskin mod-
eled the blood flow via the incompressible Navier-Stokes equations spatially discretized
with a FD method. The force exerted by the heart valve on the fluid around it was modeled
as a direct linear response to the fluid velocity. The interpolation of the fluid velocity and
force response between the two meshes was realized by using so-called delta functions as
numerical approximations of Dirac functions.

Since that time a significant amount of research has been conducted on the extension and
application of the IBM to fully resolved equal-dimensional 2D and 3D FSI problems based
on fictitious domain methods, cf. [157, 81, 9, 124, 59], among others. In such methods,
the domain occupied by the immersed structure is filled by a fictitious fluid volume. This
usually leads to a coupling of the involved FSI values on the fictitious domain volume
and/or its surface. An exception represents the work of Baaijens in [9], in which applica-
tions of his proposed fictitious domain/mortar finite element methods to slender bodies
are shown. The slender bodies are modeled with continuum-based equations, while the
coupling interface is reduced to only one side of the fictitious domain. Comparisons with
fully coupled ALE-based methods show the validity of this simplification.

In the context of mixed-dimensional methods, beam formulations based on 1D equations
are embedded in a 2D fluid in [122, 198, 8]. In [122], the coupling of the fluid and the beam
is realized with moving composite meshes interacting on the beam surface, while an IBM-
type coupling of the beam surface with the background mesh is presented in [198], and
body-fitted meshes in combination with remeshing are employed in [8]. Finally, Huang
et al. [91] present results for an IBM-type method coupling a 1D beam formulation with
a 3D fluid. Again, the beam is coupled with the Navier-Stokes equations on the recon-
structed beam surface, making all of the mentioned approaches surface-to-volume cou-
pling schemes as categorized in [177]. In contrast, in the work of Tschisgale et al. [192],
classical regularized delta functions are used to add FBI forces to the overall problem. This
method, nevertheless, also necessitates the use of finely resolved background meshes.

Figure 2.6 shows representative fluid mesh resolutions for the different FBI approaches
discussed above. Here, the fibers are assumed to be modeled via a 1D model. Though,
Figure 2.6a shows the reconstruction of the beam’s actual surface and a subsequent fic-
titious meshing, as in the coupling used in [91, 122, 8]. Figure 2.6b shows a mesh with
approx. 3-5 fluid elements over the beam diameter as commonly required for IBM-type
methods, for which discrete delta functions are applied to approximate the beam diame-
ter. Such an approach can be found in [192, 198, 99]. Figure 2.6c depicts a representative
mesh as used within the FBI approach first proposed for a multi-physics problem in the
author’s previous work [75]. The model is based on the assumption of small beam radii
compared to the background elements and couples the two fields only along the beams’
centerline instead of its surface. This leads to the possibility of relatively coarse, and, there-
fore, computationally efficient background meshes. The method is, thus, one of the first
to be able to capture the actual physical interaction of the slender bodies with fluid flow
while maintaining the complexity reduction with regard to the DoFs gained through the
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(a) Representative mesh for a
surface-to-surface coupled
method

(b) Representative mesh for a
surface-to-volume coupled
method

(c) Representative mesh for the
centerline-to-volume coupling
schemes used within this thesis

Figure 2.6.: Representative meshes for various mixed-dimensional coupling strategies

employment of reduced-dimensional beam theory.

Nevertheless, the solution of mixed-dimensional FSI problems leads to additional algo-
rithmic difficulties which require treatment. Because of their considerable slenderness
and susceptibility to external forces, immersing beams within fluid flow generally leads
to numerical challenges with respect to the well-known added mass effect. Strong cou-
pling of the fluid and structure field is, thus, essential for the stability of the simulation.
As introduced in Section 2.8, strong coupling can be achieved by solving the full mono-
lithic multi-physics problem or by means of a staggered partitioned approach. In the past,
not much research has been devoted to the solution of linear systems arising from such
mixed-dimensional monolithic problems. In particular, the linear systems to be solved for
the beam field, as introduced in Section 2.5, are usually not diagonally-dominant, leading
to the need for advanced preconditioning. In addition, the mixed-dimensional nature of
the problem calls for specially tailored preconditioning for the overall monolithic problem
as analyzed in [113, 26, 84]. In order to use well-established solution techniques for the
two single fields, a staggered partitioned solution approach is chosen instead. In general,
an acceleration technique is needed to guarantee convergence of the staggered scheme
[164, 117, 63, 143, 122].

A further algorithmic difficulty stems from the fact that general applications of the en-
visioned FBI problems exhibit large displacements, making an IBM-type approach the
methodology of choice. Such methods have also been used in the context of mixed-dimen-
sional methods in [205, 198, 192, 112]. In contrast to classical ALE-based FSI approaches,
for IBM-type methods it is not possible to track the interaction interface. Instead, the inter-
face needs to be captured as the beams move through the fluid’s background mesh. In par-
ticular, for large numbers of immersed beams and parallel high-performance computing
(HPC), this gives rise to the need for efficient computationally-parallel search algorithms
to find the current beam position.

Once identified, coupling quantities have to be exchanged between the beam mesh and
the fluid’s background mesh. Mesh tying is part of many numerical applications rang-
ing from mesh partitioning approaches [202] to the simulation of multi-physics problems
such as FSI [105]. As detailed in Section 2.2, for such surface-coupled problems, the mor-
tar finite element method represents a mathematically sound, stable approach to transfer
coupling quantities from one mesh to the other. Successful applications include the case
of contact mechanics as well as ALE-based FSI [105, 153, 130, 9]. In the case of surface-
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to-volume coupling, as applied in IBM-type methods, this simple choice of shape func-
tions for inf-sup stable Lagrange multipliers is not guaranteed anymore. Nevertheless, in
terms of smoothness and robustness of the problem solution, such problems can still ben-
efit from using a mortar-type STS coupling approach. Examples of this are illustrated for
fictitious domain/Lagrange multiplier methods in the context of FSI in [9, 41, 17]. For a
mixed-dimensional mesh tying problem of 1D beam equations embedded into a 3D solid
volume, the STS approach’s advantages have recently been demonstrated in [177, 179].
This motivates the use of such a mortar-type discretization approach for the simulation of
slender structures interacting with incompressible fluid flow.

In combination with the author’s previous work in [75], the following analysis constitutes
the first rigorous numerical study of a truly mixed-dimensional 1D-3D coupling approach
to capture global effects of the interaction of nonlinear beam elements with 3D fluid flow
in a manner that enables the use of a relatively coarse background mesh compared to the
diameter of the slender beam. The method, thus, allows for a very efficient solution of the
FBI problem in terms of the required number of unknowns.
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3. Fluid-beam interaction

The aim of this chapter is the development of an efficient computational framework to
capture the interactions between slender bodies modeled using geometrically exact beam
theory and 3D fluid flow. To this end, first, the weak form of the overall FBI problem based
on a true 1D-3D coupling approach as well as its requirements and challenges are stated.
Afterward, two numerical coupling strategies, a GPTS and a mortar-type coupling, and
the arising nonlinear matrices after spatial integration with the finite element method, are
introduced. In order to ensure an efficient solution of these matrices, a specially tailored
partitioned algorithm for the solution of the FBI problem is presented, and potential chal-
lenges arising from the high slenderness of the beam structures, are discussed. In the end,
the nature of the 1D-3D coupling, the numerical and algorithmic building blocks, and the
method’s overall suitability for practically-relevant applications, are extensively validated
by numerical examples. Major parts of this chapter have already been published in [75].

3.1. Weak formulation

ΩfΩs Ωb
∂Ωs

Figure 3.1.: Domain of a fluid-beam interaction problem. Figure is taken from the author’s
article [75].

The single field equations introduced within Chapter 2 can now be used to formulate
the coupled fluid-beam interaction problem. In the following, the notation introduced in
Chapter 2 and visualized in Figure 3.1 will be used, and the fluid domain will be denoted
by Ωf , the time-dependent beam domain by Ωs, and the time-dependent beam centerline
position will be denoted by Ωb. Additionally, ∂Ωs shall represent the surface of Ωs. From a
continuum mechanics point of view, the interaction of the fluid and structure fields takes
place on the shared coupling interface Γ∗ := Ωs ∩ Ωf defined as the intersection of the
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respective closures of Ωs and Ωf . To model this interaction, the multi-physics nature of
FSI problems leads to additional challenges compared to single field equations. Among
these challenges is the fact, that the single field equations are based on different primal
variables, i.e., the velocity field vf for the Navier-Stokes equations, and the displacement
field or, more accurately in the present case, the beam position r for the structure.

As presented in Section 2.8, it is thus customary to introduce the structure velocity vs in
order to formulate the kinematic coupling condition

vf = vs a. e. on Γ∗, (3.1)

to ensure continuity of the velocity on the coupling interface Γ∗.

In the case of immersed or fictitious domain methods the FSI interface Γ∗ is not a priori
known but has to be captured as the embedded structures move through the fluid domain.
For IBM-type methods the coupling interface is commonly defined by the surface of the
structure domain moving through the fluid domain, i.e., Γ∗ := ∂Ωs, while the fluid domain
Ωf spans the whole computational domain. Thus, for IBM-type methods, (3.1) leads to a
surface-to-volume coupling approach, as adopted in [91, 122]. This holds in the sense that
the constraints are enforced on the structure surface, while no a priori fluid surface can be
defined and the coupling, thus, takes place within the fluid volume domain.

The aim of the proposed FBI method is to yield a computationally-efficient approach that
does not require the geometrical resolution of the embedded fibers by the background
mesh as in [122, 192, 193, 198]. Instead, the immersed fibers are assumed to be highly
slender, also compared to the background mesh. Under the assumption of sufficiently
small beam radii, the following simplifications can be argued to be valid:

i) The coupling of the two fields can be realized directly on the 1-dimensional beam
centerline, as it is done in [9, 177, 205, 110, 149].

ii) Rotational effects on the fluid flow are negligible.

Such a beam centerline-to-volume coupling approach, in contrast to the above mentioned
surface-to-volume coupling, reduces the complexity in the computations of the coupling
conditions due to the reduced dimensionality of the coupling interface as well as the fact
that no reconstruction of the beam surface is necessary.

For the beam velocity vb := ṙ : [0, l] → Ωb, (3.1) can be rewritten as

vf = vb ◦ r−1 a. e. on Ωb, (3.2)

where r−1 := r−1 (t, ·) : Ωb → [0, l] represents the inversion of the beam centerline curve,
and serves as projection of the beam’s current geometry Ωb in 3-dimensional space onto
the beam parameter space [0, l]. Equivalently, this condition can be written as

vf ◦ r = vb a. e. on [0, l] , (3.3)

on the parameter space [0, l].
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Meanwhile, the dynamic coupling condition ensuring continuity of tractions takes the
form

(f , δr)B + lim
∂Ωs→Ωb

Ä
σ
Ä
vf
ä
· n, δvf

ä
∂Ωs

= 0. (3.4)

It is not obvious how the result of the second term looks in the limit case. However, using
the restriction operator Π : H1 (Ωf )

3 → L2 (Ωb), it is assumed that the second term in (3.4)
leads to a 1-dimensional integral in the limit case, i.e.,

∫
Ωb

fffbi

Ä
vf
ä
·Πδvf ds, (3.5)

where the result of the operator

fffbi

Ä
vf
ä
: H1 (Ωf )

3 → L2 (Ωb) ,

represents a line force acting on the fluid. For the treatment via the penalty method, pos-
tulating the existence of such a line force suffices. Nevertheless, for coupling via a range of
regularized Lagrange multiplier methods such as Nitsche type methods, further analysis
of the exact form of the resulting line force is necessary. This question is closely related to
the existence of a sufficiently smooth restriction operator Π, which represents the 1D-3D
analogon to the projection postulated by the trace theorem, Theorem 2.6. The restriction
operator is required as the fluid variable vf is a priori not well defined on the 1D beam
centerline. The role and importance of Π is further discussed in Remark 3.3.

Due to its impact on the divergence condition, strong enforcement of the kinematic con-
dition may lead to spurious effects on the fluid pressure field for immersed boundary
methods. This condition will, thus, be denoted in a weak sense. Within this thesis, the
enforcement via the two constraint enforcement techniques introduced in Section 2.2 will
be investigated: the penalty and the Lagrange multiplier method. The FBI problem’s weak
form resulting from application of the two methods are presented in the following.

3.1.1. Lagrange multiplier-based constraint enforcement approach

Here, the Lagrange multiplier method is applied to enforce the kinematic coupling condi-
tion. Other works based on the application of Lagrange multipliers in the context of FSI
include [105, 9, 130], among others. In the present case, the Lagrange multiplier approach
is applied to enforce the kinematic equation, i.e., the continuity of beam and fluid velocities
vb and vf , respectively. This leads the overall FBI problem:

Problem 3.1 Find
(
vf , pf , rb,λ

)
∈ WF

v × WF
p × WB × L2 (I,VB), with vf = v0, rb = r0
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3. Fluid-beam interaction

a.e. for t = 0, and ∥r′ (0, ·)∥R3 = 1, such that

T∫
0

af
Ä
vf , pf ; δvf , δpf

ä
− bf

Ä
δvf
ä
+

L∫
0

λΠδvf ◦ rbds dt = 0,

T∫
0

ab
Ä
rb; δrb

ä
− bb

Ä
δrb
ä
−

L∫
0

λδrbds dt = 0,

T∫
0

L∫
0

Ä
vf − vb

ä
δλds dt = 0,

(3.6)

for all
(
δvf , δpf , δrb, δλ

)
∈ L2

Ä
I,H1

0 (Ωf )
3
ä
× L2 (I,Vp)× L2 (I,VB)× L2 (I,VB).

Here, λ is the Lagrange multiplier. Analogously to the dynamic condition ensuring the
continuity of traction, λ can be interpreted as a line load ensuring the equilibrium of forces
here. Nevertheless, analogously to [149, 203, 9] the choice of coupling domain as the 1-
dimensional beam centerline effectively introduces a singularity into the continuous sys-
tem of equations. The handling of this singularity in the numerical system and its effect
on the numerical behavior has been demonstrated in the author’s previous work [75] and
will be discussed in Section 3.4.

Remark 3.2 In general, for embedded finite element methods, the form of an inf-sup stable La-
grange multiplier space depends on the position of the embedded mesh relative to the background
mesh [28, 79]. For the case of mixed-dimensional problems, the form of such stable Lagrange mul-
tipliers is not yet well-studied. Alternatively, analogous to Nitsche’s method for classical equal-
dimensional embedded finite element problems [166, 79], stabilized Lagrange multiplier methods
can also be applied to mixed-dimensional embedded finite element problems [112, 97]. Here, a mor-
tar penalty regularization approach will be applied to the discrete problem in Section 3.2.2.

Remark 3.3 In (3.6), Π is necessary since the integral over the 1-dimensional curve Ωb is obvi-
ously not well-defined for δvf ∈ H1

0 (Ωf )
3. In contrast to well-known trace theorems such as [93],

which postulate existence of such a trace operator on smooth boundaries of codimension one, exis-
tence conditions on the restriction operator Π in the context of a greater dimensionality gap are not
yet well-studied [113]. As one of the first publications addressing the lack of trace-type theorems for
mixed-dimensional problems with codimension two, Kuchta et al. [112] show sufficient regularity
of such a restriction operator in the context of a mixed-dimensional model problem via averaging
over a 3-dimensional domain around the embedded manifold.

Even though a theoretical analysis of the well-posedness of the continuous problem in weak form
would certainly represent a firm basis for further work, a sound theoretical existence and regularity
analysis is out of te scope of this thesis. Instead, the choice of the coupling domain will be validated
and its challenges illustrated by selected numerical examples in Section 3.4.
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3.2. Discretization & numerical treatment

3.1.2. Penalty method-based constraint enforcement approach

Analogously to the Lagrange multiplier approach applied above, the kinematic coupling
condition (3.2) is imposed weakly via the penalty method and a penalty parameter ϵ. This
method comes with the advantage of simplicity of the implementation and, more impor-
tantly, robustness with regard to stability, independently of the position of the beam, and
the well-known disadvantages such as deterioration of the condition number of the arising
system matrix as already stated in Section 2.2.2.

The constraint (3.3) is introduced using a penalty contribution, that scales linearly with
respect to the constraint violation, by building the derivatives of an abstract quadratic
penalty functional:

ϵ

2

l∫
0

Ä
Πvf ◦ r− vb

ä
·
Ä
Πvf ◦ r− vb

ä
ds. (3.7)

This leads to the following full definition of the coupled problem:

Problem 3.4 Find
(
vf , pf ,ηb

)
∈ WF

v × WF
p × WB, with vf = v0, ηb = η0 a. e. for t = 0,

and ∥r′ (0, ·)∥R3 = 1 a. e. on [0, l], such that

T∫
0

af
Ä
vf , pf ; δvf , δpf

ä
− bf

Ä
δvf
ä
+ ϵ

l∫
0

Ä
Πvf ◦ r− vb

ä
·Πδvf ◦ r ds dt = 0,

T∫
0

ab
Ä
ηb; δηb

ä
− bb

Ä
δηb
ä
− ϵ

l∫
0

Ä
Πvf ◦ r− vb

ä
· δr ds dt = 0,

(3.8)

for all
(
δvf , δpf , δηb

)
∈ L2

Ä
I,H1

0 (Ωf )
3
ä
× L2 (I,Vp)× L2 (I,VB).

3.2. Discretization & numerical treatment

Within this section, the discretization of the coupling contributions is discussed. As for the
single field equations, all spatial discretizations are based on the finite element method.
After discretization of both, the 3-dimensional incompressible isothermal Navier-Stokes
equations and the beam formulation, two distinct non-matching meshes emerge. The fixed
fluid mesh takes on the role of a background mesh. The beam mesh, oriented along the
beams’ centerlines, is superimposed, leading to the use of an embedded mesh approach.
The weak enforcement of the coupling constraint, either by the penalty method or by the
use of Lagrange multiplier, leads to the additional contribution of coupling terms. These
coupling contributions are collected in coupling matrices CFF , CFB, CBF and CBB, where
BB and FF to denote beam and fluid contributions, respectively, and the mixed subscripts
FB and BF refer to the mixed coupling contributions. The exact form of these coupling
matrices is given in Sections 3.2.1 and 3.2.2, for the the penalty and Lagrange multiplier
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3. Fluid-beam interaction

case, respectively. In favor of a compact notation the dependencies of the nonlinear ma-
trices are dropped from heron out. However, this change in notation does not change the
form, particularly the nonlinearity, of the matrices itself.

In any case, Problems 3.1 and 3.4, both, lead to a monolithic system of the formï
AFF +CFF 0 −CFB

−CBF ABB CBB

ò
n+1


Ç

v̂fh
p̂fh

å
η̂bh

v̂bh

Ä
η̂bh
ä


n+1

=

ï
fFh
fBh

ò
n+1

. (3.9)

Remark 3.5 For the sake of brevity AFF is used to represent the entire fluid matrix including
stabilization and pressure contributions as introduced in Section 2.6. Since the fluid pressure has
no effect on the coupling, the respective terms in the coupling matrices CFF , and CBF default to
zero.

Since the matrix operator (3.9) is rectangular, the system in its current form is not solvable.
There are two ways to remedy this problem: i) add an additional constraint to the system,
or ii) remove one of the unknowns. The obvious target for either of these strategies are the
beam velocity unknowns. For the Generalized-α time integration scheme, i) leads to the
addition of the line

[
0 − γ

β∆t
1 1

]
n+1


Ç

v̂fh
p̂fh

å
η̂bh
v̂bh


n+1

=
î
fB,nh

ó
n+1

, (3.10)

where fB,nh = − γ

β∆t
rn−

γ − β

β
ṙn−

γ − 2β

2β
∆tr̈n. This line represents a weak enforcement

of the time integration scheme.

However, within this thesis the more commonly used strategy ii) will be followed, and the
time integration scheme will directly be used to express v̂bh

Ä
η̂bh
ä

in terms of η̂bh. In that
case, (3.9) becomes

 AFF +CFF − γ

β∆t
CFB

−CBF ABB +
γ

β∆t
CBB


n+1


Ç

v̂fh
p̂fh

å
η̂bh


n+1

=

ñ
fFh −CFBf

B,n
h

fBh +CBBf
B,n
h

ô
n+1

.

(3.11)

(3.11) characterizes the complete monolithic nonlinear system of equations for the FBI
problem in dependence of the coupling matrices CFF , CFB, CBF , and CBB. However,
in this thesis a partitioned FSI solution scheme will be used instead. After providing the
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3.2. Discretization & numerical treatment

exact form of the coupling matrices for the penalty and (regularized) Lagrange multiplier
method in Sections 3.2.1 and 3.2.2, respectively, the employed algorithmic strategy to solve
this type of nonlinear system of equations in a partitioned manner will be discussed in Sec-
tion 3.3.

Remark 3.6 As the present problem is transient, the time discretization for the single fields is also
applied to the constraint. Aiming at a temporally consistent exchange of coupling information
[130, 95], this leads to a linear combination of the coupling contributions Cn

◦◦, evaluated at the old
time step n, and Cn+1

◦◦ , at the new time step n+1 in dependence of the time integration parameters
for the employed fluid and structure time integration schemes, respectively. Further information on
the algorithmic details will be given in Section 3.3.

Remark 3.7 Note that the assumption of relatively small beam radii also extends to the fluid el-
ement sizes. The choice of enforcing the fluid-beam coupling on the beam centerline introduces a
singularity to (3.8) and (3.6). The fluid elements need to be large enough to not be able to resolve
this singularity, effectively ”smearing” the interface over the volume of the element as is common in
classical immersed methods. The exact domain of applicability of the method with respect to the quo-
tient of beam diameter and fluid element size also depends on the properties of the simulated fluid.
The influence of the background mesh resolution on the fluid velocity resolution will be studied in
section 3.4.

3.2.1. Penalty-based Gauss-Point-to-Segment coupling approach

To discretize the FBI problem with penalty constraint, Problem 3.4, a GPTS approach, as
introduced in Section 2.2 and commonly used in contact mechanics, is used. Here, the
constraint equation (3.3) is evaluated at each quadrature point of the beam.

Summarizing the beam element shape functions at node k, including positional shape
functions Hd

k and tangential shape functions Ht
k, as Hk, and inserting (2.45) and (2.50)

into the coupling contributions introduced in Problem 3.4, leads to the following coupling
matrices:

CBB (k, j) := ϵ

l∫
0

HkHj ds, CFF (k, j) := ϵ

l∫
0

(Nk ◦ χ) (Nj ◦ χ) ds,

CBF (k, j) := CFB (j, k) := ϵ

l∫
0

Hk (Nj ◦ χ) ds.

(3.12)

Here, χ denotes the projection of a point in the parameter space of the beam centerline
to the corresponding point in the parameter space of the discretized fluid volume. The
projection χ is achieved by computing the current position rh at each Gauss point of the
discretized beam centerline curve. Thus, the projection χ introduces a hidden dependency
on the current deformation of the beam, and adds an additional nonlinearity to the system.
The algorithmic treatment of this nonlinearity will be discussed in Section 3.3.
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3. Fluid-beam interaction

3.2.2. Regularized Lagrange multiplier field & Segment-to-Segment coupling
approach

The introduction of a Lagrange multiplier field to enforce the continuity of velocities on
the coupling based on Problem 3.1, again, leads to a mixed finite element formulation.
Generally, this introduces a constraint on the choice of Lagrange multiplier shape functions
Φk as they have to adhere to the inf-sup condition. For classical surface-coupled meshes
on conforming surfaces and the number of Lagrange multiplier DoFs nlm, a simple choice
of such inf-sup stable shape functions to represent the finite element approximation of the
Lagrange multipliers

λfbi
h :=

nlm∑
k=1

Φkλ̂
fbi,k
h , (3.13)

is guaranteed by using the same shape functions as for the primal field, leading to the
mortar finite element method [202, 153]. For these inf-sup stable Lagrange multipliers, the
traditional mortar matrices, as they arise from inserting (3.13) into the coupling constraint
in (3.8) and successive integration, look as follows:

D (k, j) =

l∫
0

ΦkHj ds, M (k, i) =

l∫
0

ΦkNi ◦ χ ds,

for k ∈ [nlm], j ∈ [nb], i ∈ [nf ].

(3.14)

Again, χ represents the projection of the beam centerline onto its current position in 3-
dimensional space. In particular, the sparsity pattern of M will change as the beams move
through the fluid mesh as the set of fluid elements, which contain a beam, will change
throughout the simulation. Insertion of all discrete functions into Problem 3.1 directly
leads to the following nonlinear system of equations:

 AFF 0 0 −MT

0 ABB 0 DT

−M 0 D 0


n+1



Ç
v̂fh
p̂fh

å
η̂bh

v̂bh

Ä
η̂bh
ä

λ̂
fbi
h


n+1

=

 fFh
fBh
0


n+1

. (3.15)

However, in contrast to surface-coupled problems on conforming surfaces, constructing
the required inf-sup stable finite elements to guarantee well-posedness of problems arising
from immersed methods, particularly mixed-dimensional ones, is a complex task. Instead,
the inf-sup condition is circumvented by applying a node-wise penalty regularization after
mortar discretization, as for example employed in [207, 154], and a linear relationship
between the Lagrange multipliers and the mismatch in velocities is assume. Here, the
slope of the linear relationship is given by the penalty parameter ϵ:

λ̂
fbi
h := ϵ

Ä
vfh − vbh

ä
. (3.16)
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3.3. Solution algorithm

In contrast to the classical GPTS-based penalty approach in Section 3.2.1, this regulariza-
tion approach keeps the Lagrange multiplier shape functions to fulfill the coupling in a
weak sense, and, consequently, introduce matrix-matrix products into the nonlinear sys-
tem. The constraint discretization strategy can, thus, be characterized as a STS-based ap-
proach. Specifically, the arising system of equations based on the penalty regularization
reads

ï
AFF + ϵMTκ−1M 0 −ϵMTκ−1D

−ϵDTκ−1M ABB ϵDTκ−1D

ò
n+1


Ç

v̂fh
p̂fh

å
η̂bh

v̂bh

Ä
η̂bh
ä


n+1

=

ï
fFh
fBh

ò
n+1

. (3.17)

Here, the normalization with the matrix

κ (m,m) =

l∫
0

Φm ds, m ∈ [nlm], (3.18)

is classically necessary to fulfill simple patch tests, and is used to weigh the penalty force
exchanged between the two fields [207]. Thus, for the mortar penalty-type coupling the
following coupling matrices are applied:

CBB := ϵDTκ−1D, CFF := ϵMTκ−1M,

CBF := ϵDTκ−1M CFB := ϵMTκ−1D,
(3.19)

Based on these results, the partitioned solution algorithm applied to the general FBI prob-
lem will be discussed in Section 3.3.

3.3. Solution algorithm

This section introduces the partitioned algorithm used to solve the interaction problem
(3.9) as visualized in Figure 3.2. First, the general partitioning and transfer of coupling
variables between the fluid and beam partitions will be discussed in Section 3.3.1. Section
3.3.2 addresses the challenges arising from additional nonlinearities such as the depen-
dence of the coupling matrices on the current state as well as the movement of the fibers
relative to the background mesh. Particularly, the application of an acceleration technique
to facilitate convergence of the partitioned algorithm will be examined. Finally, the appli-
cation of two one-way coupled algorithmic variants for the cases of rigid fixed beams and
light fibers, respectively, will be discussed.

Within the presented partitioned algorithm, the nonlinear problems arising from the single
field equations are solved using a Newton-Raphson algorithm. Furthermore, in order to
capture the motion of the beams relative to the background mesh, a search procedure and
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3. Fluid-beam interaction

successive segmentation to build the coupling matrices has to be performed within every
coupling iteration. In particular for large numbers of immersed beams, and in the context
of parallel high performance computing, this gives rise to the need for computationally
efficient parallel search algorithms to find the current beam position within each step of the
algorithm. Here, the parallel search is performed using a binning-based communication
between processes, and an octree-based search on each shared-memory unit. This way,
all fluid element nodes in a prescribed vicinity of the displaced beam element nodes are
found. The segmentation procedure introduced in Section 2.2 is applied to all resulting
pairs of intersecting beam and fluid elements. If a valid segment is found within such a
pair, its contributions are added to the respective matrices in (3.12). Otherwise, the pair
does not contribute to the coupling terms.

The binning strategy represents a geometric partitioning method that is tailored to models
where interactions between high numbers of bodies have to be resolved as is commonly
the case for the simulation of particle methods [159, 185, 47]. The interested reader is
referred to [47] for a more detailed description of the employed binning implementation’s
advantages and special features.

t = t +∆t
Solve fluid problem
fF ,fbi,kh = F

Ä
v̂b,kh

ä
Compute
reaction

force
fB,fbi,kh

∥∥∥fB,fbi,kh − fB,fbi,k−1
h

∥∥∥ <
tol

k = k + 1
Compute

force ffbi,kh

Solve beam
problem

v̂b,kh = B
Ä
ffbi,kh

ä

Search
element
pairs &
rebuild

coupling
matrices

vb,0h = v̂bh

Ä
rb,0h

ä
rb,0h = P (r̂h (t−∆t))

no yes

ffbi,kh

r̂kh

v̂b,kh

Figure 3.2.: Partitioned algorithm to solve the immersed FBI problem by evaluating the
problem F

Ä
v̂b,kh

ä
on the fluid partition, and the problem B

Ä
ffbi,kh

ä
in a stag-

gered manner. At the start of each new time step, a predictor P is generally
applied to the variables of interest.
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F B
fB,fbih

ffbih

Figure 3.3.: Depiction of the FBI interaction forces between the non-matching geometries
of the fluid field F and the beam field B

. Figure is taken from the author’s article [75].

3.3.1. Fluid-beam interaction coupling

As visualized in Figure 3.2, the partitioned algorithm is set up as a Dirichlet-Neumann-
type algorithm, where the beam velocity is enforced as a Dirichlet condition on the fluid
field, and a Neumann boundary condition is applied to the beam partition. Here, the kine-
matic constraint is enforced weakly on the fluid partition, resembling partitioned algo-
rithms presented in [45] for two-body contact problems. In the following, the superscript
k will be used to denote variables computed in the kth FSI iteration. For the sake of a com-
pact notation, this index will be dropped in equations only involving variables computed
within the same FSI iteration.

To enforce the kinematic constraint for a given beam velocity v̂bh in a weak sense on the
fluid partition, the first line of the coupled system (3.11), namely

(AFF +CFF )

Ç
v̂fh
p̂fh

å
= fFh +CFBv̂

b
h, (3.20)

is solved. This approach of weak enforcement of the kinematic coupling condition has the
advantage that it naturally allows for fulfillment of the divergence condition also close to
the immersed beams.

Similarly to the case of classical surface-coupled FSI methods on matching meshes, the
interaction force required to attain an equilibrium of forces reads

fF ,fbih := F
Ä
v̂bh
ä
:= fFh −AFF

Ç
v̂fh
p̂fh

å
= CFBv̂

b
h −CFF

Ç
v̂fh
p̂fh

å
. (3.21)

However, in contrast to classical surface-coupled methods, an additional transfer to the
beam mesh is required as visualized in Figure 3.3. As a result of the weak constraint
enforcement methods, the interaction force required to keep the equations on the beam
partition in equilibrium, as it acts on the beam mesh, is stated in the second line of the
monolithic system (3.11), and has the form
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3. Fluid-beam interaction

fB,fbih = CBF

Ç
v̂fh
p̂fh

å
−CBBv̂

b
h. (3.22)

In the following, this interaction force is used and, in accordance with classical Dirichlet-
Neumann algorithms, applied to the beam partition by solving

ABBr̂h = fBh + fB,fbih , (3.23)

for a given fluid velocity v̂fh. In this form, (3.23) does not explicitly contain the beam
velocity v̂bh. However, by solving the nonlinear system (3.23) for the the beams’ current
position vector

r̂h := A−1
BB

Ä
fBh + fB,fbih

ä
,

the current velocity v̂bh := v̂bh (r̂h) can be obtained through the application of a suitable
time integration scheme T such that

B
Ä
fB,fbih

ä
:= T

Ä
A−1

BB

Ä
fBh + fB,fbih

ä
, r̂h (t−∆t) , ...

ä
. (3.24)

The beam velocity obtained through application of the time integration scheme can then
be passed to the fluid partition for use in the subsequent iteration. In order to assess
convergence of the solution, the following stopping criterion is chosen:

∥∥∥fB,fbi,kh − fB,fbi,k−1
h

∥∥∥ < tol. (3.25)

This completes the weak Dirichlet-Neumann-type algorithm for immersed beams, as sketched
in Figure 3.2. However, in the case of highly slender fibers, a simple staggered approach
as the one described so far may exhibit convergence problems. The upcoming section
addresses this challenge and the choice of convergence acceleration technique.

3.3.2. Acceleration technique

Due to the partitioning, the applied interaction force remains constant during the solution
of the structural problem, which leads to a neglect of the change in geometry of the beam,
and therefore, the FBI interface. This nonlinearity is, thus, not treated within the Newton
solver for the beam system but successively updated through the coupling iterations be-
tween the two fields. Especially for very slender and, therefore sensitive, structures this
nonlinearity leads to convergence problems of the coupling iterations. Within this work,
two different methods are applied to treat the nonlinearity, namely the Aitken relaxation
method [92] as a representative of simple fixed-point iteration methods, and a matrix-free
Newton Krylov (MFNK) method [106] as a representative of the somewhat more involved
Quasi-Newton methods.
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3.3. Solution algorithm

3.3.2.1. Aitken relaxation method

The idea behind the Aitken method is to relax the exchanged interface variable, classi-
cally the interface displacement, in order to avoid oscillations in the convergence behavior
as described in [117]. The amount of relaxation is controlled via the relaxation param-
eter ω ∈ (0, 1), which is recomputed based on the current solution within every cou-
pling step. In [143], a partitioned scheme for immersed shells was recently proposed,
in which the relaxation is applied to the beam’s acceleration before it is handed to the
fluid solver. Motivated by the need to treat the nonlinearity contained in the interaction
force applied to the beam, the interaction force is relaxed instead, and the relaxed force
ffbi,kh = ωfB,fbi,kh + (1− ω) fB,fbi,k−1

h is applied in the proper place, as visualized in Fig-
ure 3.2, instead. See also [116] for another application of a variant of the Aitken method
based on force relaxation, and a detailed description of the computation of the relaxation
parameter ω.

The computation of the relaxation parameter ω via the Aitken method defaults to a sim-
ple vector-vector product, making the method highly efficient with regard to the com-
putational cost of the relaxation parameter. However, even though the Aitken relaxation
method works well for many FSI problems, convergence is in general not guaranteed [117].

3.3.2.2. Quasi-Newton Krylov solver

Motivated by the fact that proper treatment of the interface nonlinearity may reduce the
number of coupling iterations, a Quasi-Newton scheme is chosen to be applied to the
residual

rfbi,k := fB,fbi,kh − fB,fbi,k−1
h . (3.26)

This means that the equation

J̃kfbi∆fB,fbi,kh = −rfbi,k, (3.27)

is solved. J̃kfbi is an approximation of the linearization of (3.26). To solve the linear system
in (3.27), a direct or an iterative linear solver can be used. Here, an iterative Krylov solver is
applied, as in that case only the effect of the approximated Jacobian on the current residual,
i.e. a matrix-vector product, needs to be known instead of the overall matrix. Based on
[117], the effect of the sensitivity on a vector y can be approximated by

J̃kfbiy ≈

F

Ñ
B

Ñ
fB,fbi,kh + γ

Ñ
γ +

∣∣∣fB,fbi,kh

∣∣∣
rfbi,k

é
y

éé
− fB,fbi,kh − γ

Ñ
γ +

∣∣∣fB,fbi,kh

∣∣∣
rfbi,k

é
y − rfbi,k

γ

Ñ
γ +

∣∣∣fB,fbi,kh

∣∣∣
rfbi,k

é .

(3.28)
Here, γ is a user-selected parameter determining the finite differencing step size. The effect
of the choice of γ will be discussed in detail in Section 3.4.3.2.
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3. Fluid-beam interaction

Compared to a direct solver, this choice of an iterative solver for (3.28) comes with the
drawback that the residual (3.26) will have to be built m times per Quasi-Newton step,
where m is the number of iterations of the Krylov solver, as visualized in Figure 3.4. Here,
the residual evaluation is quite costly as it involves a full execution of the FBI algorithm
presented in Figure 3.2. On the other hand, no full matrix has to be built or stored, and
(3.28) can be directly used to approximate the effect of the sensitivity on the residuals,
leading to a Matrix-free (Quasi-)Newton Krylov solver based on the Krylov subspace

Kfbi
m := fB,fbi,0h +Km

Ä
J̃kfbi, r

fbi,0
ä
. (3.29)

For a comprehensive introduction to Krylov subspace methods and more information on
linear solvers, the interested reader is referred to the literature, e.g., [21, 165].

αm = min
∆fB,fbi,k,m

h ∈Kfbi
m

∥∥∥J̃kfbi∆fB,fbi,k,mh + rfbi,k,m
∥∥∥

αm < tolkryl
Compute
rfbi,k,m

fB,fbi,k,0h = fB,fbi,k−1,m
h

rfbi,k,0 = rfbi,k−1,m

∥∥rfbi,k,0∥∥ <
tolqn

fB,fbi,0,0h = fB,fbi,k,mh

m = 0
k = 0

Compute
J̃kfbi

m = m+ 1

No
k = k + 1

Yes

No
Yes

t = t+∆t

Figure 3.4.: Quasi-Newton Method

3.3.3. One-way coupling schemes

In the extreme cases of very light, flexible fibers and rigid, fixed beams, respectively, the
algorithm presented above can be simplified. On the one hand, there exist numerous ap-
plication scenarios, in which the one-way coupling variants proposed here represent valid
models at rather low computational complexity. On the other hand, as will be shown in
Section 3.4, this analysis serves as a validation of the different components of the fully
two-way coupled fluid-beam interaction algorithm.
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Solve fluid
problem

fF ,fbi,kh = F
Ä
v̂b,kh

äSolve beam
problem

v̂b,kh = B
Ä
f fbi,kh

ä
fluid-to-beam coupling

beam-to-fluid coupling

Increment k

Calculate reaction force f fbi,khacting on the beam

r̂kh, v̂
b,k
h

Newton iteration

Newton iteration

Figure 3.5.: Visualization of the one-way fluid and solid coupling schemes. In the visual-
ization, B, F represent suitable operators for the solution of the nonlinear beam
problem, and for the solution of the nonlinear fluid problem, respectively.

3.3.3.1. One-way coupling for rigid beams

First, the special case of immersed rigid beams is analyzed. Assuming that the effect of
the fluid flow on the beam is negligible allows to use a one-way coupling algorithm which
only affects the fluid partition. In this coupling variant, the partitioned algorithm will
converge after only one iteration leading to a simple staggered algorithm in which each
field is only solved once. This one-way coupling scheme will be denoted as beam-to-fluid
coupling variant within the remainder of this thesis.

Motivated by classical Dirichlet-Neumann partitioned schemes, where Ωf acts as Dirichlet
and Ωb as Neumann Partition, the discrete penalty constraint at each time step

CFFv
f
h = CFBv

b
h, (3.30)

is enforced on the fluid partition for a prescribed discrete beam velocity vbh. Here, the
coupling variable vbh is computed by the beam’s time integration scheme. Constraint (3.30)
can be interpreted as the weak enforcement of the Dirichlet constraint

vfh = v̄bh := (CFF )
−1CFBv

b
h, (3.31)

where v̄bh can be interpreted as the projection of the beam velocity onto the fluid mesh.

3.3.3.2. One-way coupling for light fibers

Conversely, the special case of freely moving, light fibers, for which the effect on the fluid
flow can be neglected, is analyzed in the following. Within the remainder of this paper, this
one-way coupling scheme will be denoted as the fluid-to-beam coupling variant. Within
this coupling variant, generally multiple FSI iterations per time step are necessary to con-
verge towards an equilibrium between the two separate fields.
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3. Fluid-beam interaction

Once more, motivated by classical Dirichlet-Neumann partitioned schemes, where the
fluid domain is treated as Dirichlet partition, while the structure domain takes on the role
of the Neumann partition, the coupling condition (3.3) is now applied to the beam in the
form of the discrete interaction force

fB,k+1
h := ϵCk+1

BB vb,k+1
h − ϵCk+1

BF vkh, (3.32)

within every iteration k + 1 of the partitioned algorithm.

Due to the partitioning, the applied interaction force is constant during the solution of
the structure problem, which leads to a neglect of the change in geometry of the beam,
and therefore, the FSI interface. This nonlinearity is thus not treated within the Newton
solver for the beam system, but successively updated through the coupling iterations. The
handling of the kinematic coupling constraint as a Neumann condition within a fixed-
point iteration enables a flexible choice of the beam’s time integration scheme as compared
to a full Newton method, in which the velocity-displacement relationship would enter
the linearization of the problem. Nevertheless, to ensure convergence of this one-way
coupling scheme, one of the acceleration techniques previously presented in Section 3.3.2
has to be employed.

Remark 3.8 Even if the assumptions of a perfectly rigid beam might not hold for a given physical
setup, the numerical model of the beam-to-fluid coupling variant introduced in Section 3.3.3.1 still
represents a physically meaningful and solvable situation. This is not necessarily the case for the
fluid-to-beam coupling variant introduced in Section 3.3.3.2: The penalty force does not represent
the FSI force in the fluid-to-beam coupling case. Instead, it is simply the scaled negative constraint
violation, and should be interpreted as weak enforcement of the Dirichlet constraint (3.3), for which
the nonlinearity introduced by the change in geometry is treated by the Aitken relaxation instead
of a Newton method. Since the beam is invisible to the fluid field, violation of the assumption of a
perfectly soft, freely movable, light fiber may lead not only to unphysically large forces acting on
the beam but also to a deterioration of convergence behavior of the given algorithm for large penalty
parameters due to the ill-posedness of the underlying continuous problem. It is, thus, paramount
to carefully check the modeling assumptions of this one-way coupling variant before considering
applying the algorithm. The applicability of the proposed approach under no or even moderate
violation of the fluid-to-beam coupling assumptions will be demonstrated in Section 3.4.

3.4. Numerical examples

The numerical examples within this section are chosen to demonstrate the behavior of the
proposed 1D-3D coupling approach and the performance of the presented computational
framework in general. If not stated otherwise, all simulations include torsion-free beam
elements, and the fluid is assumed to be initially at rest. All models are set up using the
pre-processor MeshPy [178], and the simulations are performed with the in-house multi-
physics research code BACI [1].

60
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3.4.1. The one-way coupling variants & the Gauss-Point-to-Segment coupling
approach

The following numerical examples are chosen to validate the proposed fluid-beam inter-
action approach in the special cases of very stiff slender bodies and very light fibers, cf.
Sections 3.3.3.1 and 3.3.3.2. To this end, this section focuses on the analysis of the basic
properties of the one-way coupling cases and the behavior of the 1D-3D coupling ap-
proach. Here, the GPTS approach presented in Section 3.2.1 is applied to all regarded
examples.

3.4.1.1. Fixed obstacle immersed in a fluid channel

l = 3

b = 1

h = 1

hb = 0.5
Γin Γout

x

y

z

Figure 3.6.: Fixed obstacle immersed in a fluid channel

The purpose of the first example is twofold: its simplicity allows to easily compute the
solution of a full 3D simulation to validate the proposed mixed-dimensional coupling
approach and to study the convergence behavior of the resulting numerical error with
respect to uniform mesh refinement. Secondly, the example is used to illustrate the depen-
dence of the constraint violation within the fluid partition on the chosen penalty param-
eter. While numerical constraint enforcement via the penalty method is common practice
in constrained optimization problems as well as applications such as contact dynamics, a
use within computational fluid dynamics as presented within this work is not as common.
This novelty warrants a closer look at the effect of this choice of constraint enforcement
method.

Figure 3.6 shows the configuration of a fixed obstacle immersed in a mono-directional
fluid flow. The time-dependent inflow velocity in x-direction vin = 0.5 · (1− cos (10πt))
for t ∈ [0, 0.1], and vin = 1 for t > 0.1, is prescribed on the surface Γin. On the surface
Γout, a zero-traction condition is applied and perfect-sliding conditions are enforced on all
other surfaces. The fixed beam obstacle is placed in the middle of the lower channel sur-
face and is assumed to not be affected by the surrounding fluid. This allows to consider
only one-way coupling from the fixed beam onto the fluid. The fluid is assumed to have a
density of ρf = 1 and a dynamic viscosity of νf = 0.004. The fluid domain is discretized
by 96× 32× 32 stabilized 8-noded hexahedral finite elements with equal-order interpola-
tion, and the evolution in time is solved by the Crank-Nicolson method, i.e., the one-step-θ
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3. Fluid-beam interaction

method with θ = 0.5, with time step size ∆t = 10−3. Note that for the proposed approach
therefore neither the radius of the beam obstacle nor its material properties enter the sim-
ulation. Instead, only the effect of the applied Dirichlet conditions on the fluid solution in
dependence on the penalty parameter is analyzed.

(a) Fluid velocity vz around
the obstacle

(b) Fluid velocity vx in channel direction in the plane of the
fixed obstacle

Figure 3.7.: Visualization of the effect of the obstacle on the fluid velocity in the channel.
Figure is taken from the author’s article [75].

The obstacle is expected to decelerate the fluid in its vicinity to a resting state, and thereby
redirect the fluid flow to the sides and to the top. For a penalty parameter ϵ = 104, sim-
ulation results illustrating this behavior are shown in Figure 3.7. The deceleration in x-
direction as well as the deflection of the flow velocity in z-direction is clearly visible. In
the regarded case of a fixed beam, the constraint violation after time step n + 1 is mea-
sured by calculating the L2-norm of Kn+1

FF vf,n+1
h . Figure 3.8b shows the dependence of the

constraint violation on the penalty parameter steady for the state solution at time t = 0.5.

In addition, Figure 3.8a allows a closer look at the L2-norm of the computed penalty force
fF ,n+1
h = ϵKn+1

FF vf,n+1
h acting on the fluid at time t = 0.5. In Section 3.3, it was argued,

that this penalty force will take on the amount of force necessary to fulfill the given FBI
constraint, and thus can be interpreted as the interface force acting onto the fluid. For this
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Figure 3.8.: Convergence behavior of the overall constraint violation with respect to the
penalty parameter at time t = 0.5. Figure is taken from the author’s article
[75].
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hypothesis to be valid, the penalty force needs to be practically independent of the chosen
value of the penalty parameter, or equivalently, as the penalty parameter increases lin-
ear convergence of the constraint violation Kn+1

FF vf,n+1
h towards zero is expected. Figure

3.8 suggests that both assumptions hold true for sufficiently large values of the penalty
parameter. This is also an important basis for further work towards a fully coupled FBI
framework, where the position of the beam centerline, and thus the geometry of the cou-
pled problem, as well as the beam velocity, depend on the penalty force.
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Figure 3.9.: Dependence of the fluid velocity on the mesh resolution. Figure is taken from
the author’s article [75].

Next, the behavior of the 1D-3D coupling solution with respect to the fluid mesh resolution
is analyzed. Figure 3.9a shows the space-dependent steady state solution of vx along the x-
axis for different mesh resolutions. Here, the reference solution is computed using a full 3D
CFD simulation, in which the 3-dimensional beam domain is cut out of the fluid domain,
and no-slip boundary conditions are enforced on the newly generated beam surface. The
fluid field for the reference solution is discretized using 641, 928 DoFs. This 3D reference
solution is used to compute the L2 error of the 1-dimensional velocity profile plotted over
the fluid element size hfluid shown in Figure 3.9b.

Examining the fluid velocity profile over the channel length plotted in Figure 3.9a, the
fluid flow is slowed down by the beam while the flow is undisturbed far from the obsta-
cle, as expected. The kink in the FBI solutions just before the beam stems from the neglect
of capturing the exact behavior of the pressure solution at the beam. As investigated by
Baaijens in [9], the pressure would exhibit a jump at the beam, which cannot be repre-
sented within the discretization space of continuous piece-wise linear functions. Using
appropriate discretization spaces allowing for pressure jumps on element boundaries as
in [9], or even enhancing the space as in the extended finite element method in [171], can
potentially solve this problem. Here, it is deliberately refrained from using such advanced
fluid discretizations, since the target of this thesis is the development of an efficient solver
for macroscopic effects in FBI, not a fine-scale resolution in the vicinity of the coupling
interface. For now, note that refinement of the mesh near the obstacle can smooth these
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3. Fluid-beam interaction

kinds of kinks.

Further, it becomes evident that the fluid profile computed with the FBI method at a fluid

element size of hfluid =
1

32
matches the 3D reference solution very well. As a more quanti-

tative analysis, the L2 error of the 1D profiles with respect to the 3D CFD solution is shown
in Figure 3.9b. The 1D-3D coupling approach exhibits a linear convergence behavior with
respect to uniform mesh refinement, which is expected due to the fact that the beam radius
does not enter the simulation, and instead, the area in which the fluid is slowed down is
scaled by the fluid element size. This convergence behavior as well as the error values
are in line with the results for general academic mixed-dimensional models reported in
[112, 118], none of which exceeded linear convergence in the primary variable of the 3-
dimensional field. It can also be seen, that for the proposed FBI approach, further mesh
refinement of the fluid background mesh will lead to a narrowing of the affected fluid area
and, thus, a growing error with respect to the 3D reference solution as evident in Figure
3.9b. This convergence behavior closely resembles the one that has been observed and dis-
cussed for a similar approach applied to mixed-dimensional solid-beam coupling in [177].
Such a behavior is to be expected, as the proposed 1D-3D coupling approach is only valid
under the assumptions of relatively small beam radii compared to the fluid element size
as elaborated in Remark 3.7. For problem setups, in which the model assumptions are vio-
lated, no further convergence can be expected and a different modeling technique should
be chosen.

In conclusion, this example demonstrates that the FBI solution converges towards the ref-
erence solution within a spectrum of fluid element sizes, for which the model assumptions,
as discussed in Remark 3.7, are fulfilled. While recovery of optimal convergence for 1D-3D
coupling approaches is still a worthwhile topic of ongoing research, the matching of the
solutions obtained with mixed-dimensional and fully resolved models satisfies the goals
of this work and validates the general applicability of the proposed FBI model.

3.4.1.2. Light fiber in fluid flow

Having analyzed the one-way coupled case of rigid beams affecting fluid flow, this section
is meant to investigate the effect of the penalty parameter on the coupling of a light fiber
being transported by a fluid.

In this example, the fluid is again assumed to be contained in a hexahedron of dimensions
1 × 1 × 3, as introduced in Section 3.4.1.1. Only now all DoFs in channel direction are set
to be free, and a velocity of zero is prescribed in both other directions, leading to a pseudo
1-dimensional setup. In order to analyze the time-dependent behavior of the beam in
dependence on the penalty parameter, an oscillatory inflow velocity

vin = 0.5 · (1− cos (π · 10 · t)) (3.33)

in channel direction, is prescribed at the channel inlet.

The behavior of an immersed fiber with a density ρb = 1, a length l = 0.5, a cross-sectional
area A = 0.166, and accordingly a mass of m = 0.0880, is regarded. Note that the other
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3.4. Numerical examples

material properties of the beam do not play a role in this example since the fluid flow is
set up to be constant along the beam length such that the results can be analyzed as an
immersed mass in dependence on the penalty parameter. The time step size is chosen as
∆t = 0.01.
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Figure 3.10.: Behavior of an immersed freely moving beam in dependence of the penalty
parameter. Figure is taken from the author’s article [75].

In the limit case of freely movable light fibers, the fiber is expected to be transported by the
fluid exactly at the velocity of the fluid. Figure 3.10a shows velocity results for the beam in
dependence on the penalty parameter. As argued in Remark 3.8, within the fluid-to-beam
one-way coupling variant, the penalty force is used to introduce a weak Dirichlet con-
straint into the structure problem. Therefore, as in the case of the beam-to-fluid one-way
coupling variant, linear convergence of the coupling violation towards zero is expected
for sufficiently large penalty parameters. Figure 3.10b exhibits this expected behavior. This
validates the treatment of the geometry-dependence by a fixed-point iteration as proposed
in Figure 3.3 instead of a full Newton method.

3.4.1.3. Rotating lattice

After analyzing the behavior of the constraint violation itself, now global effects of slender
bodies on fluid flow, as well as the proposed method’s robustness under large displace-
ments, are investigated. To this end, a rigid lattice of dimension 1.6̄ × 1.6̄ made up of
beams, as depicted in Figure 3.11a, is immersed in a cylindric tank filled with fluid at rest.
The cylinder has a diameter d = 1, and a height of 2 in order to encompass the entire beam
lattice. Furthermore, all surfaces are modeled with no-slip boundary conditions. The fluid
is assumed to have a density ρf = 1.0 , and a dynamic viscosity νf = 4, while the beams
are again assumed to not be affected by the fluid itself. The lattice starts rotating around
the vertical axis of the cylinder as depicted in Figure 3.11b. The movement is described by
the rigid body motion
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h=1.6̄

b=1.6̄

y

z

(a) Geometry of the beam lattice

b=1.6̄d=2 ∆r̄

x

y

(b) Top view of the immersed lattice

Figure 3.11.: Configuration of the rotating lattice immersed in a cylindrical fluid tank. Fig-
ure is taken from the author’s article [75].

∆r̄ =

Å
cos (2 · π · v̄) · x− sin (2 · π · v̄)
sin (2 · π · v̄) · x+ cos (2 · π · v̄)

ã
, (3.34)

with the time-dependent scaling factor v̄ = 0.5 · (1− cos (2πt)) for t ∈ [0, 0.5], and v̄ = 1
for t ≥ 0.5. For this example, the time step is chosen as ∆t = 10−3, the evolution in time
is discretized with the Backward Euler time stepping scheme, and the FBI constraint is
enforced with a penalty parameter of ϵ = 100. The entire fluid domain is discretized with
114, 688 hexahedral finite elements arranged into 64 layers along the height of the cylinder.
The fluid mesh is depicted in Figure 3.13a.

It is expected that the beam lattice incites the fluid within the cylinder to start rotating.
Herein, the fluid velocity in the vicinity of the beam matches the rigid body motion up to
a penalty constraint violation while the velocity further away from the rotator is indirectly
accelerated by the surrounding fluid.

Figures 3.12 and 3.13 depict the fluid solution after three quarters of a rotation of the lattice
at time t = 0.837. Note that in the regarded time step, the velocity of the lattice in x-
direction is negligible.

Figure 3.12a shows that the absolute velocity ∥v∥2 follows the lattice structure of the beam
geometry. Figure 3.12b offers a closer look at the velocity measured over the cylinder
height at coordinates x = 0.7 and y = 0. It can be seen that the local velocity extrema of
the fluid velocity vy (black line) do not exactly match the beam positions (vertical lines).
Instead, the fluid velocity in the vicinity of the beam struts is even a little higher than the
prescribed rigid body velocity (blue line). This can be explained by the fact that, within
the proposed coupling approach, the fluid solution is not enriched by additional shape
functions to model gradient jumps within elements as is the case for extended finite ele-
ments as used in [171]. Thus, no sudden change in the fluid velocity within an element can
be represented. The local extrema of the flow velocity thus fall to the finite element node
closest to the beam, as seen in 3.12b, and lead to a discretization error near the interface,
caused by the reduced complexity of the proposed approach.

Figure 3.13b shows the fluid velocity profile vy, and thus the total velocity, in radial di-
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(a) Magnitude of the fluid velocity in the
vicinity of the beam lattices induced by
the prescribed lattice movement
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Figure 3.12.: Fluid velocity profile induced by the moving beam lattice along the height of
the fluid cylinder. Figure is taken from the author’s article [75].

(a) Fluid velocity in x-direction after three
quarters of a rotation of the beam lattice
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Figure 3.13.: Fluid velocity profile induced by the moving beam lattice. Figure is taken
from the author’s article [75].

rection along the x-axis cutting the beam lattice in a top and a bottom half. As expected
from a physical point of view, it can be seen that the fluid velocity matches the rotational
velocity very closely in the vicinity of the beam lattice while it lags behind within the holes
of the mesh. Clearly, the discretization error due to missing enrichments of the underlying
discretization space is less pronounced for this case of a less steep evolution of the fluid
solution than in Figure 3.12b.

Figure 3.13a shows the fluid mesh, which was traversed via different cut scenarios of the
overall beam lattice with the background mesh within each time step, until the presented
state was reached. In the present case, the fluid mesh contains 114, 688 fluid elements,
while the lattice is discretized using 1, 200 beam elements in order to force the the creation
of numerous different integration segments by the segmentation procedure visualized in
Figure 2.1. In this case, application of the segmentation procedure leads to the creation of
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a number of different integration segments between 1, 597 and 1, 940 for each time step.
Here, the exact number of segments for each time step depends on the position of the lat-
tice relative to the background mesh and, thus, varies rather considerably over the course
of the simulation due to the large lattice displacement and the numerous different cut sce-
narios stemming from the unsymmetric meshing of the fluid tank. Therefore, the regarded
example also serves as a preliminary validation of the robustness of the applied segmenta-
tion procedure discussed in Section 2.2 and illustrated in Figure 2.1 with respect to varying
intersection scenarios of the embedded with the background mesh.

3.4.2. Comparison of numerical variants of the fully coupled model

After validating the one-way coupling algorithms and analyzing the effect and limitations
of the employed 1D-3D coupling approach in the previous subsection, the motivation of
this subsection is the investigation of the influence of the numerical and algorithmic build-
ing blocks on the final solution. The influence of numerical parameter such as the con-
straint enforcement technique and the penalty parameter will be analyzed, and the perfor-
mance of the proposed methodology for problems with large interface displacements will
be demonstrated.

3.4.2.1. Single Elastic Beam

l = 3

h = 1 hb = 0.5
Γin Γout

x

y

(a) Geometric setup of the quasi-2D example of an im-
mersed elastic beam
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Figure 3.14.: Problem setup for the single elastic beam immersed in a fluid channel

The intention of this example is to visualize the effect of the method’s numerical parame-
ters, namely penalty parameter, constraint enforcement technique, and, in the case of the
mortar-type approach, Lagrange multiplier shape functions, on the solution of a fluid-
beam system exhibiting large beam displacements. For this purpose, the problem is set up
as pseudo quasi-2D in order to facilitate large displacements. The geometric setup of the
channel and the beam is given in Figure 3.14a. The fluid inflow is prescribed on the left
end of the fluid channel as a parabolic flow profile with respect to the channel height, and
oscillating in time. The time evolution of the fluid velocity at the middle of the channel
height is visualized in Figure 3.14b. inspired by the real physical properties of water, the
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fluid has the density ρf = 1, and the viscosity νf = 0.004. The channel has a height of 1,
the length is 3, and the depth is 0.06 over two fluid elements. To allow for negative fluid
velocities also on the Neumann boundary on the right, backflow boundary conditions, as
analyzed in [14], are used. Non-penetration conditions are applied to all other channel
surfaces. The immersed beam has a height hb = 0.5, cross-sectional area A = 10−4, density
ρb = 10, Young’s modulus Eb = 107, and is modeled using a hyperelastic material. Figure
3.15 illustrated the geometrical configuration as well as the fluid velocity in channel direc-
tion at different time snippets for the mortar-type method with linear Lagrange multiplier
shape functions and a penalty parameter ϵ = 104. The initial configuration can be found in
Figure 3.15a. Figure 3.15b demonstrates the beam’s deflection to the right, just before the
flow direction changes, and Figures 3.15c- 3.15d show the beam’s maximum deflection to
the other side.

(a) Initial configuration (b) Time t = 0.062

(c) Time t = 0.074 (d) Time t = 0.1

Figure 3.15.: Velocity solution in channel direction at different time steps
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(b) Tip displacement in x-direction

Figure 3.16.: The beam tip’s velocity and displacement in x-direction for the mortar-
type approach with linear Lagrange multiplier shape functions and different
penalty parameter
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Table 3.1.: Relative differences in the tip displacement of an immersed elastic beam intro-
duced by the penalty parameter for the mortar-type approach
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0.48% 0.1%

Table 3.2.: Relative differences in the tip displacement of an immersed elastic beam intro-
duced by the Lagrange multiplier shape functions

To analyze the effect of the penalty parameter on the simulation result, Figure 3.16 displays
the beam tip velocity and tip displacement for a solution obtained with the mortar-type
method and linear Lagrange multiplier shape functions for various penalty parameter val-
ues. Figure 3.16 demonstrates that, even for relatively small penalty parameters, the tip
velocity as well as tip displacement is adequately captured without large mismatches be-
tween the different solutions over the whole duration of the simulation. The maximum
relative differences in the tip displacement for low penalty parameters are shown in Table
3.1, using d

tip
104

, computed with ϵ = 104, as reference solution. As expected, for growing
penalty values, this difference becomes smaller, suggesting convergence of the solution
with respect to the penalty parameter. Furthermore, for the examined penalty values, the
maximum difference stays below 2.5% even for the relatively large displacements and high
velocities exhibited by the model problem.

Similarly, Table 3.2 contains the comparison of the tip displacement computed using ϵ =
102 and cubic Lagrange multiplier shape functions with the solution for linear and quadratic
shape functions. For the analyzed example, the difference introduced by the Lagrange
shape functions stays well below 1%.

Analogously, the influence of the penalty parameter on the solution obtained with the
GPTS based approach is analyzed in the following. To this purpose, Figure 3.17 shows the
beam tip velocity and tip displacement for a solution obtained with linear Lagrange mul-
tiplier shape functions for various penalty parameter values. Noteworthy here is the fact
that the simulation with the penalty parameter ϵ = 104 terminates at time t = 0.09 because
the iterative linear solver for the fluid field does not converge. Still, comparing the max-
imum error for solutions obtained for different penalty parameter until this point, shown
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(b) Tip displacement

Figure 3.17.: Velocity and displacement for the penalty-based GPTS approach with differ-
ent penalty parameter∣∣∣∣∣∣dtip
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104
(t)
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2.58% 1.25% 0.79%

Table 3.3.: Relative differences in the tip displacement introduced by the penalty parameter
for the GPTS-type approach

in Table 3.3, with the ones for the mortar method reported in Table 3.1, shows a slower
convergence behavior. In particular for the difference of the solution obtained with the
penalty parameters 103 and 104 exhibits a dramatical increase of over 50%. Nonetheless,
even though not necessarily negligible, all the above reported numerical effects are well
within the range of the modeling error reported in [215]. There, a beam based stent model
was compared with a continuum mechanics based reference model, and a maximum dis-
placement error of 4% was found.

In conclusion, the represented example exploring the effect of numerical parameter choices
on the simulation results shows convergence of the solution with respect to the value of
the penalty parameter as well as, in the case of the mortar-type method, the Lagrange
multiplier shape functions. Besides convergence, the results for the mortar-type method
suggest that also the use of moderate penalty parameters as well as linear Lagrange mul-
tiplier shape functions allows to sufficiently capture the overall solution even for large
displacements. That constitutes a desirable result as these simple choices ease the solution
procedure of the fields’ resulting linear systems of equations due to the avoidance of ill-
conditioning effects. In contrast, using the GPTS approach, the penalty parameter seems
to have a more notable effect on the solution as well as the conditioning of the matrices.
The improved robustness of the mortar-type method, compared to the GPTS, motivates
the exclusive use of the mortar-type method in Section 3.4.3.
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3. Fluid-beam interaction

3.4.3. The fully coupled model & the mortar-type coupling approach

After analyzing the performance of the proposed one-way coupling schemes, the follow-
ing numerical examples are chosen to investigate the performance of the introduced al-
gorithmic building blocks, specifically the mortar-type coupling scheme and the overall
Dirichlet-Neumann algorithm. First, the convergence behavior of the fully coupled FBI
problem under uniform mesh refinement towards a reference solution, obtained with a
fully resolved model, is analyzed. Afterwards, the performance of the employed accelera-
tion methods are investigated. If not stated otherwise, the mortar-type interface discretiza-
tion and TF beam elements will be applied.

3.4.3.1. Comparison to a 3D reference solution

Within this section, the spatial convergence behavior of the proposed fully-coupled mixed-
dimensional method compared to a fully resolved ALE-based FSI approach as presented
in [105, 130] is analyzed. To this end, the setup in Section 3.4.1.1 is followed, and a fluid
channel with the dimensions 3 × 1 × 1 is examined. An immersed beam of height 0.5,
and with radius 0.01, is fixed in the middle of the bottom of the channel as sketched in
Figure 3.6. The beam material is modeled using a hyperelastic material with the Young’s
modulus En = Es = 5 · 109 and the density ρb = ρs = 101 for both, the beam as well
as the fully resolved model. Meanwhile, the fluid is modeled as a Newtonian fluid for
different densities ρf and various constant viscosities νf . The simulations are run using
the Generalized-α time integration method with a time step size ∆t = 10−4 and a spectral
radius ρ∞ = 1 for the structure fields [34], and a One-step-θ method with θ = 1.0 for
the fluid field. Within the first 500 steps, the inflow velocity is slowly accelerated until a
parabolic inflow profile

vin = 1600 · y · (1− y) · z · (1− z) , (3.35)

is reached. A zero traction boundary condition is prescribed on the outflow boundary and
no-slip boundary conditions are enforced on all other sides. The FBI simulations are run
with a penalty parameter ϵ = 104 and linear Lagrange multiplier shape functions. The
fully resolved 3D reference solution, in turn, is simulated with the Lagrange multiplier
based ALE approach presented in [130, 105], using 2,183,072 and 10,240 linear hexahedral
finite elements for the fluid and beam fields, respectively.

The obtained velocity solution for the FBI example with a fluid element size
1

44
and the

solution of the reference simulation with ρf = 1.0 and νf = 0.032 are depicted in Fig-
ure 3.18a.

Figure 3.18b visualizes the relative L2 error of the fluid velocity solution compared to the
fully resolved 3D reference solution under uniform mesh refinement and for different fluid
material configurations, at time t = 0.5. Linear convergence can be observed for coarser
meshes, which is in agreement with the results in [75] and Section 3.4.1.1, where linear
convergence was recovered for a fixed beam obstacle.
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(a) Velocity of the reference solution (top), and
the FBI solution with the fluid element size
being equal to the beam diameter
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(b) Behavior of the relative L2 error of the fluid
velocity under uniform mesh refinement for
varying Reynolds number

Figure 3.18.: Convergence behavior under uniform mesh refinement

In addition to the spatial discretization error, the shown L2 error contains the modeling
difference introduced by using beam theory instead of continuum mechanics. Thus, spatial
convergence can only be expected, firstly, as long a the modeling assumptions regarding
the beam diameter are fulfilled, and secondly, as long as the error due to the spatial fluid
field discretization is larger than the aforementioned modeling error.

While the convergence under uniform mesh refinement is limited by the modeling as-
sumptions, it is important to note that the solution obtained with the presented mixed-
dimensional approach converges against the computed 3D reference solution down to a
point where the fluid element size nearly matches the beam diameter. In particular, no
qualitative dependency of the convergence rate on the fluid material parameters can be
observed. The L2-error for the optimum of any of the chosen material parameter sets falls
under 1.5% while, at the same time, the mixed-dimensional approach reduces the number

of DoFs to a fraction of
1

25
.

While a fully resolved 3D surface-coupled model is still recommended for applications
where phenomena near the interface are of interest, this example shows that the solution
obtained by the mixed-dimensional method converges against the reference solution and
provides a globally matching solution at a fraction of the computational cost, thus validat-
ing the proposed methodology in a quire remarkable.

3.4.3.2. Comparison of partitioned solver strategies

Based on the example in Section 3.4.2.1 of an immersed elastic beam, within this exam-
ple, the behavior of the FSI acceleration techniques in combination with the mortar-type
discretization approach is compared. To this end, the setup and material parameters pre-
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3. Fluid-beam interaction

sented in Section 3.4.2.1 are reused, and the penalty parameter is fixed to ϵ = 103. The
convergence tolerance for the residuals of the single field equations is set to 10−8, while
the same tolerance is used within the nonlinear stopping criterion of the FSI algorithm.
The Aitken relaxation technique is compared to the MFNK method with different values
of γ. The sensitivity parameter γ influences the approximation quality of the matrix-free
Jacobian as well as the input to the FSI operator F (B (·)) to compute the finite differences
approximation.
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Figure 3.19.: Analysis of the acceleration techniques

Figures 3.19a and 3.19b show the computational time required for the Aitken relaxation
method compared to the MFNK approach with different values of γ. For the values visu-
alized in Figure 3.19a, only the linearized single field equations were solved to compute
the finite differences approximation of the Jacobian, while the time measurements for the
case where the full nonlinear field equations are solved are depicted in 3.19b. It is notable
in the current example that both, linearized and fully nonlinear approaches to approximate
the finite differences, yield comparable computing times.

Figures 3.19a and 3.19b reveal that the MFNK solvers solve the considered problem faster
than the Aitken relaxation method within the first 200 steps, independently of the used
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γ. After 200 steps, the amount of required iterations increases for all MFNK solvers from
2 to 3 iterations. For the MFNK solver, each iteration contains a full Krylov solve and
multiple evaluations of the residual (3.26). Therefore, this additional iteration increases
the computation time significantly. Afterwards, the speed of the solver highly depends on
the value of γ. This is not surprising, as the approximation of the Jacobian becomes better
as γ tends to zero. As shown in Figure 3.19d, this is not the main reason for the speedup
here, as the number of evaluations of the FSI residuum stays the same. Nevertheless, for
each residual evaluation, the force F

Ä
B
Ä
fB,fbih + δy

ää
has to be evaluated. The smaller γ,

the smaller the step length δy, which can often be beneficial for the iterative linear solver
applied to the fluid partition.

Looking at Figure 3.19c, it becomes evident that the MFNK solvers continuously stay be-
low three iterations. The Aitken relaxation method, in contrast, shows large variations in
the number of iterations, particularly within the first 200 time steps, where the maximum
iteration count is 85.
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Figure 3.20.: Analysis of the acceleration techniques for a light structure

Figure 3.20 visualizes the solver behavior for a variation of the problem above, where the
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3. Fluid-beam interaction

density of the beam is decreased by a factor of 2. For this somewhat more challenging
setup, the typically required number of iterations, and with that the computational time
of the Aitken relaxation technique, increases significantly compared to the example with
higher density. Here, the MFNK method with any of the considered values for γ exhibits
preferable computational times compared to the Aitken method when using the linearized
single field equations to compute the finite differences approximation, as depicted in Fig-
ure 3.20a. In contrast, Figure 3.20b indicates that, for γ = 10−5, solving the full single
field equations leads to significantly higher computational times within the last 300 steps
of the simulation. In any case, Figures 3.20c and 3.20d demonstrate that the number of FSI
residuum evaluations required to solve the considered problem using the MFNK method
is consistently lower than with the Aitken method, independently of the configuration.

As noted in [117], the Aitken relaxation method is a fairly simple and cheap method that
often performs well in accelerating convergence. Nevertheless, choosing good parameters
for the MFNK method can still speed up the convergence considerably. It is noteworthy
that at least one parameter also has to be chosen for the Aitken relaxation method: the
maximum number of allowed iterations until divergence is assumed. As shown in Fig-
ures 3.20c and 3.20d, the number of iterations can vary considerably, making this choice
particularly difficult but integral for the robustness of the simulation.

3.4.4. Towards biomedical & engineering applications

Finally, the numerical examples within this section are chosen to examine the performance
of the computational framework for application-inspired numerical experiments contain-
ing more complex geometries, additional nonlinearities in the single fields, and a large
number of interacting fibers. In the following, the developed FBI method will be applied
to the simulation of an immersed stent geometry and the computational investigation of a
submerged vegetation patch containing 3, 000 fibers.

3.4.4.1. Submerged vegetation

...

1 3

l = 13

10
216

h = 1

hb = 0.3

x

y

b = 1

1
17

2
17

...

z

y

Figure 3.21.: Sketch of the configuration for the submerged vegetation example
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Finally, this example serves as an application of the proposed approach to a problem in-
spired by a real-life research question: the behavior of a submerged vegetation patch and
its impact on the coastal flow. Flexible terrestrial and aquatic plant canopies massively
affect the flow formation in coastal water regions, and in open fields, as their interaction
with the flow around them may lead to shear-layer formation and secondary currents.
Additionally, plant canopies in water channels and river banks reduce the velocity and
throughput of fluid, and can represent a technical challenge concerning the maintenance
of the water supply. Studying and understanding the effect of such submersed vegetation
patches is challenging. In [144, 142], these phenomena have been studied experimentally
and, in [29, 44, 204], efforts have been made to quantify their effect on the flow around them
by analytical solutions to roughness and density variation models. Recent numerical stud-
ies of submerged canopies include the analysis of rigid fixed submerged fibers [181, 186],
2D models of fluid flow interacting with submerged rod-like structures, as in [145, 54, 131],
as well as immersed, 2D flaps interacting with the 3D flow around it, cf. [192, 193]. Due to
the large number of fibers required to model such canopies realistically, the resolution of
such setups in 3D poses a challenge regarding the model complexity. Additionally, the two
geometrical scales pose an additional challenge concerning the complexity of the problem
setup. Commonly, the displacements of the single beams, which in turn contribute to the
patch’s overall behavior, are significantly smaller than the channel length. Nevertheless,
the behavior of flexible immersed canopies leads to highly interesting flow patterns, mak-
ing it a prime target application for the proposed FBI approach.

As depicted in Figure 3.21, the submerged plant patch is modeled by 225 × 15 slender
beams immersed within a 3-dimensional fluid channel with the dimensions 13×1×1. The
beams have the length hb = 0.3, the radius rb = 10−2, and are modeled using a hyperelastic
material with the Young’s modulusEb = 107 and the density ρb = 101. The beams are fixed

to the floor of the channel with equal spacing of
10

226
in the channel direction, starting at

a distance of 1 to the inflow boundary. In the direction of the channel’s depth, the beams

are also spaced equally at an interval of
1

17
, with a distance of

1

17
to the left wall and

2

17
to the right wall. This setup leads to a slightly asymmetric behavior, which facilitates flow
orthogonal to the channel’s principal flow direction.

The fluid is modeled with the density ρf = 1, the dynamic viscosity νf = 0.004, and a
no-slip boundary condition is applied to the bottom surface. Non-penetration conditions
are applied to the channel surfaces, and a backflow boundary condition is applied to the
outflow. On the inflow boundary, the velocity

vin = 100 · y · (2− y) ,

is prescribed in channel direction, and the inflow is zero in both other directions.

The fully-coupled FBI method with mortar-type coupling discretization is applied using
linear Lagrange shape functions, a penalty parameter ϵ = 102, and a time step size ∆t =
2 · 10−4. The fluid field is discretized with 491,520 finite elements yielding 2,095,236 DoFs,
and the 3,375 fibers are discretized with 10,125 finite elements resulting in 81,000 DoFs.

Figure 3.22 depicts the solution of the fluid and beam fields at time t = 0.24. The effect of
the beams’ interaction on the fluid flow is illustrated in Figure 3.22a. The fluid is not only
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3. Fluid-beam interaction

(a) Fluid velocity in channel direction on a slice through the channel’s middle

(b) Beam displacement orthogonal to the channel length

(c) Fluid velocity orthogonal to the principal channel direction at height y = 0.3

Figure 3.22.: Solution of the simulation of an immersed canopy

slowed down in the proximity of the fiber patch, but the flexible movement of the beams
leads to the formation of monami-type fluid flow as also observed in [193, 144, 145]. As
depicted in Figure 3.22b, this phenomenon goes hand in hand with displacement waves
traveling through the beam patch. This behavior stems from the asymmetry of the model
and the successive formation of fluid waves traveling orthogonal to the channel direction,
as visualized for the beam displacement d in Figure 3.22c, and also observed in [193] for
immersed flexible flaps. In contrast to 2D simulations, as reported in [145, 54], phenomena
caused by flow orthogonal to the principle channel direction can be observed: the fluid
pushes the beams in their wake to the sides, effectively increasing the unobstructed flow
area in these regions, which in turn leads to variations in the fluid velocity. In contrast to
the upper canopy layer of freely moving beam tips, this behavior does not occur near the
ground where the beams are fully fixed. On the contrary, the fixation of the beam near the
ground allows the formation of ground flow as hinted at in Figure 3.22a and Figure 3.23a.

The results of the shown example were obtained without the incorporation of beam-to-
beam contact. Although an important phenomenon, note that the beams in the considered
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(a) Phenomenon of ground flow (b) Waves orthogonal to principal flow direction

Figure 3.23.: Captured flown features due to the simulation in three dimensions

example are only subjected to forces applied through interaction with the fluid flow. In
this case, when using sufficiently large penalty parameters to enforce the FBI conditions,
the beams interact implicitly through the fluid flow. Consequently, the impression of direct
beam-to-beam interaction is created, as demonstrated in Figure 3.23b. However, a quanti-
tative comparison with the solution of a beam-to-beam scheme such as the ones presented
in [133, 136] is in order to assess the validity of the presented model. However, since this
thesis focuses on the application of mixed-dimensional methods in the context of stent-
ing procedures, further model extensions for the simulation of submerged vegetation are
subject to future research.

As this example constitutes the first time that results of a 3D flexible submersed vegeta-
tion patch containing structures with high slenderness with respect to two directions were
reported, a quantitative validation of the results is still out of the scope of this thesis. Nev-
ertheless, this example showcases an envisioned target application of the proposed FBI
approach and demonstrates its potential compared to alternatives, such as fully resolved
or homogenized models, when it comes to the modeling of large amounts of fibers and
their consequent interaction phenomena. This has been demonstrated by placing a large
number of more than 3, 000 stems into the channel.

3.4.4.2. Immersed stent geometry

This example now addresses the use of the proposed FBI framework in the context of stent-
ing procedures. To study the general applicability of the FBI approach to stenting-inspired
examples, particularly to complex stent structures’ interaction with fluid flow, the follow-
ing example of an immersed stent geometry is set up. The material properties are inspired
be the parameters reported in [139] for the Taxus Liberté, which is used for stenting of
coronary arteries. Nevertheless, since the constitutive beam model is given by a hyper-
elastic material model, not considering plasticity or pre-stressing, these aforementioned
material properties have been adapted such that the fully expanded stent will touch the
fluid boundary.

The stent geometry itself, depicted in Figure 3.24a, is based on [5], has an initial radius
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3. Fluid-beam interaction

(a) Initial configuration of the beam center-
line mesh in form of a stent structure

(b) Start configuration of the stent model
problem with fluid at rest

Figure 3.24.: Geometric setup of the model problem of an immersed stent. Figure is taken
from the author’s article [75].

of 1.25 mm, a length of 13 mm, and is made up of 3, 488 SR beam elements. The beams
have a Young’s modulus Eb = 6.2 · 1010 g

mm · s2
, a Poisson ratio νb = 0.3, and a ra-

dius r = 0.03 mm. Figure 3.24 shows the setup of the model problem, for which the stent
is half-way immersed in the fluid domain. The fluid domain consists of 113, 800 fluid ele-
ments, has a radius of 1.75mm, and a length of 15mm. The density is set to ρf = 0.001

g

mm
,

the dynamic viscosity γf = 0.003
g

mm · s
, and the time step size ∆t = 0.001 s is used. The

113, 800 fluid elements are further subdivided into two independent meshes: a coarser
inner cylinder mesh with a radius of 1.25 mm and a finer outer layer as visualized in Fig-
ure 3.24b. Both fluid meshes are then coupled using the mortar finite element method for
surface coupling with condensed dual Lagrange multiplier shape functions as introduced
in [46]. This mesh tying problem within the fluid field represents a rather complex appli-
cation. This is to show that it is not only possible to include highly nonlinear phenomena
within the structure field but that the flexibility of the proposed approach also allows for
complex models of the fluid field. For the application at hand, this is especially beneficial
since it is a priori known that the stent geometry will only move through the outer fluid
layer, and it is expected that its effect on the fluid flow will also be restricted to this part
of the fluid domain. Figure 3.25a depicts the initial position of the stent at the edge of the
outer fluid mesh layer.

To model the extension of the stent by the balloon, the internal pressure is successively
increased from t = 0 s to t = 0.1 s using the formulaÅ

p̄ · x · t
p̄ · y · t

ã
. (3.36)

For a fully expanded stent geometry, as shown in Figure 3.25b, p̄ = 3.1 · 103 g

mm · s2
is

used. For simplicity, the fluid is assumed to be at rest and oblivious to the stent for the
entire expansion procedure, and the structure is simulated quasi-statically, thus neglecting
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(a) Visualization of the initial position of the
stent within the fluid pipe

(b) Effect of the stent on the fluid flow in ax-
ial direction

Figure 3.25.: Axial view of the fluid flow within the pipe in mm
s . Figure is taken from the

author’s article [75].

its inertia. Once the stent is in place, the spatially constant fluid inflow velocity prescribed
at the inlet boundary to the right is ramped up during 50 time steps to a maximum ve-
locity of 1000

mm

s
, while no penetration, free slip boundary conditions are enforced on

the cylinder barrel of the fluid domain. The interaction of the fluid with the stent struc-
ture is enforced using the beam-to-fluid coupling variant presented in Section 3.3.3.1 in
combination with a GPTS coupling approach and the penalty parameter ϵ = 103.

Figure 3.26.: Final configuration of the stent model problem showing the axial velocity in
mm
s and in a slice through the origin at a 45◦ angle
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Figure 3.26 shows that the current method can capture the roughness introduced by the
complex fully expanded stent geometry while considering the structure’s material proper-
ties and expansion behavior. It is noteworthy that the exact location of stent wires/struts
and, thus, the location of the imposed Dirichlet coupling conditions depends on the so-
lution of the nonlinear beam problem modeling the stent and is, therefore, not known a
priori as in the other examples. To this end, Figure 3.26 demonstrates that features of the
expanded stent geometry translate directly to the fluid flow. The fluid flow far from the
stent is unaffected, as expected. On closer inspection of the slice through the origin at a
45◦ angle, backflow appears in the vicinity of the stent struts (colored in black), while the
fluid is partly slowed down in between the cross beams. Also, the expansion procedure
leads to larger displacements at the outskirts of the stent system, whereas the stabilizers
and cross struts lead to a stiffer behavior far from the axial edges. This effect leads to even
more flowback of the fluid near the upstream edge of the stent while a boundary layer
of decreased velocity is created downstream, where the stent geometry displays a smaller
radial displacement.

Note that this model problem still represents a considerable simplification of the complex
interactions present in a stented artery. In particular, the neglect of any vessel wall and
corresponding boundary conditions poses an immense change in the dynamics of the sys-
tem model. Nevertheless, the result serves as a proof of concept for the applicability of
the FBI approach to models of stented arteries. Particularly, the example showcases the
FBI scheme’s ability to capture the effect of established stent models based on 1D beam
equations, as proposed in [215, 183, 184], on the flow around it. This represents a sound
starting point for extensions to a more complex model in Part III.
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Within this chapter, the FBI approach presented in Chapter 3 is extended to its use on
moving meshes and its combination with classical FSI between 3D fields. Even though
IBMs have been the focus of research for many years, the literature on IBMs on moving
meshes is still rather limited. Some work on this topic was reported in [72], where the
movement of bubbles and droplets within a multiphase flow framework is studied. To
model the multiphase flow, a level set method in combination with an ALE approach,
which is used to improve the quality of the background mesh, is employed to capture
the interface between different fluid phases. The mesh is kept completely free in order
to follow the movement of various droplets. Additionally, an IBM method is applied to
introduce boundaries of the computational domain and to capture the interaction with
complex geometries of surrounding structures. The methodology is validated by various
2D examples and by a simulation of the passage of a 3D droplet through a periodically
constricting pipe. The combination of Chamira methods with the application of an ALE
approach to improve the FSI solution near the boundary is developed in [197, 65]. In this
context, Chamira methods are classified as an IBM-type method in the sense that quantities
of interest have to be exchanged between a patch and a non-matching background mesh.
In [208], an IBM method on a moving mesh in 2D is proposed. The background mesh
is moved to fit a structure’s boundary and included into the fluid system using an ALE
approach. This makes it a one-way coupled FSI approach.

It is noteworthy that this seemingly small change from fixed to moving background meshes
fundamentally changes the requirements for the existence of solutions as well as the ro-
bustness of the numerical segmentation and search procedures. To the author’s best knowl-
edge, this thesis represents the first work on combining a full IBM-type coupling of im-
mersed structures, here beams, with the full FSI coupling in ALE coordinates.

In the following, the combined Fluid-Beam-Structure interaction (FBSI) problem is stated
in weak form, the resulting coupled system of equations is presented, and major differ-
ences to the pure FBI approach on fixed meshes are pointed out. Finally, the partitioned
coupling algorithm applied to solve the problem is illustrated and the approach is vali-
dated with a numerical example.

4.1. Governing equations

Here, the overall system of equations is presented. The system does not only contain the
fluid and solid fields but also the beams as well as the contributions stemming from inter-
actions of the fluid with the beams, and the solid, respectively. The various components
have already been introduced in Sections 2.4, 2.5, 3.1.2, and 2.8. The derivations in this
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4. Fluid-beam-structure interaction

section, and the example in the upcoming section, are restricted to the GPTS approach
introduced in Sections 3.1.2 and 3.2.1. Extension to the mortar penalty-type approach pre-
sented in Sections 3.1.2 and 3.2.2 are straight forward though.

The most significant change in comparison to the presented fbi approach developed in
Chapter 3 is the fact that the fluid domain is now also time dependent. As presented in
Section 2.8.1, the deformation of the fluid domain is governed by the ALE displacementuf ,
which, in turn, is computed based on the solid field displacement of the FSI interface via
the MMPDE, i.e.,

Ωf = Ωf
Ä
t,uf (us)

ä
. (4.1)

As discussed above, this additional nonlinearity not only affects the existence of solutions
to the problem, particularly the existence of a restriction operator Π : H1 (Ωf )

3 → L2 (Ωb)
since such a restriction operator now implicitly depends on the MMPDE, but it is also the
root of additional algorithmic challenges that are further discussed in Section 4.2.

Combining all components for the FBI problem presented in Section 3.1.2 with the com-
ponents of the FSI problem introduced in Section 2.8 in a straight-forward manner, the
following FBSI system is obtained:

Problem 4.1 Find
Ä
vf , pf ,uf ,us,λfsi,ηb

ä
∈ Wv

F×Wp
F×Wu

F×WS×L2
Ä
I,H− 1

2 (ΓFSI)
3
ä
×

WB, with vf = v0, us = us0, uf = uf0 , ηb = η0 a. e. for t = 0, such that

T∫
0

afale

Ä
vf , pf ; δvf , δpf

ä
− bf

Ä
δvf
ä

+ ϵfbi
l∫

0

Ä
Πvf ◦ r− vb

ä
·Πδvf ◦ r ds dt = 0,

T∫
0

as
Ä
rb; δrb

ä
− bs

Ä
δrb
ä
−
Ä
λfsi, δus

ä
Γfsi

dt = 0,

T∫
0

ab
Ä
ηb; δηb

ä
− bb

Ä
δηb
ä
− ϵfbi

l∫
0

Ä
Πvf ◦ r− vb

ä
· δr ds dt = 0,

T∫
0

Ä
us − uf , δλfsi

ä
Γfsi

dt = 0

T∫
0

ammpde
Ä
uf ; δuf

ä
+
Ä
λfsi, δuf

ä
Γfsi

dt = 0

(4.2)

for all
Ä
δvf , δpf , δuf , δus, δλfsi, δηb

ä
∈ L2

Ä
I,H1

0 (Ωf )
3
ä
× L2 (I,Vp) × L2

Ä
I,H1

0 (Ωf )
3
ä
×

L2
Ä
I,H1

0 (Ωs)
3
ä
× L2

Ä
I,H− 1

2 (Γfsi)
3
ä
× L2 (I,VB).
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4.2. Numerics & algorithmic aspects

Here, all semi-linear and linear forms as well as all related quantities take the same form
as presented in Sections 3.1.2 and 2.8. In the following, additional superscripts are intro-
duced to highlight the interaction type of the constraint enforcement related quantities
and matrices. This implies a change in notation for the FBI penalty parameter ϵfbi and the
matrices Cfbi

FF , Cfbi
FB, Cfbi

BF , and Cfbi
BB presented in Section 3.2.1 for FBI coupling.

4.2. Numerics & algorithmic aspects

After the derivation of the nonlinear system, the discretized nonlinear system of equations
is presented, and alterations to the coupling algorithm in order to include the additional
interactions between the fluid and solid fields are made.

As already pointed out in the previous section, the main difference compared to the non-
linear system for pure FBI is the introduction of a deformable ALE fluid domain. This
results in the need for the beams to be coupled to a moving background mesh, for which
its movement is governed by the MMPDE based on the solid field displacement. In turn,
the projection χ, which was introduced in Section 3.2.1 for the integration of the FBI cou-
pling matrices, no longer just depends on the movement of the beam centerline but also on
the movement of the fluid mesh relative to the centerline. This results in an additional de-
pendence of the FBI coupling matrices Cfbi

FF and Cfbi
FB on the fluid mesh displacement ûfh.

Under consideration of the already defined coupling as well as single field matrices, spa-
tial discretization by the FEM and numerical integration straightforwardly leads to the
following discrete nonlinear system of equations:

Afbsi
Ä
v̂fh, û

f
h, η̂

b
h, û

s
h

ä
xfbsi = ffbsi, (4.3)

where the vector of unknowns for the fbsi system xfbsi and the right hand side ffbsi are
given as

xfbsi :=



Ç
v̂fh
p̂fh

å
ûfh
η̂bh
ûsh
λ̂
fsi


n+1

, ffbsi :=


fFh −Cfbi

FB
(
r̂h,u

f
)
fB,nh

−fAF
h

fBh +Cfbi
BB

(
r̂h,u

f
)
fB,nh

fSh
−fΛFh


n+1

. (4.4)

Furthermore, the highly nonlinear monolithic system of equations for the FBSI coupling is
given by:
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4. Fluid-beam-structure interaction

Afbsi
Ä
v̂fh, û

f
h, η̂

b
h, û

s
h

ä
:=



Aale
FF

Ä
ûfh

ä
+Cfbi

FF

Ä
r̂h, û

f
h

ä
0 − γ

β∆t
Cfbi

FB

Ä
r̂h, û

f
h

ä
0 0

0 AAA 0 0 −
(
Dfsi

)T
−Cfbi

BF

Ä
r̂h, û

f
h

ä
0 ABB +

γ

β∆t
Cfbi

BB 0 0

0 0 0 ASS
(
Mfsi

)T
0 −τAFD

fsi 0 Mfsi 0


n+1

(4.5)

Here, dependencies of the nonlinear operators on coupling quantities, i.e., the solution to
other blocks, is highlighted while dependencies of Aale

FF , ABB, and ASS , that are unrelated
to the coupling of any fields, are dropped for the sake of brevity.

Due to the newly introduced additional interactions and nonlinearities, a specially tai-
lored solution procedure is necessary to solve (4.3). Figure 4.1 illustrates the resulting
partitioned FBSI algorithm. The monolithic system (4.3) is partitioned into three distinct
solution procedures: the fluid partition, the structure partition containing the beam as well

t = t +∆t

Solve fluid prob-
lem ffbsi,kh =

fF ,fbi,kh + f s,fsi,kh =

F
Ä
v̂b,kh , ûf,kh

ä

∥∥∥ffbsi,kh − ffbsi,k−1
h

∥∥∥ < tolk = k + 1

Solve beam and
structure problemÄ

v̂b,kh , ûs,kh

ä
=

S
Ä
ffbsi,kh

ä

Search
element
pairs &
rebuild

coupling
matrices

ûf,kh = A
Ä
ûs,kh

ä

vb,0h = v̂bh

Ä
rb,0h

ä
rb,0h = P (r̂h (t−∆t))

ffbsi,kh

no yes

ffbi,kh

r̂kh

v̂b,kh

ûs,kh

ûf,kh

ûf,kh

Figure 4.1.: Schematic of the Fluid-Beam-Structure Interaction Algorithm
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4.2. Numerics & algorithmic aspects

as the solid systems, and the MMPDE. In the following, the problem to be solved for each
of these partitions as well as their dependence on solution variables of other partitions are
briefly recounted, and differences to the algorithm presented in Section 3.3 for the pure FBI
problem are highlighted. As in Section 3.3, the superscript k is used to denote variables
computed in the kth FSI iteration. For the sake of a compact notation, this superscript is
dropped where appropriate.

In contrast to Section 3.3, the fluid solution operator F now contains a dependency on the
fluid mesh displacement ûfh in addition to its dependency on the beam velocity v̂bh. For
the fluid partition, the first row of (4.3) is solved for the fluid stateÇ

v̂fh
p̂fh

å
,

given a known beam velocity v̂bh and the mesh displacement ûfh. With the resulting fluid
state, the forces acting on the beam and the FSI interface can be computed as introduced
in Sections 3.3 and 2.8, respectively. Specifically, the interaction forces can be obtained as

f s,fsih :=MT
fsiλ̂

fsi
, (4.6)

and

fB,fbih := CBF

Ç
v̂fh
p̂fh

å
−CBBv̂

b
h, (4.7)

and can be added up to recover the overall interaction force

ffbsih := fB,fbih + f s,fsih . (4.8)

On the structure partition, the 3rd and 4th row of (4.3) is solved for η̂bh and ûsh, assuming a

given interaction pressure λ̂
fsi

and fluid stateÇ
v̂fh
p̂fh

å
.

Specifically, the solid and beam equations are solved after applying the interaction force ffbsi,kh

to the overall structure partition. From the solution (r̂h, û
s
h) of the structure partition, the

input for the next steps can now be obtained. Namely, by application of a suitable time
integration scheme T , the beam velocity can be defined as

v̂bh := T (r̂h, r̂h (t−∆t) , ...) , (4.9)

and subsequently handed to the fluid partition. For inclusion of FSI, the mesh motion ûfh
based on the restriction of the solid displacement to the FSI interface, ûsh|Γfsi

, has to be
computed. To do so, the MMPDE in the second row of (4.3) is solved. Instead of explic-

itly handing the Lagrange multiplier field λ̂
fsi

to the MMPDE, a condensed form of the
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4. Fluid-beam-structure interaction

system, as presented in [130, 105], is used, and the projection of the restriction to the FSI
interface of solid displacement is directly prescribed as Dirichlet boundary condition onto
the MMPDE, i.e.

ûfh

∣∣∣
Γfsi

:= D−1
fsiM fsiû

s
h

∣∣∣
Γfsi

. (4.10)

With that, the mesh motion solution ûfh can be extended to the fluid mesh, and subse-
quently used to compute the FBI coupling matrices. Both, the mesh motion solution ûfh
and the FBI coupling matrices, can then be handed to the fluid partition again. In the pre-
sented algorithm, this loop of solving the three partitions is repeated until the change of
the overall interaction force falls under a user-specified tolerance tol, i.e.∥∥∥ffbsi,kh − ffbsi,k−1

h

∥∥∥ =
∥∥∥fB,fbi,kh − fB,fbi,k−1

h + f s,fsi,kh − f s,fsi,k−1
h

∥∥∥ < tol. (4.11)

Note that the MFNK solver illustrated in Figure 3.4 can directly be applied to the overall
interaction residual ffbsi,kh − ffbsi,k−1

h as described in Section 3.3.2.

Remark 4.2 Note that (4.3) does not take interactions between the solid field and the beams into
account. For simplicity, this special case is not taken into account by the notation in (4.3). How-
ever, the overall methodology, as well as the algorithmic solution procedure presented here, can be
easily applied to problems which take such contribution of potential interactions into account. The
inclusion of interactions between the solid field and the beams is further discussed in Sections 4.3
and 5.1.1, and the presented algorithm is applied to a example containing such interactions in
Chapter 7.

4.3. Numerical example

Figure 4.2.: Geometrical setup of the FBSI model problem

As a proof of concept, the described FBSI algorithm is validated by its application to a nu-
merical example. The following example is inspired by the opening and closing of a heart
valve. Heart valves are usually made up of several leaflets which do not only interact with
the fluid but their dynamics are greatly influenced by contact interactions between the
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4.3. Numerical example

leaflets. Particularly the valves closing blocks blood from flowing back, thereby allowing
for blood to be pumped from one heart chamber to the other. This behavior is not captured
by the example presented here. However, the numerical experiment is sufficient to show-
case a first use case of the developed FBI method on moving meshes and its interplay with
classical continuum-based FSI methods.

For the example, fluid flow through a compliant pipe with radius 1 for the fluid part, and
a thickness of 0.1 for the surrounding structure is set up. On the left boundary, a parabolic
inflow profile is prescribed. The velocity is smoothly accelerated to a maximum of 100
in the middle of the parabolic inflow at time t = 0.1, and the velocity is then smoothly
decelerated to a state of rest again. A backflow boundary condition as discussed in [14] is
applied to the fluid outflow boundary and the structural part of the pipe is fixed in place
at the artificially cut boundaries on both ends of the artery. The fluid is discretized using
34, 350 stabilized P1/P1finite elements, and the surrounding structure layer is discretized
with one element over the thickness leading to a mesh with 4, 320 hexahedral elements
with linear shape functions. At half distance to the axial ends of the pipe, 32 fibers are
included in the simulation as illustrated in Figure 4.2. The fibers are equally spaced, or-
thogonal to the fluid flow, they are prescribed a length of 0.8, and they are made up of 10
TF beam elements each. The nodes at the beam ends, which coincide with the inner struc-
ture surface, are fixed in place. The fluid is modeled as Newtonian, using a fluid density
ρf = 1.0 and a dynamic viscosity νf = 0.03. The beams follow a hyperelastic constitutive
law with the Young’s modulus Eb = 2 · 109, the density ρb = 10, the cross-sectional radius
rb = 10−2, and the pipe’s wall is modeled using a St.-Venant Kirchhoff material with the
Young’s modulus Es = 3 · 106, the density ρs = 1.2, and the Poisson ratio νs = 0.3. The
MMPDE for the ALE displacement is extended using the St.-Venant Kirchhoff constitu-
tive law with the same parameters. Last but not least, a GPTS approach with the penalty
parameter ϵfbi = 1 is used for the FBI interaction, and the simulation is run for 200 time
steps with a step length of ∆t = 10−3 using a Gen-α time integration scheme for all fields.
For the structure components, the beams as well as the continuum field, a spectral radius
ρ∞ = 1 as defined in [34] is used, and the time stepping for the fluid field is based on the
parameters αf = αm = γ = 0.5 as detailed in [130].

Due to the fluid flow, the fibers are expected to experience displacement with the maxi-
mum displacement occurring at the beam ends closest to the centerline of the pipe. This
displacement behavior, in turn, effectively augments the unobstructed area between the
tips of the beams. Subsequently, as the inflow velocity is decelerated, the beams are ex-
pected to move back into their resting position.

Figure 4.3 depicts the behavior of the beam cluster at times t = 0.05, t = 0.01, t = 0.15
and t = 0.2. Qualitatively, the beams behave as expected, and as stated above, tentatively
validating the algorithm’s ability to apply the correct interaction forces to the fibers

On the other hand, the displacement of the fibers, conversely, directly influences the be-
havior of the fluid flow. Therefore, the fluid velocity is expected to be highest in the center
of the pipe, while it is slowed down in the areas close to the fibers. As the fibers are most
densely packed at the beam tips, near the centerline of the pipe, the flow is diverted most
noticeable in this area. Caused by the effective reduction in cross-sectional flow area by
the obstructing beams, an acceleration of the fluid in the unobstructed region near the cen-
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(a) At time t = 0.05 (b) At time t = 0.1

(c) At time t = 0.15 (d) At time t = 0.2

Figure 4.3.: Beam displacement for the immersed beams within a compliant pipe solved
via the FBSI framework

terline of the pipe is expected. Furthermore, an effect of the fiber-based obstruction on the
pressure is expected. As the cluster of fibers represents a relatively dense obstruction in
the pipe, the pressure is expected to undergo a jump in the beams’ vicinity. Furthermore,
due to the inclusion of FSI interactions, flow induced deformation of the compliant pipe,
such as in the benchmark in [63], is expected.

Figure 4.4 depicts the behavior of the fluid flow and its interactions with the immersed
fibers at times t = 0.05, t = 0.01, t = 0.15, and t = 0.2. At all times, Figures 4.4a- 4.4d show
a reduction in fluid velocity behind the beam obstruction while the fluid velocity in the
unobstructed cross-section, close to the pipe’s centerline, shows an increase. This behavior
becomes even more evident in Figures 4.4b- 4.4d. As expected, particularly in Figures 4.4c
and 4.4d it also becomes noticeable that the flow is slowed down most near the tips of the
beams.

Additionally, Figure 4.5 demonstrates the effect of the fibers on the fluid pressure. A clear
separation between the range of pressure values before and after the fiber obstruction can
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(a) At time t = 0.05 (b) At time t = 0.1

(c) At time t = 0.15 (d) At time t = 0.2

Figure 4.4.: Fluid velocity in channel direction for the fluid within a compliant pipe and a
obstruction made up of fibers

Figure 4.5.: FBSI Example Pressure and Stress at time t = 0.1
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4. Fluid-beam-structure interaction

be observed. As the underlying model also captured the interaction of the fluid with the
continuum structure, this jump directly translates to a change in stresses near the the fibers,
most notable due to cross-sectional stretching of the solid layer. Figure 4.5 illustrated the
principal stresses in tangential direction.

(a) At time t = 0.05 (b) At time t = 0.1

(c) At time t = 0.15 (d) At time t = 0.2

Figure 4.6.: Solid and fluid mesh displacements for the compliant pipe example solved via
the FBSI framework

Figure 4.6 now depicts the magnitude of the continuum structure field’s displacement as
well as the fluid mesh displacement at times t = 0.05, t = 0.01, t = 0.15, and t = 0.2,
particularly the smooth transition of displacement between the two fields.

The solution of the presented numerical experiment, thus, validates the behavior the pre-
sented FBSI framework with respect to the fluid flow as well as the fiber movement in a
qualitative manner. Furthermore, Figure 4.6 demonstrated the fulfillment of the geometric
coupling condition for the FSI interaction, effectively validating the fact that the FBIs as
well as the FSIs can be captured by the proposed FBSI method.

Nonetheless, Figures 4.4d and 4.6d make it clear that the presented simulation represents
a simplification of the regarded phenomena. It is notable that the model discrepancy, be-
tween the moving continuum structure and the fixed beam ends, leads to an unphysical
gap between the two structures. In reality, for heart valve simulations, the beam ends
are expected to interact with the pipe’s wall, and to follow its movement. This motivates
the development and application of structure mechanical interactions such as contact and
mesh tying in order to adequately model biomechanical processes. Part II of this thesis,
thus, focus on the development and application of such structure mechanical interactions,
specifically in the context of balloon angioplasty.
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Part II.

Modeling balloon angioplasty using
geometrically exact beam theory
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The application of computational methods to model biomedical procedures, particularly
balloon angioplasty, has been a topic of research for many years. However, the state-of-
the-art methods in numerical modeling of this complex procedure still leave questions
unanswered and their use is not yet common in everyday practice. One of the reasons
is certainly the complexity of each single component that interacts during balloon angio-
plasty.

The artery itself constitutes a complex living organ that adapts and grows with regard to
the mechanical configuration it is subjected to. It exhibits an incompressible and anisotropic
constitutive behavior that requires adequate modeling [87, 5]. Furthermore, because of its
ability to adapt, the blood vessel in its examined geometrical configuration is generally not
in a stress-free state. In order to capture a sufficiently realistic behavior of the artery for
physically meaningful parameters, pre-stressing and pre-stretching of the artery are essen-
tial [90, 211]. In particular, the necessity of pre-stretching is substantiated in [211]. Zhang
et al. conclude that pre-stretching is the main reason for the low magnitude in changes
of vessel length, while generally rather large changes in the diameter are observed. There
exist many formulations of varying complexity to pre-stress a geometry. The most com-
mon approach is inverse analysis [31, 68, 69, 125, 50]. In the case of inverse analysis, the
stress-free state of the artery is found and on that basis, the stress in the current geom-
etry is computed via physical considerations. A simpler approach is represented by the
modified-updated Lagrangian formulation (MULF) [60, 61]. The MULF formulation is not
as accurate as some other models, such as inverse analysis, but it represents a simple ap-
proach that delivers sufficiently accurate stress results and has been found to be robust
also for real patient geometries [61].

Figure 4.7.: Coronary artery geometries for 8 different patients. The geometry includes
the left main stem (LMS), the left circumflex artery (LCx) and the left anterior
descending artery (LAD). Taken from [151].

Since blood vessel geometries can significantly vary between patients, as demonstrated in
Figure 4.7, the use of image-based geometries is crucial for the aid in patient-specifically
tailored devices. However, the acquisition of real patient geometries leads to further re-
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search questions and challenges. Information on the geometry of an artery is only available
via, more or less high-quality, data obtained through image processing techniques. The
extrusion of an accurate geometry from this data is non-trivial and may contain uncertain-
ties [4, 66]. Even when information on the geometry of patient-specific data is available,
usually very limited information on the plaque and stenotic regions of the diseased vessel
is accessible. The formation of stenotic regions is generally caused by the formation of en-
closed lipid pools or calcifications, mostly within the intimal layer. However, Shahidian et
al. have shown the importance of suitable material models and accurate plaque geometry
modeling for the investigation of potential ruptures and stress distributions close to the
stenotic regions [173].

(a) Balloon catheter system. Taken
from [10].

(b) Palmaz Schatz stent in crimped and expanded
configuration. Taken from [53].

Figure 4.8.: Pictures of a balloon catheter and stent

The second component highly influencing the mechanics during balloon angioplasty is the
balloon catheter, depicted in Figure 4.8a. The mechanics of the balloon catheter during the
process of angioplasty are fairly complex. Generally, the ends of the balloon are fixed to
the catheter and the balloon is folded in order to fit into the crimped stent. Once the air
pressure within the balloon is increased, the balloon starts to unfold. The balloon material
only starts to stretch after the balloon is fully unfolded, at which point the compliance
begins to play a role. In literature, the complexity of the balloon model in simulations of
endovascular intervention highly varies between contributions. Within a large number of
publications, the balloon is neglected completely and Instead, the stent is simply expanded
via strategically applied Neumann boundary conditions acting directly on the stent [163,
90, 137, 210], or via the displacement-driven expansion of a cylindrical shell [111, 90, 4].
However, the mechanics of angioplasty is heavily driven by the balloon inflation. The
balloon does not only expand the stent but also exerts additional pressure on the vessel
wall, guaranteeing further expansion of the lumen. It is, therefore, important to model the
balloon and its inflation via an internal pressure. The initial balloon geometry can either
be modeled as a cylindrical structure [103, 101, 102], or its intricate folding can be fully
resolved [169, 139]. The latter is found to be necessary to capture expansion effects such
as dog-boning, where the axial edges of the balloon-stent system are expanded faster than

96



its middle part [209, 39]. However, during unfolding, the contact regions between the
stent and the balloon constantly change, thus, leading to a high numerical cost. Therefore,
the use of cylindrical balloons is still widespread in the scientific community. Due to this
simplification, the pressure applied to the inner surface of the balloon is generally required
to be somewhat higher than in reality [62].

Particularly important for the long-term effect of balloon angioplasty and stent insertion is
the quality of the stent model itself. As illustrated in Figure 4.8b, the stent undergoes large
deformations during expansion, making the mechanics highly dependent on elastoplastic
behavior [59, 4, 6]. In general, two different methods of geometry acquisition can be dis-
tinguished: the geometry may either be extracted from micro CT images [7, 139], or the
geometry may be designed via a computer-aided cell-based procedure [6, 169]. In either
case, the efficient meshing of these stent geometries poses a challenge and often requires
rather finely resolved finite element meshes [163]. Additionally, for the investigation of the
expansion procedure, the design of the stent in crimped configuration is essential [62, 108].
The complex geometries and high required mesh resolution motivate the use of beam the-
ory to model the stent. In [183, 215], networks of beams are used to model stents and
to capture their expansion behavior. Furthermore, the interaction of a beam-based stent
network with a rigid arterial wall, based on point collision detection, is modeled in [16].
Finally, in [111], a beam-based stent model in combination with an elastoplastic constitu-
tive law is used to capture the expansion behavior of a stent.

In addition to the precise modeling of the single components, their combination and the
accurate capturing of the interactions between them determine the quality of a model for
balloon angioplasty. A multitude of different computational methods and their applica-
tion to various scenarios can be found in the literature. Some of these approaches and
connected research questions are reviewed in the following. In [103], a numerical model
for the free expansion behavior of an elastoplastic stent by a balloon is established. A cylin-
drically orthotropic model is used to reproduce characteristic pressure-diameter diagrams
for balloon expandable stents. The interaction of the balloon and stent is captured via a
penalty-based contact approach. The numerical model is, subsequently, applied to capture
the expansion of six different stent designs and validated by practical experiments. In [49],
an isotropic Mooney-Rivlin constitutive law is used to model the generically cylindrical
vessel and the plaque. A cylindrical balloon is employed to expand the stent based on
an elastoplastic material model. The vessel wall is pre-stressed via the application of a
diastolic blood pressure. Furthermore, due to the assumption of symmetry, only a quar-
ter model is simulated. The highest stresses after stenting are obtained at the axial stent
ends and it is concluded that the highest risk of stent failure can be expected at the corners
of stent cells. The declared aim of the work is the use of the developed computational
method for the design of new stents. Similarly, in [206], symmetry constraints are ap-
plied to curved and straight cylindrical artery models, on top of which a stenotic layer is
modeled. Both, vessel and plaque, are modeled using an isotropic Mooney–Rivlin mate-
rial. After stenting, the conformity of the stent to the vessel geometry, the minimum lu-
men area, tissue prolapse between struts and principal stresses are compared between the
straight and curved configuration. Increased stresses acting on the inner curvature of the
curved vessel wall and a straightening effect are observed. A more complex model can be
found in [139], where the performance of three different stent designs in a patient-specific
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coronary bifurcation is compared. Within this work, the balloon is modeled as a folded
membrane structure. The size of the stent meshes for the different designs varied between
21, 000 and 46, 800 finite elements. An artificial pressure is applied to the outer surface of
the stent to mimic crimping. Contact between all components, i.e., artery, stent, balloon,
and between catheter and guide wire, is modeled. Insertion of the stent is achieved via dis-
placement conditions applied to the end of the catheter shaft. However, no pre-stressing or
pre-stretching is applied to the arterial wall. Based on the numerical model, two modified
stent designs are proposed to reduce values of maximum wall stresses after stenting.

Particularly the large size of stent meshes and the promising results of numerical exper-
iments for the free stent expansion behavior of beam models motivates the development
of a mixed-dimensional model for balloon angioplasty procedures. To the best of the au-
thor’s knowledge, the following developments constitute the first application of a mixed-
dimensional model to capture the full effects of balloon angioplasty and stent insertion,
particularly the stent’s interactions with the balloon and the vessel wall.
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5. Developing an efficient model for
computer-aided design of endovascular
devices

This chapter is dedicated to the modeling of balloon angioplasty using a mixed-dimensional
model. Specifically, a numerical method for the structure mechanical interactions between
balloon, stent, and vessel wall, is developed. The model is qualitatively validated by cho-
sen examples.

In the following, the main features of the applied mixed-dimensional interaction model
for the coupling of geometrically exact beams with 3D solid surfaces, or beam-to-solid-
surface (BTSS) coupling, are given. The model’s suitability for applications in the con-
text of balloon angioplasty is validated by comparison to the behavior of a fully resolved
stent model during balloon inflation and stent expansion. After introduction of the mixed-
dimensional coupling approach, the general composition of the arterial wall is reviewed
and a realistic anisotropic constitutive law for its modeling is summarized. In the end,
the resulting model for the simulation of balloon angioplasty is qualitatively validated by
chosen numerical examples and comparison to adverse effects of angioplasty known from
literature and practice. To the best of the author’s knowledge, this constitutes the first
application of a mixed-dimensional model to balloon angioplasty.

5.1. Numerical model for balloon angioplasty

Within this section, the considered model for angioplasty is developed. To that aim, the
essential theoretical components of the model such as the BTSS coupling method and the
employed anisotropic constitutive law for the artery are briefly recounted. Afterward, the
considered geometric model for balloon angioplasty and all numerical and constitutive
parameters are presented.

5.1.1. Beam-to-solid interaction

To model the interaction between the stent and the balloon or the vessel wall, the BTSS
coupling framework, presented in the author’s previous work [176], is used. Specifically,
the consistent displacement coupling variant presented in the aforementioned work [176]
is applied to the numerical examples within the remainder of this thesis. The fundamentals
of this approach and the interaction model in weak form are briefly recounted here. The
interested reader is referred to [176] for more details on the method.
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(a) Mesh tying of the beam centerline to the
solid surface without offset

(b) Mesh tying of the beam centerline to the
solid surface with offset

Figure 5.1.: Representation of two variations of beam-to-solid-surface mesh tying. Figure
is taken from the author’s article [176].

Similarly to the mixed-dimensional FBI approach introduced in Chapter 3, the BTSS ap-
proach relies on a beam centerline coupling, therefore, leading to a 1D-2D beam-centerline-
to-surface coupling. A major novelty of the used approach is the possibility to couple the
two components at a prescribed distance, i.e., an offset, from each other. The most obvious
choice for such an offset is the beam radius, which ensures that the beam’s surface, instead
of its centerline, lies on the solid surface. In order to be able to capture this general case of
an offset, as well as non-conforming discretizations, a distance function

d (ξ, ψ, s) := ∥xs (ξ, ψ)− r̂h (s)∥ , (5.1)

is introduced. Here, (ξ, ψ) ∈ Γ0
btss represent the solid coupling surface’s configuration

in the parameter space Γ0
btss, while s ∈ [0, l] represents the parametrization of the beam

centerline in its reference configuration.

This definition of the distance function can be used to characterize the closest point pro-
jection dbtss : [0, l] → R by the minimization problem

dbtss (s) := min
(ξ,ψ)∈Γ0

btss

d (ξ, ψ, s) := d (ξbtss, ψbtss, s) . (5.2)

The minimal distance vector xs (ξbtss, ψbtss) − r̂h (s) has to be orthogonal to the surface
tangents, or in other words, has to be a linear combination of the surface normal

n (ξ, ψ) =

∂xs (ξ, ψ)

∂ξ
× ∂xs (ξ, ψ)

∂ψ∥∥∥∥∂xs (ξ, ψ)∂ξ
× ∂xs (ξ, ψ)

∂ψ

∥∥∥∥ . (5.3)

These information lead to the following constraint on the BTSS coupling surface:

r(s)− xs(ξbtss, ηbtss)− dc (ξbtss, ψbtss)n (ξbtss, ψbtss) = 0 a.e. on Γbtss, (5.4)
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where Γbtss represents the solid body’s coupling surface in the current configuration. En-
forcing this coupling constraint with Lagrange multipliers leads to the following problem
in weak form

Problem 5.1 Find
(
us,ηb

)
∈ WS ×WB such that

as (us; δus) + ab
Ä
ηb; δηb

ä
− bs (us)− bb

Ä
ηb
ä
+

∫
Γbtss

λbtss (δr− δxs − dbtssδn) ds = 0,∫
Γbtss

δλbtss (r− xs − dbtssn) ds = 0,

(5.5)

for all
(
δus, δηb

)
∈ L2

Ä
I,H1

0 (Ωs)
3
ä
×L2 (I,VB), with ηb = ηb0 and us = us0 a.e. for t = 0, and

∥r′ (0, ·)∥R3 = 1 a. e. on [0, l].

Here, the semilinear and linear forms as (us; δus), bs (us), and ab
(
ηb; δηb

)
, bb

(
ηb

)
, are as

introduced in Section 2.4 for the continuum structure, and in Section 2.5, respectively.

The discretization of the single fields is straightforward and follows the derivations in Sec-
tions 2.4 and 2.5. Analogously to the FBI approach, a mortar penalty-type regularization
is applied to the Lagrange multiplier field to circumvent the inf-sup condition. For more
information on the computation of the discretized surface normals, or the closest point
projection, as well as their consistent linearization the interested reader is referred to [176]
for a comprehensive presentation and analysis of the employed BTSS coupling method.

5.1.2. Comparison with a fully resolved stent

For the comparison, the stent is modeled using a hyperelastic constitutive law with Young’s
Modulus 90, 000 MPa and a Poisson ratio of 0.3. These parameters do not resemble the
ones of stainless steel, as commonly used for bare-metal stents, but are closer to the pa-
rameters of copper. In both cases, the reduced-dimensional, as well as the fully resolved
model, the balloon, and the stent, interact via normal contact instead of mesh tying in order
to allow for sliding during the expansion procedure. Friction is neglected. In order to hold
the stent in place, the stent nodes on one end of the stent are fixed as suggested in [103].
The balloon material is modeled using a hyperelastic constitutive law with Young’s mod-
ulus 850 MPa and Poisson’s ratio 0.4, and both ends are fixed in place. The balloon is
modeled using linear hexahedral elements while the stent in the fully resolved case is
modeled using linear tetrahedral finite elements. The pressure applied to the inner surface
of the balloon is increased within 6 load steps until a pressure of 30 MPa is reached. The
stent interacts with the balloon using a contact variation of the BTSS method introduced
in Section 5.1.1, cf. [180], and the penalty parameter is chosen as ϵbtss = 100.

Figures 5.2a and 5.2b show the initial geometrical configuration of the balloon-stent system
modeled using beam elements and a fully resolved stent model, respectively.

Figures 5.2c and 5.2d show the final configuration of the beam-based, and the fully re-
solved stent model, respectively. Figure 5.3, in turn, shows a comparison of the fully in-
flated stent for the beam model, in blue, and the 3D continuum model, in purple. The
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(a) Initial state of the 1D-3D model (b) Initial state of the 3D-3D model

(c) Final state and displacement in mm of the
1D-3D model

(d) Final state and displacement in mm of the
3D-3D model

Figure 5.2.: Comparison of the inflation of a balloon-stent system modeled as a network of
SR beams and a fully resolved 3D stent model

maximum displacement in the radial direction for the beam model is 0.59, while the max-
imum displacement in that direction for the continuum model is 0.55. The stiffer behavior
of the continuum model has various causes. Firstly, the strut connections have been mod-
eled as rather wide to simplify the meshing of the stent geometry while the beams are only
coupled point-wise at the intersection of the beam centerline. The use of linear tetrahedral
elements additionally enhances this effect of the stiffer geometry model. Nevertheless, the
difference constitutes a relative difference of approximately 7% in the maximum displace-
ment. Considering the complexity of the problem, all present interactions, the differences
in the initial geometry, and the fact that the beam-based stent is discretized with 95% less
finite elements compared to the 3D model, this difference is in line with reports in [215].

The analyzed example shows that not only the stent expansion behavior itself can be ade-
quately captured by a reduced-dimensional stent model, as reported in [215], but also its
interaction with a balloon can be satisfactorily captured by the beam-to-solid-surface in-
teraction formulation, first presented in [176], and reviewed in Section 5.1.1. This, in turn,
further motivates the use of geometrically exact beam theory, and its interactions with 3D
continuum fields, to efficiently model balloon angioplasty.
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Figure 5.3.: Comparison of the end configuration of two stents, modeled with beam finite
elements (blue) and 3D linear tetrahedral finite elements (purple)

5.1.3. Constitutive model for the arterial wall

In the following, the composition and essential constituents of the artery wall, and the
arising constitutive response, are briefly recounted.

The arterial material is characterized by a high water content. A suitable material law
should, therefore, reproduce the resulting incompressible material behavior. The micro-
scopic structure of most human arteries consists of three different layers: adventitia, me-
dia, and intima. To model the passive mechanical response of the artery, these layers can
be considered as a composite structure of two families of collagenous fibers arranged in
symmetric spirals and embedded within an isotropic base material. The base material
is associated with elastin. Under inner pressure, the artery vessel first shows a linear
deformation-stress response due to the elastin matrix. As the load increases, an expo-
nential stiffness response can be observed due to the gradual engagement of the collagen
fibers. These observations suggest the use of an anisotropic material model. In fact, in [5],
the response of an artery with anisotropic constitutive behavior is compared to an artery
modeled using an isotropic constitutive law, and a mismatch of 600% in the maximum
principle stresses was found. In the remainder of this thesis, the constitutive law applied
to the artery model is, thus, based on the anisotropic material law presented in [87, 85].
This constitutive law is briefly reviewed in the following.

In the following, g1 and g2 denote the normalized direction vectors of the two families of
fibers, and C̄ := det

Ä
F− 2

3

ä
FTe Fe represents the modified right Cauchy-Green deforma-

tion tensor based on the elastic component Fe of the deformation tensor F. In this case,
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the strain energy function can be split into an isotropic and an anisotropic part:

Ψ
(
C̄, g1, g2

)
= Ψiso

(
C̄
)
+Ψaniso

(
C̄, g1, g2

)
. (5.6)

Using the shear modulus G, the isotropic part then takes the form

Ψiso

(
C̄
)
=

G

2β

Ä
J−2β − 1

ä
+ c1

(
tr
(
C̄
)
− 3

)
, β =

ν

1− 2ν
, (5.7)

while the anisotropic part can be characterized by the material parameters k1 and k2, and
has the form

Ψaniso

(
C̄, g1, g2

)
=

k1
2k2

exp
î
k2

(
g1C̄g1 − 1

)2ó
+

k1
2k2

exp
î
k2

(
g2C̄g2 − 1

)2ó− 2. (5.8)

Here, k1 represents a linear scaling parameter of the energy function, and k2 defines the
exponential increase in the stress response as more and more collagen fibers become active.

Remark 5.2 As the artery can be considered as nearly incompressible, the isotropic strain energy
function in (5.7) can be simplified [85]. However, in this section, the form for the compressible
Neo-Hookean constitutive model is given for generality.

5.1.4. A mixed-dimensional simulation model for balloon angioplasty

Since the focus of the thesis lies in aiding in the understanding of the long-term effects of
balloon angioplasty, the model suggested in this section is based on a quasi-static problem.
The effect of inertia will therefore be neglected. Furthermore, parameters and geometries
are based on coronary artery stenting. Nevertheless, the overall methodology is also trans-
ferable to the simulation of balloon angioplasty in other vessels.

Adventitia 0.30 mm
Media 0.25 mm
Intima 0.20 mm

Table 5.1.: Thickness of the arterial layers used in the coronary artery model

In the following, a simplified geometry of the artery is considered and depicted in Fig-
ure 5.4. The geometry can be interpreted as a tube with the radius 1.35 mm and the
length 10 mm. The three layers of the artery including the geometry parameters are stated
in Table 5.1.

The values in Table 5.1 are based on measurements performed during autopsy of human
left anterior descending arteries (LAD) and can be found in [88].

The stenosis is modeled as a stenotic layer on the inner surface of the artery, similarly
to [168]. The stenosis has a length of 9.6 mm, effectively decreasing the lumen diame-
ter by 8 mm at its minimum. This corresponds to a reduction of the cross-sectional area
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Figure 5.4.: Schematics of the base geometry used within the presented model of an an-
gioplasty procedure. It contains the balloon (violet), the stenosis (green), the
intima (yellow), media (blue), and adventitia (brown).

by 50%. In the current model, the simplified approach in [169] is followed and the overall
constitutive behavior of the stenotic region is modeled as fibrous without fully modeling
the geometry of its various components. In agreement with [89, 120], the fibrous tissue
is modeled as a neo-Hookean material with Young’s Modulus 115 MPa and Poisson’s ra-
tio 0.45.

Layer G k1 k2 Fiber orientation

Adventitia 7.56 kPa 38.57 kPa 85.03 67.00
Media 4.68 kPa 21.60 kPa 8.21 20.61
Intima 55.80 kPa 263.66 kPa 170.00 60.30

Table 5.2.: Constitutive parameter of the arterial layers

In order to pre-stress the artery, the diastolic blood pressure

pdiastolic = 80 mmHg = 0.0107 MPa,

is applied to the lumen surface, and the resulting system is solved via the MULF algorithm
presented in [61]. Further, a pre-stretch factor of 1.25, equaling a Dirichlet controlled dis-
placement of 2 mm pulling on each artery end, is applied to the artery in order to stress the
artery in the longitudinal direction.

The stent is modeled as a diamond-shaped structure, inspired by the Palmaz Schatz stent
design, using 288 SR beam finite elements. A hyperelastic material with Young’s modulus
Eb = 195, 00 MPa and Poisson’s ratio νb = 0.3 is applied to model stainless steel (SS316L).
The stent struts itself have a radius of 0.04 mm, while the stents is modeled with a radius
of 0.85 mm and a length of 6 mm in the crimped configuration. The stent is made up
of 5 diamond-shaped cells in longitudinal strut direction, and 24 cells in circumferential
direction, as illustrated in Figure 5.5.

The balloon is modeled as a cylinder of 12 mm length and an outer diameter of 1.7 mm
with closures at both ends, as illustrated in Figure 5.4. The balloon thickness amounts
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Figure 5.5.: Depiction of the applied diamond-shaped stent design

to 50 micron. The balloon is discretized with one linear hexahedral element in the thick-
ness direction, and a total of 5, 568 finite elements. The constitutive model of the balloon’s
homogeneous material is selected as an isotropic, hyperelastic St. Venant Kirchhoff mate-
rial. The material parameters are chosen as Eballoon = 850 MPa for the Young’s modulus
and νballoon = 0.4 for the Poisson’s ratio, and can be found in [139]. Furthermore, the
catheter and the guide wire are neglected, and, instead, the position of the balloon is fixed
at both ends.

If not stated otherwise, the balloon is expanded by applying an orthonormal pressure pballoon
on the inner surface of the balloon. The pressure is successively increases up to pballoon =
30 MPa within 6 load steps. The balloon inflation serves two purposes: firstly, the balloon
expands the stent and thereby puts it into place to later hold the artery open. Secondly, the
balloon expands the plaque itself. In order to represent this complex process in a physically
correct way, the numerical methods for contact mechanics and BTSS interaction, presented
in Section 2.7 and Section 5.1.1, respectively, are used. The expansion of the stent by the
balloon is modeled using the BTSS equations with the penalty parameter ϵbtss = 100, if
not stated otherwise. The interaction of the balloon and the artery is modeled using the
mortar penalty contact formulation with the penalty parameter ϵc = 20. During the infla-
tion phase, no interaction between the stent and the artery is taken into account, since the
vessel expansion is assumed to be mainly driven by the balloon inflation.

The deflation phase is the last step, where the balloon is decoupled from the stent and
coupled to the artery with the penalty parameter ϵbtss = 100. The inner pressure of the
balloon is gradually lowered within 4 load steps. To overcome the limitations of employing
a hyperelastic material law for the beam-based stent model, an artificial pressure is applied
as a Neumann boundary condition to hold the stent open.

5.2. Captured effects

Within this section, the suitability of the developed simulation model for balloon angio-
plasty is demonstrated by validating the model’s ability to capture well-known effects of
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balloon angioplasty. The effects range from expected pre-stressing states over the stress
distribution after stenting to the well-known straightening effect observed after stenting
of curved vessels.

5.2.1. Pre-stressing & pre-stretching of the artery

(a) Pre-stressing in bottom-to-top direction in
MPa

(b) Pre-stressing orthogonal to the plane in
MPa

(c) Pre-stressing in axial direction in MPa

Figure 5.6.: State of the vessel after pre-stressing and pre-stretching using the MULF
method

In the following, the plausibility of the results after the pre-stressing and pre-stretching
step is checked. As already stated in Section 5.1.4, a diastolic pressure is prescribed on
the inner surface of the vessel while a displacement of 2 mm is applied to each end of the
vessel. After the pre-stressing phase, the principle stresses in all directions are expected
to be non-vanishing. In fact, the stresses due to pre-stressing are generally non-negligible,
and prevent unrealistically large deformations during subsequent simulation phases [61,
188]. Furthermore, an influence of the different material properties of the various layers
on the stress distribution is predicted due to the differing deformation-stress relationships.
Particularly, the comparably high Young’s modulus of the stenosed region leads to notable
differences in the stress state as observed for a calcified vessel in [61].

Figure 5.6 depicts the result of the applied MULF pre-stressing and pre-stretching. The
effect of pre-stressing is most notable within the innermost layer, the tunica intima, to
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which the diastolic pressure is applied. Figures 5.6a and 5.6b show the vessel’s stress state
in the circumferential direction, and Figure 5.6c shows the stress in the axial direction.
The depicted principal stresses are all non-negligible, and their influence on the material
layer is notable in the presented figures. All in all, the results show an agreement with the
expected effects after pre-stressing and pre-stretching.

5.2.2. Inflation of the balloon & contact interactions

Next, robustness and plausibility of the inflation behavior is validated. The balloon is
expected to expand due to the internal pressure given in Section 5.1.4 and, in turn, to
expand the stent. Once contact with the vessel wall is established an increase in the vessel
lumen is anticipated.

(a) Displacement state in mm during balloon in-
flation at pressure pballoon = 7.5 MPa

(b) Displacement state in mm during balloon
inflation at pressure pballoon = 15 MPa

(c) Displacement state in mm during balloon in-
flation at pressure pballoon = 22, 5 MPa

(d) Displacement state in mm during balloon
inflation at pressure pballoon = 30 MPa

Figure 5.7.: Displacement behavior of balloon, stent, and vessel wall furing balloon infla-
tion

Figure 5.7 shows the different stages of the balloon inflation phase. In Figure 5.7a, the
balloon’s inflation is not yet sufficient for contact with the artery to occur but the balloon
already starts to expand the beam-based stent. In the next steps, the balloon comes into
contact with the stenosis and slowly pushes it to the outside, effectively recovering the
original lumen diameter, as demonstrated in Figures 5.7b and 5.7c. In Figure 5.7d, the
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balloon inflation is finally sufficiently large to increase the lumen diameter. These results
validate the robustness of the contact and mesh tying methods for the present generic
geometry and demonstrate physically logical behavior throughout the inflation phase.

5.2.3. Balloon deflation & stress peaks

(a) Displacement state in mm during balloon deflation at pressure
pballoon = 20 MPa

(b) Displacement state in mm during balloon deflation at pressure
pballoon = 0 MPa

Figure 5.8.: Displacement state during the stent deflation phase

After contact is established and the original lumen area is recovered, the balloon is de-
flated and the stent is left in place. Realistically, a recoil of the stent to its plasticized final
state is expected. The stent in its plasticized state reinforces the vessel wall and keeps the
lumen expanded. In contrast, the vessel wall in the unstented regions collapses, effectively
decreasing the lumen area. The hight gradient of the artery-stent system’s compliance in
the transitional zone between stented and unstented regions lead to the development of
stress peaks at the stent’s edges [200, 139, 212, 100, 169].

The deflation phase represents the most crucial point in regard to the simplification of
applying a hyperelastic constitutive law for the stent. However, this example is designed
to illustrate the robustness of the employed BTSS method and to demonstrate its capturing
of well-known phenomena in connection with balloon angioplasty, even under the model’s
current limitations.
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(a) Second Piola-Kirchhoff stress component
Sxx in MPa at peak balloon inflation

(b) Second Piola-Kirchhoff stress component
Sxx in MPa after balloon deflation

(c) Second Piola-Kirchhoff stress component Syy

in MPa at peak balloon inflation
(d) Second Piola-Kirchhoff stress component

Syy in MPa after balloon deflation

Figure 5.9.: Comparison of the distribution of the second Piola-Kirchhoff stresses. The
left column shows the circumferential and radial stresses in the artery before
balloon deflation and the right column shows the circumferential and radial
stresses after balloon deflation.

Figure 5.8 illustrates the results of the deflation phase. The stabilizing effect of the ex-
panded stent on the artery is demonstrated. Additionally, the unstented vascular wall’s
protrusion into the lumen is illustrated by Figure 5.9. Furthermore, the formation of (neg-
ative) stress peaks in the principal stresses near the axial stent edges can be observed in
the radial direction after balloon deflation, cf. Figures 5.9b and 5.9d. The obtained values
are in the order of stress peaks observed in [139].

5.2.4. Straightening & edge effect for curved arteries

In contrast to the geometry treated up until now, real vessels are rarely perfectly straight
but usually exhibit some amount of curvature. Stenting of such curved blood vessels gen-
erally leads to the so-called straightening effect. This effect has been observed in clini-
cal studies in [74, 213, 132, 200], and has been captured through numerical experiments
in [66, 94, 4, 169, 139, 212]. This straightening of the vessel affects the artery in two forms.
On the one hand, the changed configuration of the vessel geometry may adversely affect
the blood flow pattern and lead to recirculation zones and abnormal WSS [94, 213]. On
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(a) Initial geometry of a straight balloon in a curved vessel

(b) Displacement in mm of a stenosed curved
vessel and balloon at peak inflation of the
balloon without stent

(c) Distribution of radial stresses in MPa within
a stenosed curved vessel at peak inflation of
the balloon without stent

Figure 5.10.: State at peak inflation of a balloon in a curved artery

the other hand, the poor fit of the stent in the artery may lead to vessel wall injury and in-
flammation due to high mechanical stress and angulation. This, in turn, precipitates edge
restenosis near the stent edges [100, 74, 132]. Both effects have been linked to unfavorable
long-term outcomes and in-stent restenosis.

In the following, the simulation model proposed in Section 5.1.4 is adapted and applied to
model balloon angioplasty in a curved artery without stenting. To this end, the geometry
of a straight balloon in a curved pipe is used. The initial geometry is depicted in Figure
5.10a. Furthermore, the pressure is slightly adapted to 48 MPa subdivided into 12 load
steps. All other numerical parameters are taken directly from Section 5.1.4.

Figures 5.10b and 5.10c illustrate the simulation results. As expected, Figure 5.10b clearly
exhibits straightening of the vessel due to the balloon expansion. Furthermore, Figure
5.10c demonstrates stress peaks near the stent edges, in radial as well as circumferential
direction. These results demonstrate that both, the straightening effect as well as the me-
chanical stress peaks at the ends of the balloon, can be captured by the proposed method-
ology.
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5.2.5. Inflation behavior of a curved balloon catheter device

Figure 5.11.: Behavior of the curved GOKU balloon-catheter in practice. Figures are taken
from [191].

The GOKU curve represents a balloon catheter that was specifically developed to treat
acute-angled vessel portions and which is commercially available. During unfolding and
inflation, the balloon transitions from a nearly straight configuration to a highly curved
geometry. In [104], an in-vitro comparison to a conventional straight balloon was per-
formed and significantly lower stresses for the insertion of the GOKU curve in an artificial
curved vessel model were reported. Furthermore, ”safety and effectiveness of catheter in-
tervention in the early postoperative period have also been reported” [104, p.411]. In [58],
a study with 45 patients was performed and the authors report that the GOKU curve per-
formed better with respect to the reduction of complications. In addition, use of the GOKU
curve contributed to better short-term outcomes after treatment of lesion angles between
70◦ and 110◦ compared to conventional straight stents. Its particular usefulness for lesion
angles greater than 90◦ was hypothesized. Unfortunately, in [191], limited inflation of the
GOKU balloon during the insertion of conventional straight stents of various lengths was
observed in animal experiments. However, the GOKU curves suitability for acute-angled
lesions stems from the particular inflation and bending behavior of the GOKU balloon
catheter reported in [191] and visualized in Figure 5.11.

Figure 5.12.: Initial configuration of a curved balloon (gray) and displacement state of the
balloon in mm after application of the inner pressure pballoon = 12 MPa
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Motivated by the success of the GOKU curve, the behavior of a slightly curved balloon
under application of a uniform inner pressure is numerically investigated in the follow-
ing. The goal of the simulation is the reproduction of the GOKU curves inflation behavior,
i.e. its bending, as depicted in Figure 5.11. No stent nor artery is present in this simu-
lation. Instead, the free inflation behavior of the curved balloon is analyzed. Only the
balloon ends are constrained. The pressure is increased within 30 load steps, until a value
of pballoon = 12 MPa is reached.

Figure 5.12 shows the initial geometry of the slightly curved balloon and the result of the
inflation simulation. Similarly to the GOKU curve, the end configuration exhibits severe
bending and only little inflation of the balloon geometry.
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6. Computer-aided patient-specific design of
endovascular devices

The focus of this chapter lies on the use of the model components developed in Chapter 5
for computer-aided design of patient-specific endovascular devices, specifically balloon
catheters. The application of optimization procedures to aid in the design of endovscaular
devices, particularly stents, is frequently encountered in the literature, cf. [199, 22, 194, 71,
70, 76, 174, 160], among others. Commonly used optimization parameters include stent
features such as strut thickness, the number of cells, and material parameters. Stents are
often optimized with respect to the reduction of unfavorable flow features, the reduction
of stress peaks, or their geometric conformity with the vessel wall.

In the following, a novel balloon catheter technology based on an anisotropic balloon con-
stitutive behavior is proposed. The direction of anisotropy is tailored to specific geometric
scenarios to overcome challenges regularly encountered during angioplasty procedures.
The combination of balloon catheter technology and the optimization of the balloon ma-
terial itself constitute, to the author’s best knowledge, a novel approach which targets the
challenges faced during the stenting of curved blood vessels, cf. Sections 5.2.4 and 5.2.5.

6.1. Proposal of a novel patient-specific treatment for stenosed
blood vessels

The favorable results reported for the use of GOKU balloons in in-vivo studies, cf. Sec-
tion 5.2.5, suggests that the use of endovascular devices adapted to the geometrical fea-
tures of the artery could aid in reducing negative consequences such as artery straight-
ening and hinge effects. Already in [206], this idea was brought up: ”Furthermore, we
propose if the balloon were designed to expand in similar curvature as the vessel, the stent
could be bent in advance and conform to the vessel better” [206]. To reduce the straighten-
ing effect and achieve a uniform stress distribution on vessel walls, the following section
investigates the use of curved balloons and stents, as illustrated in Figure 6.1. Additionally,
a patient-specific curved balloon technology, based on an anisotropic material that limits
bending modes, is proposed to address limitations of the GOKU balloon catheter for stent
insertion in slightly curved vessels.

Materials with directional properties can not only be found in nature but also in engi-
neering. The production of inflatable devices taking on specific shapes upon inflation has
recently been investigated by [146]. Here, inspired by the makeup of arteries, the pro-
posed anisotropic balloon material is assumed to be a composite of a base material and
two directional families of fibers. The modeling of such fiber reinforced composites was
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Figure 6.1.: Geometric configuration of a patient-specific curved balloon and stent

comprehensively treated in [85], and applied to a reinforced rubber material in [86]. The
fiber properties utilized below are obtained from the hyperelastic material model in [86].
These properties impact the stress-strain relationship only during tension, and do not af-
fect its behavior under compression, thus making it an appropriate choice for a balloon
catheter. Table 6.1 summarizes the material properties of the proposed balloon, based on
the anisotropic constitutive law presented in Section 5.1.3.

Fiber properties k1 161.5 MPa
k2 0.5

Base material Eballoon 850 MPa
νballoon 0.4

Table 6.1.: Material properties of the proposed anisotropic balloon catheter

For the sake of realism, the material properties summarized in Table 6.1 is assumed to be
fixed. The focus lies on studying the influence of the direction of anisotropy, i.e., the fibers,
on the balloon behavior. To demonstrate the influence of the fiber direction on the unde-
sired bending action of the device, Figure 6.2 shows the results of numerical experiments
for various angles between the fiber directions and the normal in radial direction. The bal-
loon ends are fixed and an orthonormal Neumann boundary condition is applied to the
inner surface of the balloon to model the inner pressure of up to 64 MPa, which gradually
increases during 16 load steps.

An angle of 0◦ corresponds to fibers in circumferential direction, leading to an activation
of the fibers during circumferential stretching while stretching in axial direction is not
restricted. Clearly, this configuration fails to limit the bending motion of the ballon, and
may in fact amplify this behaviour. On the other end of the spectrum, a fiber angle of 90◦

leads to fibers running along the centerline of the balloon, thus, not restricting the inflation
behavior while limiting the bending modes. The remaining fiber configurations exhibit
behavior that falls somewhere between these two extremes, as depicted in Figure 6.2. For
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(a) Angle 0◦ (b) Angle 10◦

(c) Angle 20◦ (d) Angle 30◦

(e) Angle 40◦ (f) Angle 50◦

(g) Angle 60◦ (h) Angle 70◦

(i) Angle 80◦ (j) Angle 90◦

Figure 6.2.: Parameter study on the influence of the direction of anisotropy on the novel
curved balloon design. Displacement state in mm after application of an inner
pressure of 64 MPa
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the given material properties and initial curvature of the balloon, a fiber angle between
60◦ and 70◦ seems to yield the most concentric inflation behavior, which is necessary for
an uniform expansion of a blood vessel of the same curvature.

Evidently, the optimal fiber direction configuration of the anisotropic balloon to yield con-
centric inflation depends on the initial curvature of balloon and stent, which should be
adapted to the curvature of the artery to be treated. Therefore, the anisotropy direction
required patient-specific adaptation to achieve good conformity to the curvature of the
blood vessel. For this purpose, an automatic procedure to find the best patient-specific
fiber configuration for a given curvature is explored in the upcoming section.

6.2. Optimal balloon configuration for curved arteries

Within this section, the automatic optimization procedure for the fiber direction within the
novel anisotropic balloon technology, presented in Section 6.1, is explored. In particular,
the design is optimized with respect to various goal functions, and different geometric sce-
narios. All optimization procedures constitute optimal control problems, as introduced in
Section 2.3, where the state of the problem is related to the parameter, i.e., the fiber direc-
tion, by the full numerical model at hand. All optimization procedures were performed
using a BFGS variant and the open source library SciPy [195] to solve the optimal control
problem. The gradient calculation was also outsourced to SciPy and performed via finite
differences approximation. Where appropriate, the results of the optimization procedure
are compared to commercially available devices, and their benefits are demonstrated.

6.2.1. Computational model & optimization procedure

Based on the proposed balloon design and the presented studies in Section 6.1, the aim of
this optimization procedure is to find the fiber direction that leads to the most concentric
expansion behavior of the balloon for a given pressure. To approximate this behavior, the
integral of the displacement field in radial direction is chosen as the goal function. The
integration surface Γopt is represented in x- and y-direction for Figure 6.1. This leads to the
goal function

1

2

∫
Γopt

ux + uy dΓopt. (6.1)

It is worth noting that the goal function tends towards zero in the event of perfectly con-
centric inflation. Furthermore, a variant of the computational model for balloon inflation
presented in Section 6.1 is used as state equation within the optimal control problem. To
ensure that the simulation remains robust for all fiber orientations, the inner pressure of
the balloon is reduced to 30 MPa. Subsequently, 35 increments of increasing pressure are
applied to reach this state. To investigate the robustness of the solution procedure with
respect to low quality initial guesses, a fiber direction of 25◦ is prescribed for the initial
guess. Furthermore, an absolute tolerance tolopt = 10−2 is enforced for the value of the
Jacobian, and handed to the applied BFGS algorithm.
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Iterations: 11

Function evaluations: 30

Gradient evaluations: 15

fun: 2.3115396304074676e− 07

hess_inv: 0.0020231

jac: 0.00264692

x: 66.05565971

Table 6.2.: Behavior and solution of the BFGS algorithm for the optimization of the fiber
direction in curved balloons

The solution as well as characterizing parameters of the optimal control procedure are
summarized in Table 6.3b. The optimal value of 66.06◦ is well in line with the numerical
study and observations in Section 6.1.

(a) Initial Guess (b) Optimal Solution

Figure 6.3.: Displacement solution in mm for the initial guess and optimized value of the
BFGS algorithm for curved balloons at an inner pressure of 30 MPa

Figure 6.3 depicts the balloon’s configuration at an inner pressure of 30 MPa. The solution
for the initial estimate, with a fiber direction of 25◦, is illustrated in Figure 6.3a, while the
optimal parameter, with a fiber direction of 66.06◦, is displayed in Figure 6.3b. A clear
improvement in the inflation behavior, as well as a reduction in bending, is observable.

6.2.2. Comparison to commercial balloon catheter devices

An angioplasty simulation is set up to explore the advantages of the new patient-specific
curved balloon technology when compared to a conventional straight balloon catheter.
Figure 6.4 depicts the geometric setup for the optimized curved and the straight balloon.
Both balloons are inflated until the stenosis no longer protrudes into the lumen. The nu-
merical parameters for the simulation of the straight balloon are directly taken from Sec-
tion 5.2.4. Note that the curved balloon requires a lower inner pressure, compared to the
straight balloon, in order to fully push the stenosis out of the lumen. For the curved bal-
loon, this leads to an inner pressure of 17.75 MPa, increased within 18 load steps.
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(a) Geometric configuration of a curved balloon
in a curved artery

(b) Geometric configuration of a straight bal-
loon in a curved artery

Figure 6.4.: Start configuration of a curved and straight balloon within a curved artery

(a) Displacement solution in mm for the curved
balloon expanded by an inner pressure of
17.75 MPa in a curved artery

(b) Displacement solution in mm for the
straight balloon expanded by an inner pres-
sure of 48 MPa in a curved artery

Figure 6.5.: End configuration of a curved and straight balloon within a curved artery

The result of the numerical experiments is shown in Figure 6.5. It is notable that the in-
creased inflation of the straight balloon leads to larger displacements of the vessel wall at
the upper edges of the stenosis and in the lower stenotic region. As expected, the curved
balloon exhibits an uniform expansion and conforms well to the vessel geometry. In par-
ticular, little to no unfavorable straightening of the blood vessel occurs, resulting in a fa-
vorable geometric configuration.

The aforementioned displacement peaks lead to matching principal stress peaks in circum-
ferential direction, as shown in Figure 6.6. While the principal stresses alone are surely not
a definite measure of damage, stress peaks can indicate the potential for vessel injury. In
this context, it is known from practice that injuries often occur near the balloon edges,
leading to a candy-wrapper or edge restenosis effect [100, 74, 132]. This conforms to the
locations of the captured principal stress peaks in the results of the presented numerical
experiments. It stands to reason that lower and more uniform stresses may lessen the
injury-induced restenosis leading to more favorable long-term outcomes.

Thus far, the numerical examples investigating the behavior of balloon angioplasty with
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(a) Principal stresses for the curved balloon angio-
plasty

(b) Principal stresses for the straight balloon
angioplasty

Figure 6.6.: Principal second Piola-Kirchhoff stresses in MPa for balloon angioplasty with
a straight and an anisotropic curved balloon

the proposed anisotropic balloon have demonstrated a similar behavior to the one de-
scribed in [104, 58]. Namely, the curved balloon conforms well with the curved artery
and the resulting stress distribution is rather uniform. One difference to the commercially
available curved GOKU balloon catheter is the range of application, specifically the cur-
vature of the vessel sections. Although the GOKU curve was found to be most effective
for acutely angled vessels [58], the proposed anisotropic balloon can be customized to suit
various arteries, including those with only slight curvature. Further, the next numerical
experiment is designed to investigate the GOKU curve’s drawback of insufficient inflation
of the balloon during stent insertion. To this end, the last simulation is adapted to addi-
tionally include a stent. The stent interacts with the balloon via the BTSS coupling method
with the penalty parameter ϵbtss = 100. The contact between the artery and the balloon
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(a) Initial displacement state of a curved
balloon-stent system in mm

(b) Displacement state of a curved balloon-
stent system in mm at an inner pressure of
16 MPa

(c) Displacement state of a curved balloon-stent
system in mm at an inner pressure of 26MPa

Figure 6.7.: Inflation of a curved balloon with curved stent

is modeled using the regularized Lagrange multiplier approach with the penalty param-
eter ϵc = 10. The inner pressure is successively increased to a value of 26 MPa within 30
load steps. The initial configuration is illustrated in Figure 6.7a.

Figures 6.7b and 6.7c illustrate the stent expansion at 16 and 26 MPa, respectively, demon-
strating the suitability of the novel curved balloon catheter also for balloon angioplasty
with stent insertion.

In addition to edge restenosis, plaque rupture is another potential complication of bal-
loon angioplasty that is associated with stresses in the vessel wall. During plaque rup-
ture, parts of the stenosis break of and enter the blood stream, thus, increasing the risk
of embolism [196, 73]. The presented numerical examples demonstrate that the use of the
proposed anisotropic curved balloon catheter may reduce stress peaks and lead to a more
uniform stress contribution, which may reduce risks of both complications, restenosis and
plaque rupture. However, to predict plaque rupture, the material of the plaque as well
as the resultant stresses acting on the plaque play an important role. A study of the full
patient-specific model including the arterial makeup is, therefore, necessary to recommend
an improved balloon, and stent, design. The setup of such a model, and the influence of
asymmetric stenotic regions on the stent expansion, is the topic of the next section.
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6.3. Optimal balloon configuration for asymmetrically stenosed arteries

6.3. Optimal balloon configuration for asymmetrically stenosed
arteries

In general, blood vessels are not only curved but also exhibit cross-sectional asymmetry.
These asymmetries can be inherent to the vessel’s geometry or due to the asymmetric for-
mation of stenosis. Asymmetric cross-sections, especially in the presence of calcification,
can represent a challenge for conventional endovascular devices.

Medical studies conducted on sheep and human patients have revealed a positive associ-
ation between restenosis and cross-section or stent asymmetry [141, 182, 172]. In [141], a
study with 23 patients has shown that ”[i]n-stent neointimal proliferation is more likely to
occur in stented coronary arteries with a more oval than rounded cross-section, and partic-
ularly within the more curved portion of the oval cross-section” [141, p. 491]. Furthermore,
in [182], post-procedural stent asymmetry is found to be related to higher event rates. This
is especially troublesome as stent symmetry can in general not be confirmed by standard
angiography [172]. One explanation for this correlation is given by the observation that
the less diseased perimeter, with thinner plaque deposits, expands more and, therefore,
experiences higher strains and stresses [169, 212]. Furthermore, a relationship between
plaque composition and the probability of inadequate treatment of stenosis is reported
in [169]. The increased risk is hypothesized to be caused by non-uniform stent expansion.
In [212], the effect of curvature and asymmetric plaque formation on self-expandable Ni-
tanol stents is studied. The artery is modeled as homogeneous, hyperelastic, and isotropic.
As expected from mechanical considerations as well as clinical practice, higher compres-
sion and, consequently, higher stresses are found to be present on the sides where the
stenosis is least pronounced. From experiments on rabbits, it is known that these fac-
tors, namely the extent of plaque and medial compression, are positively correlated with
neointimal hyperplasia which, in turn, leads to in-stent restenosis. Zhao et al. have found
through numerical experiments that highly asymmetric plaque formation may lead to un-
derexpansion and malapposition of stents [212].

All the aforementioned problems of commercially available balloon catheters and stents,
with respect to the long-term success of endovascular intervention, motivate the need for
a circumferentially varying pressure distribution on the lumen wall. A circumferentially
varying pressure distribution may aid in ensuring a uniform stent expansion even in the
presence of cross-sectional asymmetry. To this end, the behavior of a heterogeneous bal-
loon catheter, made up of four distinct material patches based on the anisotropic material
model proposed in Section 6.1, is investigated in the following.

6.3.1. Optimal balloon design for a simplified artery model

Within this section, the proposed optimal control problem is first set up with a simplified
state equation in order to investigate the relationship between the optimization parameter
and the goal function in this simpler scenario. In particular, the vessel wall cross-section
is modeled as homogeneous and isotropic. By this rather strong simplification, the me-
chanics of the system change drastically. In order to recover the expected behavior of the
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system, artificially chosen parameters for the constitutive laws, and the pressures, are ap-
plied. Since these values do not correspond to physical parameters, but have been chosen
to analyze the mathematical behavior of the optimal control problem, the use of units is
abandoned for the length of this example.

(a) Geometry of the idealized
vessel cross-section

(b) Balloon made up of four
anisotropic material patches

Figure 6.8.: Geometrical model of the generic quasi-2D arterial cross-section and the het-
erogeneous balloon

Figure 6.8a shows the geometry of the considered quasi-2D arterial problem and Fig-
ure 6.8b illustrates the makeup of the heterogeneous balloon consisting of four material
patches. The outer surface is modeled as a quasi-2D cylinder with radius 1. The upper
half of the lumen is modeled as elliptic and represents a stenotic lesion. The lower arte-
rial region, on the other hand, is considered to be healthy and assumed to be perfectly
round with the radius 0.8. This geometry is inspired by the representative artificial cross-
sectional geometries in [173, 212]. As in Section 5.1.4, the balloon is assumed to be perfectly
round in the initial configuration. A quasi-static simulation is performed. For the quasi-2D
problem at hand, the displacement orthogonal to the plane is forced to zero via Dirichlet
boundary conditions. On the outer surface of the artery, spring-dashpot conditions are
applied, where the spring stiffness is set to Ksd = 101. The spring-dashpot conditions re-
move rigid body modes from the system and, at the same time, allow for some amount
of displacement of the outer wall. Similarly, spring-dashpot conditions with the stiffness
Kbsd = 2 · 101 are applied to the balloon’s artificially cut surfaces to mimic the catheters
stabilizing effect on it. Additionally, an orthonormal pressure of up to p = 3.15 ·103, slowly
increased within 80 load steps, is applied to the inner surface of the balloon in order to in-
flate it. The vessel wall is modeled using a St. Venant-Kirchhoff material with the Young’s
modulus Es = 105 and the Poisson ratio νs = 0.495. The material parameters for the
anisotropic balloon are taken from Section 6.1. Contact is modeled using the penalty mor-
tar finite element method, presented in Section 2.7, using the penalty parameter ϵc = 2·101.

The result for the above described simulation with a conventional homogeneous, isotropic
balloon material, and the novel anisotropic balloon with a fiber direction of 90◦, i.e., fibers
in circumferential direction, is depicted in Figure 6.9. The figure showcases the influence
of the fiber direction on the inflation behavior of the balloon and the overall system. Fig-
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(a) Homogeneous, anisotropic balloon material (b) Homogeneous, isotropic balloon material

Figure 6.9.: Simulation result of the simplified model for a homogeneous, anisotropic
balloon material with fiber direction 90◦, and a conventional homogeneous,
isotropic balloon

ure 6.9a illustrates the expansion behavior of a fiber-reinforced balloon for which the fibers
lie in circumferential direction, and effectively completely restrict the inflation behavior.
The balloon’s diameter in the expanded state is, thus, smaller compared to a balloon with-
out fiber reinforcement. Figure 6.9b, in turn, shows the undesirable displacement of the
lower, healthy, arterial region.

The aim of the following optimization is now the reduction of the deformation in the lower
arterial region, and the recapture of the lumen shape of the healthy vessel, by tuning the
fiber directions in all four balloon patches. In the idealized vessel at hand, the cross-section
of the healthy geometry can be assumed as a perfect circle with radius Rcircle = 0.8. These
considerations lead to the following goal function, which quantifies the difference between
the assumed position of the idealized healthy vessel and the position of the lumen wall
after the balloon inflation procedure:

∫
Γopt

∣∣∣∣x2 + y2
∣∣∣∣−R2

circle dΓopt, (6.2)

where Γopt represents the inner surface of the quasi-2D artery.

In contrast to the optimization procedure applied to the curved balloon in Section 6.2, here
the limited-memory BFGS (L-BFGS) algorithm [123] is applied to solve the optimization
problem instead of the classical BFGS algorithm. The main difference between the two
algorithms lies in the storage requirement for the Hessian inverse, which is of particular
benefit for optimization problems with many optimization parameters. In practice, the
main difference is that the L-BFGS implementation provided by SciPy directly allows for
the application of bounds on the optimization parameter, which the BFGS algorithm does
not. Furthermore, in order to normalize the problem description, the optimization param-
eter, i.e., the fiber angle, is scaled from [0◦, 90◦] to [0, 1] while the goal function is scaled by
a factor of 200, and the appropriate bounds are set. In the following, the symmetry of the
arterial cross-section is exploited, and the left and right patch are assumed to to be made
up of the same material. This leads to three optimization parameters. The initial guess is
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set to 60◦ for the lower patch, and 30◦ for both other patches, while an absolute tolerance
tolopt = 10−3 is enforced for the norm of the Jacobian and handed to the applied L-BFGS
algorithm.

Iterations: 1

Function evaluations: 8

Gradient evaluations: 2

fun: 0.206487

jac: [−0.00052485, 0.00096037,−0.00043162]

x: [1., 0.16600637, 0.21601355] · 90

Table 6.3.: Optimization behavior of the hyperelastic arterial surrogate model

Table 6.3 summarizes the solution and characteristic numbers of the optimization pro-
cedure. For the problem at hand, the L-BFGS algorithm converges after only one itera-
tion and two gradient evaluations. Note that multiple function evaluations are necessary,
though, in order to compute the finite differences approximation of the gradient with re-
spect to all three parameters. The optimal fiber direction of the lower patch is 90◦, for the
upper patch it takes the value 14.94◦, and 19.44◦ for the two remaining patches.

(a) Expanded balloon configuration corre-
sponding to the initial guess

(b) Expanded balloon configuration for the op-
timized fiber diection

Figure 6.10.: Initial guess and final configuration after optimization of the fiber direction
in all patches with a hyperelastic artery

The end configuration of the expanded balloon, for the parameters of the initial guess as
well as the setup with the optimized fiber directions, is depicted in Figure 6.10.

The novel endovascular device design is based on a specific placement within the artery,
which is generally very difficult to achieve during endovascular intervention. To study the
sensitivity of the goal functional on the placement of the optimized balloon, the balloon is
rotated in equidistant increments of 5◦ around its axis for 35◦ in each direction. Changes
of less than 2% in the value of the goal functional are obtained for all of these configu-
rations. This suggests the applicability of the proposed technology also under moderate
misalignment.
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6.3.2. Optimal balloon design for an anisotropic artery model with plaque

Figure 6.11.: Geometry of the arterial cross-section model with plaque occlusion

As a next step, the optimization procedure presented in the previous section is extended
to a more realistic model for the artery. Particularly, an anisotropic material law for the
artery model, realistic constitutive parameters for a coronary artery, and calcified plaque
occlusions are included in the simulation. For the artery, the material parameters intro-
duced in 5.1.4 are used. The geometry of the calcified plaque occlusion is depicted in
Figure 6.11. The plaque is modeled as a Neo-Hookean material with the Young’s mod-
ulus Eplaque = 10 MPa and the Poisson ratio νplaque = 0.3. The pressure is successively
increased, within 90 load steps, until a pressure of p = 22.5 MPa is reached. The spring-
dashpot conditions are applied with the spring stiffnesses Ksd = 10−2 and Kbsd = 2 · 10−2,
on the arterial and balloon surface, respectively.

Iterations: 4

Function evaluations: 90

Gradient evaluations: 18

fun: 0.24707

jac: [0.00100506269,−0.00214809539,−0.00609041706]

x: [1., 0.30354471, 0.16088478] · 90

Table 6.4.: Optimization behavior for the anisotropic arterial model with plaque occlusion

The characteristic numbers collected in Table 6.4 show that the relationship between the
optimization parameter and the goal function has become more nonlinear as compared
to the simplified approach. Now, four iterations of the L-BFGS, and 18 gradient evalu-
ations to build up the BFGS approximation of the Hessian, are necessary. Even though
the constitutive parameters are very different from the ones used in the previous section,
the optimized fiber directions are very similar to the ones reported in Table 6.3 for the
simplified model.
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6.3.3. Optimal balloon design for an anisotropic artery model with plaque and
truly asymmetric geometry

Figure 6.12.: Geometry of the asymmetric arterial cross-section model with multiple
plaque occlusions

Last but not least, the optimization procedure is applied to a different cross-sectional ge-
ometry. All constitutive parameters are kept the same as in the previous example. Figure
6.12 depicts the adapted cross-sectional geometry, which now also exhibits stenosed thick-
ening and a plaque occlusion on the right side of the artery. The pressure is successively
increased within 70 load steps, until a pressure of 17, 5 MPa is reached. Due to the lack of
symmetry, the optimization is performed for the fiber direction of all four material patches,
and the tolerance 10−4 is handed to the L-BFGS algorithm. As initial guess, the fiber direc-
tion for all balloon patches is set to 60◦.

Iterations: 3

Function evaluations: 20

Gradient evaluations: 4

fun: 0.09196

jac: [0.0000225597319, 0.0000655475674,−0.0000719424516, 0.0000756728014]

x: [0., 0., 1., 0.] · 90

Table 6.5.: Optimization behavior for the truly asymmetric anisotropic arterial model with
multiple plaque occlusion

The expanded state for the optimized balloon configuration is illustrated in Figure 6.13,
and the result of the optimization procedure is shown in Table 6.5. The solution converged
to the fiber angle 90◦ for the left patch, and a fiber direction 0◦ everywhere else. The num-
bers characterizing the optimization procedure demonstrate a convergence behavior that
is very similar to the one for the previous geometry: three iterations are performed and
four gradient evaluations are necessary. Contrary to the last example, here, more function
evaluations are necessary since the gradient has to be built with respect to all four opti-
mization parameters. However, the overall convergence behavior of the optimal control
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Figure 6.13.: Final displacement solution in mm after optimization of the fiber direction in
all patches for an asymmetric arterial cross-section with anisotropic arterial
model and multiple plaque occlusions

problem, which is the focus of the current section, is unchanged. This observation sug-
gests that the robustness of the optimization procedure is not dependent on the geometry
of the vessel cross-section, and concludes the chapter on optimal control as a tool for the
patient-specific design of endovascular devices.
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Part III.

Towards a computational model for
stented arteries including blood flow
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Numerical investigations into the influence of stents on the blood flow through arteries
represents a further tool to gain insights into the long-term effects of balloon angioplasty
since regions of altered WSSs are one of the main stent-induced effects linked to in-stent
restenosis [94, 147]. ”In fact, a flow effect on [in-stent restenosis] may be larger than lo-
cal mechanics of stent contact. [...] the non-conformity between the stent and the vessel
could generate unwanted turbulence in the blood stream while favoring the creation of
thrombosis.” [206, p. 2584]

The application of CFD and FSI simulations to study the blood flow through arteries is
a well-established research field. However,such simulations still pose challenges with re-
spect to accuracy and efficiency, cf. [64, 52, 11, 190], among others. Past works include
the study of stent design and its influence on the velocity profile, recirculation zones, and
WSS for 3D models and CFD, or FSI, simulations, cf. [147, 33, 94, 128], among others, and
Figure 6.14. As for the case of stent insertion, the complexity of the models varies sig-
nificantly. In [147] and [94], CFD simulations are run to investigate the effect of various
stent designs on an artery. Specifically the formation of recirculation zones, regions of low
and disturbed fluid velocities and low, or oscillating, WSSs are analyzed. Both models in-
clude pulsatile inflow profiles based on doppler ultrasound, or doppler velocimeter, data.
In [147], however, the vessel geometry is modeled as a symmetric straight pipe and a zero
pressure condition is applied to the outflow boundary. In contrast, the geometry in [94] is
based on a patient-specific carotid artery bifurcation and patient-specific calibrated Wind-
kessel models are applied as outflow boundary conditions. On top of that, in [147], the
expanded stent configuration is directly included in the simulation while in [94], a virtual
implantation procedure is used to insert the stent into the patient-specific vessel geome-
try. Subsequently, the fluid mesh is locally refined near the stent struts yielding a mesh
size of 7, 000, 000 finite elements. Furthermore, the blood flow is accurately modeled as
non-Newtonian fluid in [94].

Figure 6.14.: Recirculation zones on a cross section perpendicular to the flow direction
for different stent designs resulting from numerical experiments. Taken
from [147].

In contrast, in [33] and [128], the simulation methodology is extended to an FSI approach
in order to capture the effect of wall compliance on hemodynamics. While the geometry
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in [128] is taken from computed tomography (CT) images of a left anterior descending
artery (LAD), a straight pipe geometry is considered in [33]. Both numerical experiments
consider the vessel wall to be isotropic and homogeneous, the fluid to be Newtonian, and
the stent to exhibit a purely elastic behavior in the considered deformation range. In [128],
the wall compliance is found to substantially affect the hemodynamic-induced WSSs. The
non-negligible wall deformation may have also posed a challenge in [33], where the max-
imum iteration count for the FSI algorithm is set to 1, 000 iterations and a compute time of
approximately 500 hours is required to simulate one cardiac cycle. Furthermore, the fluid
mesh includes 1, 121, 130 finite elements and the structure part is meshed with 899, 710
elements, partly because ”the device adds complexity to the geometry and needs to be
correctly refined” [33, p.219].

The excessive size of the required meshes and the long computing time motivates the use
of mixed-dimensional modeling for the investigation of flow disturbances caused by the
presence of stents. To the best of the author’s knowledge, the following example, in com-
bination with the author’s own works [176] and [75], constitute the first application of a
mixed-dimensional multi-physics model in the context of stenting procedures. Moreover,
the following example represents the first application of a mixed-dimensional model that
captures not only the interactions between hemodynamics and stent but also the interac-
tions between the blood flow and the vessel wall.
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7. Capturing the effect of a stented artery on
blood flow and vice versa

Within this chapter, the behavior of an idealized stented vessel is investigated. The pre-
sented model and corresponding examples further demonstrate the applicability of the
novel 1D-3D coupling approaches in the context of balloon angioplasty and stented ves-
sels. In the following, the novel FBSI framework presented in Chapter 4, and the BTSS
coupling approach sketched in 5.1.1, are applied to an example inspired by a stented blood
vessel. The applied model and its parameters are summarized. Afterward, the modeling
approach is validated by comparing the results of the numerical investigations with well-
known phenomena from literature and practice.

7.1. Fluid-beam-structure interaction model for stented arteries
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(a) Geometric configuration of stent and artery

ey

eφ

(b) Unwrapped stent geometry

Figure 7.1.: Initial geometry of the stented elastic pipe. Figure is taken from the author’s
article [176] and modified.

The following problem setup is adapted from the author’s previous work [176] to capture
the effect of the stent on the fluid flow, in addition to the BTSS and continuum-based FSI
interactions. The model constitutes a variant of the well-known FSI benchmark problem of
a pressure wave traveling through an elastic tube, which was originally proposed in [63]
to validate the suitability of FSI algorithms for blood flow simulations. In addition to the
original FSI problem, a diamond-shaped stent structure is added to the geometrical setup.
Figure 7.1a illustrates the problem setup. The FBI and BTSS coupling methodologies are
applied in order to account for the stent’s interaction with its surroundings. To solve the
resulting problem, the FBSI algorithm introduced in Chapter 4 is employed. In the present
case, the structure partition contains the beam equations as well as the solid continuum
field, and represents a coupled problem itself.
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As in the original benchmark problem, a constant pulse pin is applied for 3 · 10−3 s at the
fluid inlet. Furthermore, a zero traction condition is applied to the fluid outflow bound-
ary on the right end of the pipe and the displacement at both ends of the pipe is fixed via
Dirichlet boundary conditions. Classical no-slip conditions are enforced on the FSI bound-
ary. The beam centerline geometry depicted in Figure 7.1b is wrapped around a cylinder
with a radius of rs = ri −R to create the used diamond-shaped stent geometry. The stent,
thus, perfectly fits into the pipe structure up to an offset the size of the beam radius. As
the stent only experiences relatively small deformations, the application of a hyperelastic
material model is a valid assumption [94, 33].

The Generalized-α Lie group time integration method is applied to all structural degrees
of freedom. The parameters for the Generalized-α Lie group time integration method are
chosen to obtain a fully implicit scheme, and a time step size ∆t = 10−4 s is used. To
the fluid field, a classical second-order accurate Generalized-α time integration scheme,
with the same time step size as for the structure field, is applied. The BTSS method is
used with linear shape functions for the Lagrange multiplier fields and with the penalty
parameter ϵbtss = 10. The FBI constraints are enforced by a GPTS-based penalty method
with the penalty parameter ϵfbi = 10−5. The overall FBSI algorithm is run with the absolute
tolerance of tolfbi = 3.5 · 10−12. To discretize the problem, 264 Reissner beam elements,
5,760 solid shell elements, and 51,193 stabilized P1/P1 fluid finite elements, are employed.
All dimensions and material parameters of the problem setup are summarized in Table 7.1.

Geometry ri 1.25 mm
ra 1.375 mm
rs 1.246 mm
l1 15 mm
l2 6 mm

Beam EB 9 · 102 MPa
ρB 7.8g/mm3

νB 0.3
R 0.04 mm

Solid ES 3 · 10−1 MPa
ρS 1.2 g/mm3

νS 0.3
Fluid pin 5 · 10−4 MPa

ρF 1.0 g/mm3

ηF 0.3 g/(mm · s)

Table 7.1.: Table containing the parameters for the stented elastic pipe problem

7.2. Captured effects

Within this section, the various consequences of the stent placement for the blood vessel
and the blood flow through that vessel are investigated. The considered effects demon-
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strate the mixed-dimensional method’s ability to capture these perturbations from the
healthy configuration. The example, thus, serves as a proof of concept for the employ-
ment of mixed-dimensional modeling to investigate the intervention’s long-term effects
on the hemodynamics.

7.2.1. Stiffening of the artery & blood flow in stented regions

The main effect of a stent on the vessel is the introduction of a stiffer material response
in the stented regions. The effect of this altered response is twofold. Firstly, this change
in compliance may change the flow pattern and lead to regions of unfavorable flow be-
havior [94]. Secondly, the large change in compliance between the stented and unstented
regions generally leads to stress peaks in these transitional zones. Both effects have been
linked to the occurrence of in-stent restenosis and are of high interest when analyzing the
suitability of endovascular devices and their effect on the patient [100, 35, 107].

(a)

(b)

(c)

(d)

Figure 7.2.: Deformed configuration of the stented elastic pipe problem at various simula-
tion times – the snapshots are taken at t = 0.01 s (a), t = 0.016 s (b), t = 0.024 s
(c) and t = 0.03 s (d) respectively. The norm of the displacements in mm is
shown in the solid and the pressure in MPa is shown in the fluid. The dis-
placements are scaled with a factor of 15.

Figures 7.2a- 7.2d depict the structural displacement, scaled with a factor of 15, and the
fluid pressure after 0.01 s, 0.016 s, 0.024 s and 0.030 s. Figure 7.2 shows that the wall dis-
placement, caused by the pressure wave, is smaller in the stiffer stented region than in the
unstented region.
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Figure 7.3.: Plot of the fluid velocity vy in mm
s in channel direction along the pipe’s center-

line

The altered stiffness response, in turn, affects the flow velocity. To maintain a constant flow
throughput, an increase in the velocity within the stented region is required. Figure 7.3
illustrates the fluid velocity vy in channel direction along the pipe’s centerline. The fluid
velocity plot demonstrates a slight increase in the flow velocity and the broadening of
the wave within the stented region. This alteration of the fluid flow is still visible after
the pressure wave leaves the stented region, and may potentially lead to a remodeling
response of the vessel wall.

7.2.2. Flow perturbation due to the stent

(a) (b)

Figure 7.4.: Velocity in channel direction in mm
s at time t = 0.016 s, at a distance of 4.7 mm

(a), and 5 mm (b) from the channel inflow

The stent not only has an indirect effect on the flow but also affects the flow patterns
directly. As already observed in Section 3.4.4.2, the stent struts slow down the fluid in its
vicinity, effectively introducing some roughness to the vessel wall [147]. This fact leads to
differing pressure distributions acting on the vessel wall that, in turn, may lead to differing
stress responses correlated to growth and remodeling behavior of the artery. The extent of
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the flow perturbation and the formation of recirculation zones is highly dependent on the
stent design. Due to its correlation to in-stent restenosis, the quantification of these flow
effects may represent an important metric for the quality of stent designs.

Figures 7.4a and 7.4b represent cross-sectional views of the fluid flow in channel direction
at a distance of 4.7 mm, and 5 mm, from the channel inflow boundary, respectively. The
figures demonstrate that the flow is slowed down near the stent struts, and that the flow
pattern follows the stent geometry. Namely, following the stent’s cross-section geometry,
the cross-sectional flow pattern differs between the positions along the channel length, as
illustrated by a comparison of Figure 7.4a and Figure 7.4b.

7.2.3. Forces acting on the stent

In contrast to homogenized approaches, the proposed mixed-dimensional model allows
to additionally quantify the forces interchanged on the coupling interface.

Figures 7.5a- 7.5d illustrate the coupling interactions, i.e., the line loads exerted on the
beam system by the vessel wall, as directly obtained via the regularized Lagrange multi-
plier contributions to the BTSS method. In general, it can be observed that the interaction
force is highest at the ends of the stent, i.e., at the transition between a compliant and a very
stiff region. This is particularly notable in Figure 7.5b, where the pressure wave reaches

(a) (b)

(c) (d)

Figure 7.5.: Negative coupling line loads for beam-to-solid surface coupling at various
simulation times – the snapshots are taken at t = 0.01 s (a), t = 0.016 s (b),
t = 0.024 s (c) and t = 0.03 s (d) respectively.
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the stent edge.

The presented simulation results serve as proof of concept for the proposed computational
model, based on the FBSI framework developed in Chapter 4 and the BTSS coupling ap-
proach presented in Secion 5.1.1, to model stented arteries. The method’s ability to capture
important phenomena that may provide insight into the long-term success of vascular an-
gioplasty has been demonstrated.
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8.1. Summary of achievements

Within this thesis, a mixed-dimensional approach to modeling balloon angioplasty and
stented arteries was developed. As a first step, an embedded finite element method to sub-
merse 1-dimensional beam equations in 3-dimensional fluid flow was developed. The re-
sulting continuous fluid-beam interaction (FBI) system, based on the Lagrange multiplier
as well as the penalty method, was presented. The introduced kinematic constraint was
enforced directly on the beam centerline, therefore, making it a truly mixed-dimensional
1D-3D coupling problem as well as a highly efficient modeling strategy for immersed slen-
der structures regarding computational complexity as well as mesh creation. Two different
discretization strategies, a Gauss-Point-to-Segment penalty approach and a mortar finite
element-type Segment-to-Segment strategy-based on regularized Lagrange multipliers,
were applied to the discretized interface problem. To solve the arising multi-physics prob-
lem, a specifically tailored novel strongly coupled Dirichlet-Neumann partitioned algo-
rithm, based on the weak enforcement of the Dirichlet condition, as well as corresponding
one-way coupling schemes were implemented. All algorithms were specifically designed
for the efficient use on multi-core computing architectures and their convergence behavior
was enhanced by the use of established Quasi-Newton-based acceleration techniques. For
all cases, the one-way coupling schemes as well as the stable two-way coupling algorithm,
the convergence of the resulting system solution with respect to the penalty parameter as
well as the robustness of the segmentation algorithm were shown. The spatial conver-
gence behavior of the fluid-beam solution under uniform mesh refinement with respect
to the solution of corresponding fully resolved 3-dimensional models was shown and the
approach was, thus, validated. Further effects of the proposed computational building
blocks such as the coupling discretization strategy and the acceleration technique for the
partitioned solver have been studied with numerical examples. The general possibility
of modeling highly complex nonlinear problems such as mesh tying within the structure
and/or fluid domain, and thus the flexibility of the proposed approach, was demonstrated
by selected examples. In addition, limitations of the proposed coupling strategy such as
the exact capturing of interface phenomena have been pointed out and the method’s range
of application has been studied. To demonstrate the efficiency and suitability of the pro-
posed algorithms also for large examples and application-oriented problems, a fluid chan-
nel containing more than 3, 000 submerged fibers was set up to model the behavior of a
submerged vegetation patch. Differences to the solution obtained with existing homog-
enized, 1D-2D, and 2D-3D coupling strategies have been pointed out. The method and
solution algorithms were subsequently extended to their use on moving meshes and com-
bined with established mortar finite element techniques for the solution of classical equal-
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dimensional fluid-structure interaction problems. The resulting fluid-beam-structure in-
teraction algorithm’s ability to capture large displacements of beams and 3-dimensional
structures was validated by a biomedically inspired numerical example.

In the second part of this thesis, a structure mechanical model for balloon angioplasty
and stent insertion was developed. The model was based on a novel mixed-dimensional
method capturing the interactions of geometrically exact beams with 2-dimensional sur-
faces and mortar finite element-based modeling of contact mechanics. Its ability to re-
produce phenomena connected to post-interventional restenosis and the behavior of com-
mercially available endovascular devices was demonstrated. Based on these observations,
a novel patient-specific balloon catheter technology, on the basis of an anisotropic mate-
rial, for the intervention in curved vessels was proposed. An optimal control procedure
for the patient-specific tailoring of the technology for the treatment of curved as well as
asymmetrically stenosed blood vessels, including suitable design goals and optimization
parameters, was presented.

In the end, the novel fluid-beam-structure interaction algorithm was combined with the
presented mixed-dimensional beam-to-solid-surface coupling method and applied to a
numerical example inspired by the setup of a stented artery. The mixed-dimensional
model’s result served as proof of concept for the framework’s suitability in the context of
complex multi-physics-based simulations for post-interventional outcomes. At the same
time, the simulation demonstrated the computational framework’s flexibility and effi-
ciency when it comes to the modeling of numerous intricate interaction phenomena.

In summary, an efficient computationally-parallel mixed-dimensional framework has been
extended to capture multi-physics phenomena and was applied to real-life applications in
the context of balloon angioplasty and stented arteries.

8.2. Outlook & future work

Even though considerable advances toward the efficient computational modeling of post-
operative outcomes of balloon angioplasty by sophisticated mixed-dimensional coupling
approaches have been made, there still exists a multitude of open research questions and
possible model improvements. Future work can be categorized into numerical and algo-
rithmic improvements of the multi-purpose fluid-beam interaction (FBI) framework, on
the one hand, and further exploration and improvement of the mixed-dimensional model
for the simulation of balloon angioplasty and subsequent outcomes, on the other hand.

The efficiency and overall benefits of the proposed FBI framework have been demon-
strated by large-scale numerical examples and the comparison to classical methods with
respect to characteristic mesh sizes. However, the computational framework can benefit
from further improvement of the algorithmic components in the future. Two main areas of
interest in this regard are the partitioned algorithm itself as well as the massively parallel
search strategy. The employed search, based on a binning strategy in combination with an
octree search, does not take into account the special features of beam geometries, particu-
larly their large slenderness ratio. For a more efficient search and presorting of potential
interaction pairs, a bounding-box-based search that is specifically tailored to beam geome-
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tries, as investigated in [56], could lead to a significant speedup in the future. Furthermore,
while an acceleration in solver time could be achieved by the application of sophisticated
matrix-free Quasi-Newton-type methods to the interface residual, a change to a mono-
lithic solver could further mitigate challenges with regard to slow convergence due to the
added-mass effect. Though, such a change is only reasonable if specially-tailored pre-
conditioning techniques, allowing an efficient scalable solution of the overall system via
algebraic multigrid (AMG) methods, are available. On this subject, Kuchta et. al have
already made some strides in the preconditioning of trace-coupled 1D-3D systems [113],
and Firmbach et. al have recently proposed an efficient preconditioner for the monolithic
coupling of geometrically exact beam theory with a 3D solid continuum [56]. Furthermore,
the strategical employment of advanced discretization approaches and model adaptivity
could alleviate the identified limitations of the proposed FBI approach. Particularly, the
Non-Uniform Rational B-Splines-based (NURBS) discretization of the fluid field could po-
tentially lead to a smoother fluid velocity solution, thus, reducing the solution’s depen-
dence, with respect to an integration error, on the background mesh. An adaptive choice
of coupling strategy, based on the fulfillment of the presented model assumptions, and a
potential switch to a volume-to-surface coupled or fully resolved model when necessary,
can aid in overcoming the model’s restrictions with regard to its application range.

Moreover, the extension of the current numerical model for balloon angioplasty and stented
arteries to its use as a patient-specific digital organ twin requires its enhancement and fur-
ther investigation in various areas. In particular, to accurately model the stent’s expansion
behavior, following [111], the geometrically exact beam’s implementation needs to be en-
hanced by a phenomenological elasto-plastic material law, and a relationship between the
constitutive parameters of continuum theory and the phenomenological material law has
to be established. Additionally, the presence of broad strut intersection areas within stent
geometries still limits the current modeling approach for beam-based stent structures as
only point-to-point can be incorporated. An extension to line-to-line based mesh tying
on the basis of the contact framework presented in [133] can increase the flexibility with
respect to geometry creation in the future. A further step towards the model’s use as a
digital twin is the incorporation of patient-specific parameters such as vessel geometries
obtained from computed tomography (CT) data, realistic fluid boundary conditions based
on 0-dimensional (0D) models and doppler ultrasound data, as well as the blood’s more
accurate modeling based on a non-Newtonian behavior. To improve the accuracy of the
interaction of the various components, the beam-to-solid-surface interaction model could
be adapted from a mesh tying implementation to a full contact model such as recently
proposed in the thesis [180]. In any case, to further assess the accuracy of the developed
model, its validation by quantitative comparison with experimental and medical data is
essential.

Last but not least, the proposed novel balloon technology for patient-specific treatment
represents a compelling idea that could be further evaluated. Particularly, aspects such as
the efficient production of such patient-specific devices as well as the complexity of their
accurate placement in practice pose further fascinating research perspectives.
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[28] E. Béchet, N. Moës, B. Wohlmuth: A stable lagrange multiplier space for stiff inter-
face conditions within the extended finite element method. International Journal for
Numerical Methods in Engineering 78(8), 931–954 (2009)

[29] F. Carollo, V. Ferro, D. Termini: Flow resistance law in channels with flexible sub-
merged vegetation. Journal of hydraulic engineering 131(7), 554–564 (2005)

[30] D. Cerroni, F. Laurino, P. Zunino: Mathematical analysis, finite element approxima-
tion and numerical solvers for the interaction of 3d reservoirs with 1d wells. GEM-
International Journal on Geomathematics 10, 1–27 (2019)

[31] P. Chadwick: Applications of an energy-momentum tensor in non-linear elastostat-
ics. Journal of Elasticity 5(3-4), 249–258 (1975)

[32] T.Y. Chang, H. Taniguchi, W.F. Chen: Nonlinear finite element analysis of reinforced
concrete panels. Journal of Structural Engineering 113(1), 122–140 (1987)

[33] C. Chiastra, F. Migliavacca, M.A. Martı́nez, M. Malvè: On the necessity of modelling
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