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Abstract

The use of satellites is nowadays paramount in our daily life. The impor-
tance of these assets has grown so much, in the last 50 years, to make them
indispensable for our sustenance.
Such a vital role in our societies makes those operative satellites a vulnerable
target from external attacks and uncontrolled events such as collisions with
Space Debris.
For this reason, the importance of Space Situational Awareness (SSA) is
becoming a priority for most of the countries.
As of now, the principal threat to operative satellite missions is constituted by
the presence of Space Debris. Their evolution in number and representation
models are going to be presented in this Thesis. They will be used as population
models to test the main algorithms together with real data from operational
satellites.
The aim of the Thesis is to study the Cataloguing strategies for space objects.
The Thesis itself is reinforcing the two main pillars of the cataloguing approach:
the Catalogue Creation and catalogue Maintenance, from the point of view of
observation scheduling. The first aims to generate a comprehensive catalogue
of objects orbiting around the Earth. The latter studies their evolution in
the future and possible observability. These two foundations will allow the
sustainable development of Space Debris catalogues and the correct exploitation
of the sensing resources.
This Thesis will show how a simple different approach to the cataloguing prob-
lem can lead to new strategies for the creation and maintenance of space object
databases.
The first two chapters of the Thesis will explain the two main innovations that
have been introduced in the scope of this work and is going to describe the
general framework of observation scheduling for cataloguing.
The following chapters will describe in detail and present the results of the
development of Catalogue Maintenance and Catalogue Creation strategies.
Finally, the last chapters will present the Special Perturbations Orbit deter-
mination and Orbit analysis toolKit (SPOOK) software framework that
supported the development of the Thesis, the possible applications and use
cases consequences of the previous chapters, and the conclusions.
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Zusammenfassung
Die Verwendung von Satelliten ist heutzutage in unserem täglichen Leben von
größter Bedeutung. Die Bedeutung dieser Vermögenswerte ist in den letzten 50
Jahren so stark gewachsen, dass sie unverzichtbar für unsere Existenz geworden
sind.
Eine so wichtige Rolle in unseren Gesellschaften macht diese operativen Satel-
liten zu einem anfälligen Ziel für externe Angriffe und unkontrollierte Ereignisse
wie Kollisionen mit Weltraummüll.
Aus diesem Grund wird die Bedeutung der SSA für die meisten Länder immer
mehr zur Priorität.
Bis heute stellt die Hauptbedrohung für operative Satellitenmissionen die An-
wesenheit von Weltraummüll dar. Ihre Entwicklung in Bezug auf die Anzahl
und die Darstellungsmodelle werden in dieser Arbeit vorgestellt. Sie werden
als Bevölkerungsmodelle verwendet, um die Hauptalgorithmen zusammen mit
echten Daten von operativen Satelliten zu testen.
Das Ziel der Arbeit besteht darin, die Katalogisierungsstrategien für Raumob-
jekte zu untersuchen. Die Arbeit selbst stärkt die beiden Hauptpfeiler des
Katalogisierungsansatzes: die Katalogerstellung und die Katalogpflege aus Sicht
der Beobachtungsplanung. Die erste zielt darauf ab, einen umfassenden Katalog
von Objekten zu erstellen, die die Erde umkreisen. Die letztere untersucht deren
Entwicklung in der Zukunft und deren mögliche Beobachtbarkeit. Diese beiden
Grundlagen ermöglichen die nachhaltige Entwicklung von Weltraummüllkatalo-
gen und die korrekte Nutzung der Sensing-Ressourcen.
Diese Arbeit wird zeigen, wie ein einfacher, anderer Ansatz für das Kata-
logisierungsproblem zu neuen Strategien für die Erstellung und Pflege von
Raumobjektdatenbanken führen kann.
Die ersten beiden Kapitel der Arbeit werden die beiden wichtigsten Innovationen
erläutern, die im Rahmen dieser Arbeit eingeführt wurden, und den allgemeinen
Rahmen der Beobachtungsplanung für die Katalogisierung beschreiben.
Die folgenden Kapitel werden im Detail beschreiben und die Ergebnisse der
Entwicklung von Katalogpflege- und Katalogerstellungsstrategien vorstellen.
Schließlich werden die letzten Kapitel das SPOOK-Software-Framework vorstellen,
das die Entwicklung der Arbeit unterstützt hat, die möglichen Anwendungen
und Auswirkungen der vorherigen Kapitel sowie die Schlussfolgerungen.
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List of Variables

The following list of symbols encompasses the most frequently used variables in
this Thesis along with their respective meanings. It is, however, crucial to note
that all these variables will be thoroughly described within the text when they
are first introduced, referenced, or mathematically derived. Some of these symbols
may have different interpretations when taken out of their context. Hence, it is
important to pay attention to their indexing, as well as whether they are used as
vectors (highlighted in bold) or scalars.

Symbol Description

∅ Diameter (or main dimension).
i Orbital inclination angle.
Ω Right ascension of the ascending node angle.
α Celestial right ascension.
δ Celestial declination.
λ Latitude of the observer.
h Object Altitude angle.
El Object Elevation angle.
Az Object Azimuth angle.
x Object state vector.
σ Variance of a state element.
K Covariance matrix of the object state vector.
Kxixj Covariance associated with the ith and jth of the state

vector x.
Bi Benefit of an observation schedule at time i.
bi Benefit of a single observation task at time i.
f̂t Probability density function estimate at time t.
N (xi,mi,Ki) Normal distribution evaluated in xi, conditioned by the

mean mi and covariance Ki.
ωi Weight of the kernel i in a Gaussian Mixture.
fk|k−1 Prior density function of the time k.
gk Likelihood density function at time k.
pk Posterior density function at time k.
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Introduction 1

”When you look at yourself from a universal standpoint, something
inside always reminds or informs you that there are bigger and better
things to worry about”. —Albert Einstein

This Thesis takes place in the field of Space Situational Awareness (SSA) for the
observation and cataloguing of space debris. It comprehends a work longer than
three years done in Airbus Defence and Space GmbH in Friedrichshafen, Germany.
The main topic of this work revolves around the sensor’s observation strategies; how
to optimize and automatize them. This chapter will provide the reader with general
background knowledge of space debris to understand the motivation behind the
selection of this topic and its importance for SSA.

1.1 Motivation - Cataloguing and Observation
Strategies

Today, space debris is one of the principal threats to satellites. In order to avoid
collisions with them, the orbits of objects in space must be known.

The goal of SST is to build-up and maintain a catalogue which contains information
about the detected objects, such as their orbits and physical properties [10].

Monitoring and processing the catalogue data is a necessary step to schedule new
observations in advance. This process is shown in Fig.1.1. The quality of prod-
ucts depends on several aspects of the entire End-2-End (E2E) SST chain: sensor
accuracy and sensitivity, the number of sensors and their location, minimal and
optimal timelines for observations and measurement collection, the fidelity of data
processing (orbit determination, correlation methods) and fidelity of observation
planning and scheduling. The aim of this dissertation focuses on the last task, to
optimize observation strategies for several relevant use cases.
This Thesis work will try to overcome the dichotomy between cataloguing techniques
and observation strategies. While the first is aiming in improving the cataloguing
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Figure 1.1: E2E chain of SST system.

pipeline that transforms the measurements into object information to append to a
catalogue. The second tries, instead, to close the chain providing optimal methods
to perform new observations. It will be shown how the previous research has pro-
ceeded in developing these two subjects separately, either improving the cataloguing
techniques to make the best use of the observation data or optimizing the sensor
scheduling to observe as many objects as possible.
This Thesis will try to seek some points of contact between these two sectors, in par-
ticular, some of the strategies and results utilized for cataloguing will be reproduced
in a simulation environment and used for observation scheduling. This is the case
of the Finite Set Statistics (FISST)-based multi-target filters, of great application
in cataloguing pipelines to streamline the tracklet linking, correlation and orbit
determination activities in a single step [19][7], that, for this work, has been adopted
into a real-time single step simulation framework for Catalogue Maintenance (CM).
The innovation, in this case, is to use a well-documented cataloguing tool inside a
new framework, where the processed measurements are simulated of few instants of
time ahead instead of being real, to find the best pointing position for a sensor, and
eventually perform the new observation.
The second innovation of the Thesis is in the field of Catalogue Generation (CG) or
Catalogue Creation. In this case, the Constrained Admissible Region (CAR) Orbit
Determination (OD) theories from Milani [29] [11], which have been introduced
for cataloguing purposes to improve correlation activities, will be translated into
a new framework for observation scheduling. In this case, the orbital hypothesis
generated by short arc observations, which are usually not enough for a proper
catalogue initialization, are kept alive in a virtual catalogue and used to generate new
observation tasks to observe again the objects that originated those measurements.
This first chapter will introduce more in detail what is meant by the terms of CM
and CG, why they are so important for SST, what are the current limits of the
state-of-the-art, and how the new innovations are going to address those problems.
Further innovations are going to be presented within this thesis, to highlight how
some of the new methodologies can be applied to different scenarios and use cases.
referring to Fig. 1.2, it is possible to see a simplified structure of the Thesis, to
summarize to the reader what has been said in this first introduction. Inside the
blue scope is collected the CM research and in the green one the CG. The overall
structure is divided into three blocks which collect the key research questions and the
Thesis innovations, the methodology and results and the possible development and
use cases. The main body of the dissertation will be structured into three symbolic
blocks: the key research question, the methodology and results, and the possible
applications, use cases and validation of the Theories. The overall study can be
divided into two main sub-subjects that are: CM and CG.
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Figure 1.2: Structure of the Thesis.

1.1.1 Literature Review

In contrast to the extensive population of Resident Space Object (RSO)s, the number
of sensors available for collecting independent information is relatively limited. The
substantial relative velocity disparities between sensors and objects in various orbital
regions hinder the simultaneous detection of a diverse range of objects, even if the
sensor’s field of view allows for it [39]. The challenge of optimizing the observation
schedule relies on a complex convex representation. Achieving this task in real-time
is a critical step toward enhancing the autonomy of both systems and sensors.
From a ground-based perspective, the ability to control a network of sensors is
essential for maintaining an up-to-date space debris catalogue. Typically, this is
accomplished through centralized data processing and planning systems. Automating
and optimizing such centralized systems is the initial step in improving the quality
of the object catalogue. Conversely, granting more autonomy to sensors themselves
has the potential to enhance on-board spacecraft detection and tracking strategies,
as well as collision avoidance maneuvers. The current US space object catalogue
contains approximately 22300 objects larger than 10 cm. As we move towards higher-
resolution sensors, significantly larger detection numbers are anticipated, particularly
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when considering smaller objects. Managing the discovery and tracking of all these
objects poses a formidable challenge for a network of observers, which must optimize
coverage not only for known (already catalogued) objects but also to maximize the
detection of unknown ones. This task can be tackled through heuristic modeling,
offering a wide array of potential solutions. To date, various research groups have
independently explored this problem, and there is no universally preferred roadmap.
C. Frueh’s work in [17] and [25] attempts to consolidate the methods studied thus
far. Traditionally, optimal survey and follow-up strategies have been developed
for geosynchronous orbital regions [1] [43] [42] [31]. Similar strategies have been
adapted for the low Earth region, particularly for radar sensors [9]. The importance
of having an optimized scheduling system cannot be overstated, given that the
number of sensors capable of independently collecting information is small compared
to the vast amount of space debris. It is essential to avoid overloading systems
with redundant tasks and instead make optimal use of available resources. Studies
presented thus far indicate that real-time observation scheduling is feasible for at
least some orbital ranges, representing the initial step toward future autonomous
systems, whether centralized or on-board. Future mission proposals, especially those
from European Space Agency (ESA), reflect an increasing interest in space-based
assets for monitoring debris objects. Achieving autonomous detection of space
targets necessitates a real-time scheduling system [32]. Such a system should operate
without the need for external interaction, a characteristic that is currently dominant
in almost all modern SST systems.

1.1.2 Key Research Questions

The primary objective of the latest SST research is to enhance the quality of the
space debris catalogue in terms of:

• Completeness (increased object count),

• Accuracy (improved state vectors and covariances), and

• Frequency of updates (timely detection and revisits to detect transient events
such as fragmentations or maneuvers).

This improvement should be achieved through enhanced observation planning and
sensor scheduling without the need for substantial modifications to our existing
hardware, computational power, and data processing loads. As of today, it is
important to merge in a deterministic way, the knowledge gained in fields such as
image processing, measurement collection and orbit determination methods with
optimal observation strategies. For example, longer detection periods for objects yield
more accurate results for in-orbit determination, while shorter detection periods
enable more efficient correlation methods. Up to this point, the validation of
sensor strategies has primarily relied on observation requirements (e.g., percentage
of coverage, minimum time between two observations of the same object, and
the minimum apparent magnitude for detection in the case of optical observers).
Deterministic in this context refers to establishing a consistent alignment between
sensor observation scheduling and the underlying physics principles. Ground-based
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observations benefit from ample resources but face challenges in accessing certain
orbital regions or objects of specific dimensions. Conversely, space-based sensors
allow for in-depth study in densely populated LEO and GEO regions but are
constrained by limited computational resources and steering capabilities. In both
scenarios, optimizing observation strategies is critical, with the overarching goal
of improving the aforementioned assets. This research aims to harness the latest
optimization methods in the field to develop new heuristic algorithms capable
of real-time observation scheduling. It also seeks to enhance existing methods,
emphasizing the increased autonomy of this complex system. Furthermore, the study
investigates the advantages of increasing sensor autonomy. It is important to clarify
that a centralized autonomous system is one that can process SST products and
autonomously generate schedules for a network of observers without external input,
which has been the norm until now. In contrast, sensor autonomy refers to a sensor’s
ability to process the outputs of its observations to plan subsequent observation
strategies. The goal of this thesis is to lay the foundation and conduct feasibility
research for a fully autonomous sensor scheduler, applicable in both space-based
and ground-based applications. This research will contribute to the validation
of future prototype software systems and the evaluation of more straightforward
remote monitoring and control techniques. To elevate the quality of SST products,
including the quantity and accuracy of catalogued objects, as well as to support
critical projects such as collision avoidance with on-board autonomous detectors and
laser tracking-based stare and chase techniques (vital for debris deflection studies),
an optimized automated data processing and observation planning chain is essential.
Studies presented in the State of the Art section indicate that real-time observation
scheduling is feasible for at least some orbital ranges, representing the initial step
toward future autonomous systems, whether centralized or on-board. The key
research questions addressed in this thesis are as follows:

1. How can we overcome the current limitations of offline planning and open-loop
cataloguing chains to enhance scheduling autonomy for a network of sensors?
The answer to this question, involving the adoption of the Cardinalized-
Probability Hypothesis Density (CPHD) filter for single-step optimal sensor
scheduling, will be presented in Chapter 3.

2. How can we effectively integrate the latest research in measurements correlation
and orbit determination without the ability to follow-up objects that are not
catalogued? The response to this question, covering post-processing and real-
time follow-up techniques for unknown objects, will be provided in Chapter
4.

1.1.3 Methodology

The main project of the thesis will be focused on the implementation of the optimiza-
tion algorithms for observations scheduling, both for ground and space observers
(optical, radar, laser), with the goal to make it computationally in real-time. The
implementation of an automatic scheduler will optimize both coverage and accuracy
of targets. Afterwards the studies have been focused on the implementation of
real-time test cases and simulations (eventually real testing with Airbus Robotic
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Telescope (ART) [47]). Results from correlations techniques and images process-
ing pipelines, will participate together with real-time autonomous sensor tasking
to autonomously control the telescope interface. Different observation modes for
catalogue creation have been tested at this step, from fences and stripes coverage
techniques to stare-and-chase observation modes. All the development has been
realized hand to hand with a dedicated visualization framework of the simulations
and real observations. Results have been extended also to space-based observers,
in different orbital regions and payload conditions, in order to create a baseline
for future on-board autonomous space debris detection. The initial state of the
art research took care of defining the most specific requirements for observations
(mainly optical) to enhance both initial orbit determination of unknown objects, cor-
relation and object characterization. Sensor properties and measurement processing
requirements will be part of the new observation strategy definition. Attention will
be given to GEO synchronous fence-survey strategies and LEO statistical sampling
for debris model definition.
For the aforementioned use cases, it will be necessary to define a proper real-time
scheduling technique able to most accurately exploit the sensor properties and
optimize the SST products for different kind of objects. At this step, new algorithms
exploiting probabilistic density function (PDF) for heuristic optimization will be
developed.
Following, the optimization techniques for observation strategies will be implemented
and applied to different scenarios (ground or space-based observers). In details, the
literature review is focusing on the definition of Use Cases and optimization goals.
In fact, sensor autonomy has the potential to enable completely new concepts of
operations such as:

• Automatic follow-up of fast and faint small debris objects.

• Support of automated collision avoidance in space, e.g. for emerging Megacon-
stellations.

• Debris tracking and (potentially in the far-term) deflection via lasers.

Above examples apply to both ground-based sensors (often located in remote loca-
tions) and Space-based sensors (for which Telemetry and Telecommands (TMTC)
often cannot be achieved 24/7).
After that definition, will be established and demonstrated a baseline (working
with available facilities in Airbus) of an autonomous real-time observation scheduler
for CM. Improvements of this baseline, based on results, has been performed and
validated through simulations.
The developments will be integrated into the existing Airbus tool: Special Perturba-
tions Orbit determination and Orbit analysis toolKit (SPOOK). SPOOK is a space
debris cataloguing framework developed by Airbus Defence and Space in Immenstaad
[36]. Inside such background SPOOK’s measurement generator offers the possibility
to simulate observations by arbitrary sensor networks. Additionally, access will be
available to ART located in Spain. ART is an optical ground based sensor utilized
for real world observations and automatically commanded from Immenstaad.
Besides the presented R&D activity, some external activities took place as tutoring
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of Master Thesis and internship students, in order to collaborate together in specific
SST improvements and presentation of the works during university seminars and
international conferences.

1.2 Preface on Space Debris
The activity of men in Space set up incredible achievements for the development of
modern life. The operations of active satellites in space are vital for most people’s
daily life. Unfortunately, the sustainability of the space environment is threaded by
the presence of uncontrolled objects such as space debris.
Modern statistical models [10] estimates about 130 million space debris between
1 mm and 1 cm are currently present in orbit. The collision of even these small
fragments with operative satellites may compromise their activities, due to high
relative velocities and delicate appendices. Some orbital regions are already reaching
their operational capacity and safety standards need to be constantly updated.
The first aim of SST is to catalogue most of these uncontrolled objects and offer
anti-collision services to satellite operators. However, this task is becoming a great
challenge for most of the current services. In late 2021 already the well-known North
American Aerospace Defense Command (NORAD) cataloguing system for Two Lines
Element (TLE) has been deprecated to allow the introduction of a 9-digits based
identifications due to the increased number of tracked satellites [23].
To have an idea of the weight of space debris in the orbital framework it is necessary
to consider that over the c.a. 37290 currently tracked and maintained satellites by
the Space Surveillance Network (SSN), only 5800 are known active satellites still
functioning and 31490 are debris. In such a scenario, close conjunctions between
them are at the order of the day, with around 630 collisions resulting in fragmentation
detected so far.

1.3 Cataloguing and Observation Strategies
As introduced in the previous sections, this Thesis will start studying the cataloguing
and observation strategies with the final goal of merging them to increase their
operability. It is, however, important to this step to give a definition of the two
research sectors.
With Cataloguing it is meant the data processing activities that transforms the
measurements into object’s information. Parts of the cataloguing activities, as
represented in Fig. 5.2, are:

• Image Processing: that comprehends all the techniques to process raw optical or
radar images into measurements. In case of optical images, the techniques that
is usually adopted is astrometry reduction, where the stars in the background
are recognized and matched to the real star to increase the accuracy of the
measurements.

• Tracklet-Linking: it concerns all the processes to prune the measurements as
result after image processing. Tracklet-linking has the duty to collect more
images and recognize which of the feature has a typical object behaviour (e.g.
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same direction, constrained angular velocity, etc.). The result of this task is
the creation of tracklets, single elements that collects measurements coming
from the same object.

• Tracklet-to-Catalogue Correlation: this task can be also referred as data
association. The tracklets are attempted to be associated to object inside a
catalogue.

• Tracklet-to-Tracklet Correlation: when the previous step is failing, the resulting
uncorrelated tracklets are associated between each other, to see if more tracklets
may have been generated by the same object.

• IOD: a batch of tracklets associated between each other can be used at this
step to compute a first guess of the object orbit that originated them. If
successful, a new instance is added to the catalogue.

• OD: the last step of the cataloguing pipeline is the refinement of the orbits
inside a catalogue by using an estimation filter. As soon new measurements
are available for an object inside a catalogue, they are used to refine its orbit
state vector and covariance.

Cataloguing activities are very important for SST systems. Currently, they have also
a lot of constraints in terms of required computational resources and performances
with big catalogues. The correlation methods, for example, are pure combinational
problems, which computational time is inversely proportional to the dimension of the
system. However, the more are the tracklets and objects combined, the more efficient
will result the algorithm. The all nature of the cataloguing problem is stochastic.
While the canonical state-of-the-art for cataloguing is considering only the first-order
statistical moment, conversely the state vector and covariance, where the strong
Gaussian assumption is implicit; the modern literature is starting to analyse also
the higher-order statistical moments, such as Gaussian mixtures or particle filters.

Observation strategies are instead concerning the scheduling problem.

The observation scheduling refers to the allocation problem of Ntasks possible
observation tasks in Nwindows available observation windows, where usually
Ntasks > Nwindows.

Since the high difference between the number of possible observation tasks with
respect to the number of available observation windows the number of possible
permutations (ordered combinations) can be quite high. This usually requires an
heuristic solution to the problem due to the computational unfeasibility of a complete
analysis of all the solutions. The scheduling problem is usually associated with a
cost function that helps to express in a deterministic way the benefit of performing
a certain observation instead of another. So posed the problem, the observation
scheduling is usually referred as an offline problem, where the available observation
windows are allocated all in advance. The innovation introduced with this thesis
will try to step over this limitations and consider different observation strategies
which are operating in real-time.
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1.4 Challenges of Space Surveillance and Tracking

The environment in some orbital regions reached already its maximum capacity in
terms of number of objects. The saturation of some orbital regions and the every-day
increasing probability of collisions is pushing the cataloguing operations to criticality.
The incredibly high number of debris and objects that need to be monitored requires
higher computational resources.
In order to make best use of these resources and to exploit at best the data extracted
from observations, an optimal sensor scheduling capability is paramount. The ability
to optimally control a network of sensors can give great advantages in terms of
quality and quantity of the obtained data. Observing objects at the right moment
and maximizing the coverage at same time is the main goal of the scheduling system
for SST. As said, the final goal of SST is to delivery an up-to-date catalogue,
comprehensive of most of the objects orbiting around Earth. Assuming to start a
new SST system, the catalogue needs so to be first populated with object instances.
In this case, CG processes will take place to observe uncatalogued objects and trigger
the first correlation cataloguing activities. With the time, the objects now catalogued
must be maintained (their information inside the catalogue must be updated). To
absolve this task, CM strategies shall be adopted to keep track of the catalogued
objects. However, new objects need to be observed as well. The main activity of a
cataloguing system can be so recognized in cataloguing generation activities and in
catalogue maintenance.
Modern SST systems, in fact, use to subdivides the sensor resources into two main
groups: survey sensors and tracking sensors [15]. The survey sensors are used to
absolve to CG tasks and tracking ones to CM. However, such a separation, much
practical in terms of operations, it is not optimal for cataloguing since it is not
making that best use of the available resources. A performant SST system shall
be able to control all the sensors available by means of a centralized processing
unit, which is always in communications with the sensors, receiving the imaging
data and sending out commands. Of course, such a configuration, can result quite
unpractical, especially when the number of sensors in the network is high and are
very heterogeneous between each others (e.g. space-based telescope and ground-
based radar arrays). What is already a practical trade-off is to create cooperation
framework where more sensor operators and SST systems can share their data and
measurements, it is an example of this the EU-SST program and Small Aperture
Robotic Telescope Network (SMARTnet).

1.4.1 Catalogue Creation

The challenges connected with catalogue generation or creation are due to the a-priori
unknowability of the objects that are going to be observed. Depending on some
interests of the operators and characteristics of the sensors, an idea of the objects
that can be accessible can be done. Once the orbital range of the accessible objects
has been defined a scan of the sky must be performed. These kind of operations,
that are usually referred to as survey campaigns. It is example of this the GEO fence
studies, proposed during this work, to scan the GEO belt, or the LEO mapping
strategies to map subsections of a LEO catalogue.

9
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All of these observation strategies need to cope with a performant cataloguing
systems that shall be able to process the observation data and perform correctly
correlation and IOD. For such a reason, the strategies for CG shall be strictly related
with the cataloguing processes to understand the best observation conditions and
not only the highest coverage.

1.4.2 Catalogue Maintenance

The most important capability for an SST system is to maintain the current status
of information inside a catalogue of objects and update them before their connected
uncertainty becomes to high. The problem of catalogue maintenance is of the most
studied by the SST literature and operators. It is has been extensively addressed in
its convex version of a linearised model that optimes the information gain of each
observation task. Depending on the degree of approximation, number of realistic
constraints taken into account and dimension of both network and catalogue the
problem can be solved via analytical or heuristic optimization approaches.

1.4.3 Special Event Scenarios

The cataloguing purposes are usually combined with events of interest that for
different reasons may need to be observed. The classical example of that is the
survey of close conjunctions between objects, that may evolve in a collision and,
if catastrophic, a fragmentation event. These kind of situation require a different
prioritization inside the operative scheduling systems. Most of the modern scheduling
tools, i.e. [19], adapt the cost functions necessary for scheduling decision making to
incorporate priorities due to not-strictly-cataloguing factors, like collision probability
or manoeuvring probability.
During the work of this Thesis, the adoption of different prioritization strategies has
been studied. In particular, it is relevant the example of collision survey, presented
in sec. 4.2.2.4, that shows how the addition of LEO close conjunctions survey is not
affecting a normal cataloguing plan too much and can be daily introduced inside a
cataloguing scheduling system.

1.4.3.1 Fragmentation Scenario

Some specific events, anyway, are so relevant for the orbital space environment that
require total attention of the scheduling systems and dedicated observation plans.
This is the case of fragmentation events, which effects can be uncontrolled and
unpredictable. The wrong and unmonitored evolution of fragments can escalate
in further collisions with operative satellites and eventually a cascade disaster of
catastrophic events, that is, the so-called Kessler syndrome. The first detection and
subsequent follow-up of the fragments is the real challenge for SST. The fragments
are initially close to each others for the first orbits, and then tends to disperse
themselves as the different orbital perturbations acts on them (this is especially
fast for LEO collisions). The unpredictability of the fragments positions, due to
their first unknowability, results often in short arc observations [30], [44]. Different
techniques have been exploited for this kind of scenarios, either involving up to
date processing techniques to improve IOD [8][53] or involving more sensors like the
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Along-track search strategy in [44].
A dedicated survey scenario, which makes use of the innovative Virtual Debris (VD)
algorithm, is going to be presented in sec. 6.3.1.2.

1.4.3.2 Mega-Constellation

The rise of new mega-constellations (hundred of thousand of satellites) is going
to force the evolution of the current SST systems and services. A forced path to
this will go through a multinational cooperation between SST facilities, satellite
owners and operators. As for satellite operators, their knowledge of precise orbit
determination through GPS positioning, star trackers and finally telemetry data is a
precious source of information for SST [5]. Companies that are aiming on launching
thousands of satellites are OneWeb, Boeing, SpaceX and Samsung that are delivering
their constellation in LEO for worldwide coverage of broadband communications.
Other sources are aiming in delivering nano-satellites constellation, the Blackjack
program by US Defense Advanced Research Projects Agency (DARPA), are instead
for military applications. The saturation of some orbital regions is close to saturation
and anti-collision manoeuvre are starting to be daily operations for such operators.
More manoeuvres means also additional effort for SST and correlations. The hope
for the future is so that the continuously increasing exploitation of orbital capacity
will go hand in hand with a more evolute SST system, which needs to be managed
in worldwide context and multinational sharing of data.

1.5 Use Cases

The main use cases that can be directly connected with the work of this Thesis are
going to be presented in Chapter 6.
The use cases can be interpreted as direct consequences and results of the algorithm
developed on this thesis for practical use. Additionally, a use case can be seen
whatever additional result can be achieved with the same mind set utilized in the
completion of the thesis. It is an example of this the stare-and-chase scenario, where
a new algorithm will be presented for a possible future development of a complete
real-time observation strategy.
Real-time observation strategies are becoming of great importance to cope with a
continuously evolving space scenarios. Real-time activities are precious resources for
surveys of high interest events, like collision and fragmentations.
In 6 the proposed use cases will refer to Fig.6.1 and they can be interpreted as
validation examples of the new Thesis development proposed in chapters 3 and 4.
In particular, the use cases will be so divided:

• Space-Based study: it consists on a detectability study in different scenarios.
It will be explained how the new methods introduced in the thesis can support
the feasibility studies of a space-based mission.

• GEO-fence study: in this section a study of the survey strategy for GEO fence
will be presented. It will be explained how it is possible to obtain specific
information for that specific orbital class.

11
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• Autonomous Cataloguing: this section will show the direct applications of the
new CG methods presented in the previous chapter 4, such as: the conjunction
surveys and fragmentation detection.

• Dynamic tracking: presentation of the stare-and-chase scenario in close-loop
control system.

12
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The great number of objects in Space and the numerous presence of players involved in
the SST scenario, each of them interested in protecting their own assets, requires also
the necessity of sharing certain amount of data: from raw images or measurements to
processed orbits and ephemerides. The quality of those data relies on their associated
uncertainty, that becomes the key to understand how well the data can be trustable,
how can be used at best and, most importantly, for how long can be used to predict
future states before the information content expires.
This chapter will propose in the first section, sec. 2.1.1, a study performed during these
years to assess the accuracy of the data provided by the most famous space object
catalogue: space-track. Most of the simulations and real observation campaigns
performed with ART have used these data to initialize a set of objects.

2.1 State of Art - What Data do we have now?

One of the main sources of data for SST is the online available space-track [3]
catalogue. Most of the work of the Doctoral Thesis is based on the usage of the
space-track catalogue. In particular, on the Genetal Perturbations (GP) data. GP
data are provided by the US government, SSN, since the 1970s. They consist
in mean classical orbital elements plus some information on body acceleration,
shape and some other parameters more related with SGP4 propagators than with
real physical meanings. However, for historical reasons, the usage of GP data
became quite a common practice in the SST world for sharing data and orbital
information. If, from one side, the most famous format for GP is the TLE or
Three Lines Element (3LE), as of 2020 the The Consultive Commitee for Space
Data Systems (CCSDS) recommends the new Orbit Mean-Elements Message (OMM)
format that allows a wider cataloguing pool (i.e. it is based on a 9-digits numbering
cataloguing systems instead of the 5-digits of TLE) [23]. What characterizes the
space-track catalogue data is the absence of uncertainty information. Aim of the
next section will be an attempt to assess the quality of that data.
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Table 2.1: Examples for GEO case of errors obtained downloading the last 30
instances:

Statistical Variable R T N VR VT VN

km km km km/s km/s km/s
Average 1.017528 16.70975 3.213651 0.001201 6.93E − 05 0.000229

Standard error 0.031297 0.442073 0.156557 3.26E − 05 1.88E − 06 1.14E − 05
Median 0.830331 15.68679 0.475227 0.001143 5.73E − 05 4.03E − 05
Mode 10 10 10 0.0001 0.0001 0.0001

Standard deviation 0.969709 13.69712 4.850728 0.001011 5.82E − 05 0.000352
Sample variance 0.940336 187.6112 23.52957 1.02E − 06 3.38E − 09 1.24E − 07

Kurtosis 106.5823 −1.11011 4.798069 −1.12738 68.05007 8.354632
Schiefe 7.84271 0.446104 2.063975 0.447647 5.666208 2.397164

Range of values 17.5759 51.55394 31.59631 0.003784 0.000972 0.002974
Minimum 0 0 0 0 0 0
Maximum 17.5759 51.55394 31.59631 0.003784 0.000972 0.002974

Sum 976.8269 16041.36 3085.105 1.152932 0.066486 0.219575
Number of samples 960 960 960 960 960 960

2.1.1 All studies on Space-Track data

As said, TLE data are available to the general public through the Air Force Space
Command (ASSPC) by the web platform space-track.org. A TLE set for a certain
object contains the value information of a specific set of mean orbital elements at
a precise epoch, with no information about the accuracy. However, among various
methods present in the literature to assess this lack, two main philosophies can be
applied:

1. Precision of the data: Vallado in [48] evaluates the accuracy considering the
number of digits in which the values are given inside the two line set. Concerning
the epoch time value, only 8 decimal places are given, that corresponds to
±5 · 10−9 days, that are 0.0004 s. Moreover, the eccentricity is given with
seven decimal places, this introduces an error of about 2 m for a GEO satellite
(r ≈ a · ∆e) in the radial direction; while the angles have only four digits,
which led to errors around 6 m in LEO and 35 m in GEO.

2. Consistency with precise orbit propagators: more precise orbit propagators can
be used to propagate and compare more instances of the same object defined
via GP. As an example relevant for SPOOK, in [12], a consistency method
[33] is used to extract the uncertainty related to TLE.

The latter is going to be briefly discussed in the next section.

2.1.1.1 Consistency Method

The following examples are split accordingly to three different orbital regions: GEO,
MEO and LEO. The results presented in Tab. 2.1 show that for GEO objects,
retrieved from space-track in TLE format, the consistency analysis suggests an
average tangential uncertainty of 16.7 km, with a standard deviation of 13.7 km.
However, looking also at the average error distribution presented in Fig. 2.1, a
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Figure 2.1: Distribution of the mean error in the tangential direction for GEO
objects.

normal distribution is not the best fit to model a standard error for these kind of
objects and a multi-modal analysis should be properly applied. As best practice
for the usage of those values, it is so suggested to threat each object on its own.
Depending on the number of instances, proportional to the number of times the
object has been observed, each object may have a different consistency index, that
can clarify how well its information can be trusted.
As matter of facts, the most common value in the distribution presented in Fig. 2.1,
is the range between 1.7 and 3.4 km. A detail of the error distribution on the main
three axes, of an object-fixed reference frame, has been reported also in Fig. 2.2. the
distribution of the errors in the three main body-fixed axis are reported on the upper
graph and the relative first derivative errors on the lower one. The distribution
clearly shows the highly-crowded area of the GEO belt at the classical geostationary
distance around 42 000 km where most of the active and controlled satellites are.
Considering the results of the MEO population presented in Tab. 2.2 and Fig. 2.3,
the consistency analysis suggests an average tangential uncertainty of 3.7 km, with a
standard deviation of 3.6 km. The most common value is in the range between 0.7
and 2.7 km of tangential error. As for the LEO population, presented in Tab. 2.3
and Fig. 2.4, the consistency analysis suggests an average tangential uncertainty of
5.8 km, with a standard deviation of 10.2 km. The most common value is within
the range below 3.8 km of tangential error. This short study presented for the
GP, or TLE, data represents some of the possible way to assess the accuracy of
that information. Despite this general lack of knowledge of an accurate value of
uncertainty of these data, their usage is quite convenient for more reasons. First of
all, they are publicly available and refer to the widest catalogue of objects. Most
importantly, there are several analytical tools (e.g. the SGP4) that allow to process
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Figure 2.2: Distribution of the Root Mean Square Error (RMSE) for the GEO
region objects.

Table 2.2: Examples for MEO case of errors obtained downloading the last 30
instances:

Statistical Variable R T N VR VT VN

km km km km/s km/s km/s
Average 0.287797658 3.678259731 0.143550053 0.000524222 4.24411E − 05 2.82445E − 05

Standard error 0.016555282 0.230761831 0.006357004 3.39473E − 05 2.42989E − 06 1.77467E − 06
Median 0.191571883 2.46416773 0.113575086 0.000350979 2.81349E − 05 2.29269E − 05

Standard deviation 0.259659446 3.619357889 0.099705718 0.000532443 3.81113E − 05 2.78345E − 05
Sample variance 0.067423028 13.09975153 0.00994123 2.83495E − 07 1.45247E − 09 7.74761E − 10

Kurtosis 3.76917434 13.9323751 7.05361597 15.73730016 4.20173801 48.60661192
Schiefe 1.712003597 3.147805018 2.097021972 3.327020039 1.776024087 6.007856162

Range of values 1.546754513 29.46456003 0.718569716 0.004432193 0.000224154 0.00030322
Minimum 0.009106976 0.726267286 0.013934226 0.000128501 1.89649E − 06 5.32639E − 06
Maximum 1.555861489 30.19082732 0.732503941 0.004560694 0.00022605 0.000308546

Sum 70.79822393 904.8518939 35.31331304 0.128958589 0.010440522 0.006948148
Number of samples 246 246 246 246 246 246
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Figure 2.3: Distribution of the mean error in the tangential direction for MEO
objects.

Table 2.3: Examples for LEO case of errors obtained downloading the last 30
instances:

Statistical Variable R T N VR VT VN

km km km km/s km/s km/s
Average 0.191898839 5.874938368 0.173601052 0.006420381 0.000170158 9.95465E − 05

Standard error 0.005384219 0.194602252 0.00343681 0.000216584 3.28613E − 06 1.84004E − 06
Median 0.162224267 0.869810526 0.113055376 0.000841914 0.000168231 8.0445E − 05

Standard deviation 0.277326503 10.02343287 0.177020751 0.011155648 0.00016926 9.47753E − 05
Sample variance 0.076909989 100.4692064 0.031336346 0.000124448 2.86489E − 08 8.98235E − 09

Kurtosis 266.8146594 3.17496793 5.331167877 3.251402275 799.4263966 43.18314074
Schiefe 13.29751492 2.050506746 2.121717928 2.066061657 21.15184158 4.80764752

Range of values 7.317395297 57.49516794 1.185739822 0.065495548 0.00662967 0.001372999
Minimum 0 0 0 0 0 0
Maximum 7.317395297 57.49516794 1.185739822 0.065495548 0.00662967 0.001372999

Sum 509.1076209 15586.21149 460.56359 17.03327037 0.451428048 0.264096764
Number of samples 2653 2653 2653 2653 2653 2653

those data with great precision and low computational effort, without the need of
any further processing. To provide few practical examples, there are SST activities
where this data can be used very efficiently:

• To create pointing profiles for a telescope;

• to generate statistic object population references;

2.2 Observation Strategies - an history

With observation strategies are meant all the algorithms and systems necessary to
command a sensor or a network of sensors. The observations of the space objects
are then used by post-processing systems to extract the information of the objects
themselves.
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Figure 2.4: Distribution of the mean error in the tangential direction for LEO
objects.

Sensor tasking is quite a complex problem nowadays to the multitude of objects in
space that need to be constantly observed. Some key dates for space observations:

• 7 January 1610, Galileo Galilei uses his early version of the telescope to observe
and track for the first time, three celestial bodies. He discovered the Jupiter’s
Moons: Io, Europa and Ganymede. In the following days, he will discover a
fourth one: Callisto.

• 4 October 1957, The Sputnik rocket body has the first assigned NORAD
number inside the NORAD classification.

• 11 January 2007, the Chinese Anti-Satellite (ASAT) mission destroys the
Chinese weather satellite, the FY-1C polar orbit satellite of the Fengyun series,
at an altitude of 865 km, with a kinetic kill vehicle travelling with a speed
of 8 km/s in the opposite direction. The test produced at least 2087 pieces
of debris large enough to be routinely tracked by the US Space Surveillance
Network and the NASA Orbital Debris Program Office estimated it generated
over 35000 pieces of debris down to 1 cm in size.

Except for the first example, conveniently chosen to show how tracking strategies of
celestial bodies have always existed, it is impressive to note how in just 50 years,
from 1957 to 2007, the space debris scenario is rapidly escalated.
From the first ever satellite launched on space, to the more recent mega-constellations,
the environment around our planet changed considerably. What became more and
more challenging, but never changed instead, is the necessity to track and catalogue
all the satellites orbiting around our planet.
In the recent years new radar and optical systems have been built all around the
Earth in order to absolve this challenging task. On spring 2021 [46] the Space
Fence on Kwajalein Atoll reached operational capacity, increasing of more than 100
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Figure 2.5: Visualization of the accessible sphere of a ground-based optical observer.
Credits: [37].

thousand the number of the objects tracked by the SSN US network. New projects
involving space radar and optical observers are foreseen to increase additionally the
number of tracked objects.
Together with this exponential increment of observed objects the sensor tasking
demand will become more and more challenging. The quantity of information a
single entity or nation, is able to procure on its own is also becoming paramount
for the intelligence of the single states. The last are starting in these years to give
more and more attention to this topic. An example of this is the establishment of
the European Space Debris centre for SSA, the EU SST.
Depending on the coordination with the various partner and data collection sys-
tems, the amount of tasks a single network of sensors should perform can change
considerably.

2.3 Observation Geometry

The limits of space observations from ground observer can be explained in Fig. 2.5
in simplified way. The observation geometry, that means the environment around
the observer, describes the range of allowed pointing directions accessible by the
sensor itself. The accessibility sphere is the so called portion of the local celestial
sphere where the telescope can steer and point. The observation direction of a
ground-based sensor can be constrained by the location of the mount itself, the walls
of the observatories or buildings in the proximity. This can constrain the minimum
observable elevation of the objects crossing the sky over the observer. In the case of
optical observation, also the position of the Sun becomes important. It is defined the
astronomical Sun set, when the Sun is 9° below the local horizon. This corresponds
to conditions of complete darkness. A necessary condition to reduce to the minimum
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Figure 2.6: Observation geometry for a classical on-ground observer.

the noise in the observed images.
Looking at Fig. 2.6 it is possible to recognize some of the most used taxonomy in
SST field. The observer O is placed on the Earth’s surface. The elevation El of an
observable target is identified from the horizon, that is the tangential plane to the
Earth’s surface at the observer location. The declination δ and right ascension α
are based instead on the local celestial reference frame, equal to the Earth centered
reference frame but shifted to the latitude λ of the observer. In general, for optical
observations, the important quantities that are considered for observed measurements
are the coordinates of the observed objects:

• The right ascension α: the coordinate of the object measured in the local
celestial equator.

• The declination δ: the coordinate of the object measured long the object local
meridian.

These two coordinates, in the case of optical observations, corresponds also to the
so-called observables of a telescope. A detailed and complete description of the
reference systems that may be adopted for space object observations is proposed by
the author in [35].
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2.4 Benchmark

This section will present some of the SST operating systems to underline their
characteristics and current limitations.
The most extensive SST network in the world is the US SSN [5]. It operates primarily
with phased array radars and optical telescopes. SSN makes use additionally of
mechanical tracking radars and the largest in the world space-fence located along
the southern United States. It has also a optical space-based telescope constellations,
the Space-Based Space Surveillance (SBSS) satellite and the Canadian Sapphire [52].
All data from the SSN are collected by the central command and control center,
that is Joint Space Operations Center (JSpOC) located in California.
It is from there that the most extensive online available catalogue, space-track, is
maintained by the 18th Space Control Squadron.
The second largest network of sensors is controlled by Russia instead. Russia main-
tains, in fact, a complete catalogue of space objects. The Russian Space Surveillance
System (SSS) controls a network of phased array radars and optical telescopes.
Similarly to SSN, the Russia SSA system consists of a centralized processing unit
called Automated Space Danger Warning System (ASPOS), that has the aim of
cataloguing space debris and support national security.
Other initiatives, that are mentionable, are the EU-SST and International Scientific
Optical Network (ISON) partnerships, in Europe and Russia respectively.
The most extensive catalogues, are generically identifiable with a world wide dis-
tributed network of sensors (primarily phased array radars for LEO regions and
optical telescopes for GEO tracking) and a centralized processing unit for the data
collection and analysis.

2.4.1 Operative Systems

As said, the most extensive and documented operative system is provided by the US
18SPCS. The SSN comprehends phased array radars, mechanical radars, optical
sensors, and space-based telescopes. This complex system of sensors distributed
all around the world allows to build-up and maintain a catalogue of approximately
24 000 objects. The daily operations of the network are scheduled both independently
by some sensors and in a coordinated way between more sensors. However, the big
amount of data and special events to be monitored requires a centralised and sensor-
dislocated computation centers where the data are gathered and new commands are
generated. In particular, events like fragmentations, collisions, and new launches
are monitored with particular attention. For every new launch or a predicted
catastrophic collision, models allow to generate raw virtual object elements (called
ELSET) that allow the sensors to predict the future positions and point the telescope
in that direction. In this easy scheduling approach, the object can either cross the
sensor Field Of View (FOV) and contribute to upgrading the object information
or be missed and not observed. Phased array instruments with large FOV and a
relatively high range to cover most of the LEO regions are still a good approach for
this kind of problem. Redundancy is often applied and multiple observations are
generally performed. As a result, the scheduled tasks are generally overestimated
and conflictual, and all possible network capabilities are not exploited.
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Smaller-scale SST systems, like the private European national ones, are usually
dependent on JSpOC data and update the orbital information of the assets that are
of interest to the region. This is the example, previously cited of the Portuguese
SST [15], which involves survey sensors for GEO scanning and tracking sensor for
catalogue maintenance tasks.
With this Thesis, a small catalogue of mainly GEO objects has been deployed in
Airbus servers to test and validate the observation strategies studied during this
work. This Airbus catalogue will be presented in chapters 5 and 6. As visible from
Fig. 6.18, as of November 2021 the catalogue was counting 519 correlated objects,
mainly from geostationary (orbital period around 24 h).
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Maintenance 3

In the near future, it is estimated that space objects (active satellites and debris)
catalogues will contain the order of hundreds of thousands of tracked objects.
Therefore, new challenges arise in the development of algorithms that will perform
the maintenance of these catalogues. CM implies keeping the orbital information of
the objects that are inside the catalogue within a certain level of reliability – i.e.,
limiting the associated uncertainty below a certain upper bound. To achieve that,
objects need to be observed on a regular basis; however, currently, the number of
objects to observe is considerably higher than the number of sensors available, which
results in a task overload of the latter. Thus, an optimal sensor scheduling strategy
shall be able to select the objects to observe in order to maximize the overall coverage
and obtain as much relevant information as possible, avoiding task redundancies.
Theoretically, this can be achieved by taking into account all the possible object-
sensor combinations for the complete desired observation time window in order to
allocate the best observation task to each object. Such a computationally expensive
scheduling tool requires centralized systems to manage a diverse network of sensors
that may not have enough resources locally for such computations (e.g. ground
sensors in remote areas or eclipse/latency periods and data rate limits for space-based
sensors). This work addresses the necessity of moving the scheduling ability from a
centralized system to a local (on-board) processing framework within the sensor in
order to enhance its autonomy. Within Airbus Defence and Space a tool has been
created to reduce the computational load for observation scheduling and to provide
support for a future real-time scheduler. In fact, the proposed baseline in sec. 3.2.3
does not try to allocate all the sensor tasks beforehand for the full observation period
(e.g. one entire night). It evolves in a myopic state-space way, simulating just the
imminent observing scenario, and together with the previously collected information
performs an optimization of the next task to execute, eventually converging to an
optimal coverage condition of the objects. The advantage of this approach is that
it can be adopted for real-time decision-making strategies that, based on past and
currently obtained measurements, may change the plan execution, compromising the
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forecasted optimality of a plan obtained completely offline. The proposed baseline
makes use of a modern CPHD filter for internal prediction and update of the first
two statistical moments of a pool of objects represented by a Gaussian Mixture. The
proposed work summarizes the implementation of the scheduler within the orbit
propagation and determination tool SPOOK, which is developed at Airbus Defence
and Space.
A comparison with state-of-the-art scheduling optimization algorithms, from simple
greedy-methods to the heuristic genetic algorithms will be also presented.

3.1 State of the Art

Despite the literature for general Space Debris cataloguing problem is wide, it refers
usually to the post-observations-to-catalogue steps. That means, the cataloguing
processes like: image processing, measurement extraction, tracklet linking, correla-
tion and orbit determination are well covered and developed with modern methods
(i.e. machine learning and convolutional neural networks [14].
Few attention is anyway given to the last closing ring of the cataloguing chain: the
observation scheduling. With observation scheduling are meant all the processes
addressed to the management and tasking of a specific sensor or a network of
sensors. As introduced before, the observation scheduling is becoming one of the
most challenging task of operative SST systems. This is mostly due to the hard
framework in which this systems are usually involved, that means, a number of
objects that need to be observed is much higher than the number of allocatable
resources to observe them. On top of this, there is also a quite practical constraint
due to the lack of intercommunication between most of these systems and resources
which end up usually performing redundant tasks and not performing at the best of
their possibility.
On the other side, a big network of sensor is also difficult to be controlled and
requires a lot of computational resources and fast transfers of data. The last issue
becomes quite constraining when in the network of sensors are present also on-orbit
platforms that with their lack of communications with ground define quite heavy
constraints for a system centred processing system. Observation scheduling becomes
so a hard trade-off between optimizing the performances of a network of sensors
and the increased autonomy of single sensors that have constrained communication
capabilities.
Catalogue maintenance observation strategies are connected with an updated cata-
logue of objects. Depending on the size of the catalogue and the number of sensors
involved the strategies can be quite different and complex. Literature presents diverse
strategies to perform CM for simply one-observer systems and small catalogues.
This is the case of GEO catalogue maintenance strategies which makes use of either
heuristic optimizations or greedy-methods [24]. The use of FISST-based methods to
streamline cataloguing activities like tracklet-linking and OD is wide in the literature,
and showed already a good range of applicability for maintenance of big catalogues
[16] and [50]. Tangentially to this, sensor tasking algorithms evolved to assess better
the characteristics of the sensors, their constraints and optics [18]. This allowed
to asses better the observation and detection conditions of simulated scenarios to
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find an accurate discriminant for pointing direction decision-making. This accurate
detectability techniques, find a good application base again in multi-target filtering
methods for cataloguing, for measurement estimation [19]. More rarely has been
seen, instead, the integration of accurate models of the platforms of the telescopes
to have a realistic estimate of slewing times. An example of this will be reported in
section 3.2.2.2.

3.1.1 Orbit Determination

Scheduling the best observation is also matter of correct timing for tracking the
object. Ideally, the best observation should be able to cover all the visible window
of the object, since it rises from the horizon till the time it sets or enters inside
the Earth shadow. The typical scenario of CM is however much more complicated,
and not all the visibility window of an object can be allocated to a single task. For
this reason it is important to choose the correct timing to perform the observation.
In order to obtain the most of information after an observation there are usually
some instances of the visibility passage that are more suitable for the observation,
that means, the best of the information can be extracted. Different methods can
be considered in this case to assess the quantity of information obtained after an
observation, but more generally speaking, the best observation is the one that gives
the best OD results.
Performing OD with the measurements obtained after an observation means to
upgrade the information that is already available for an object and reduce its
uncertainty. The typical objects in a CM system are defined with their state vectors,
the 3D position and velocity of the object in space and their associated uncertainty.
The uncertainty of a state vector x can be easily defined with the covariance matrix
K:

Kxi,xj = cov [xi, xj ] = E [(xi − E[xi]) (xj − E[xj ])] (3.1)

where E[xi] is the expected or mean value. The gain of information, result of the
OD, can be expressed as the difference between the covariance before and after the
OD update.
Given the covariance before the OD update K− and after K+, the information gain
can be evaluated with different methods. One example is the Shannon Information
Content (SIC):

SIC =
1

2
ln
(
K−K

−1
+

)
(3.2)

An example of SIC trend for a satellite in orbit has been presented in [35]. This
trend, visible for convenience in Fig.3.1, shows that there are optimal instant of
time to perform an observation in the case the allowed time for the observation is
constrained. The upper graph represents the hypothetical SIC obtainable for an
object during its orbit around the Earth if observed at that specific time. As visible,
the overall growing graph has the typical sinusoidal shape with period the orbit
itself. It appears straightforward that some time instance are more optimal for an
observation than others. The lower graph represents instead the along-track error of
the object. The time corresponding to a local minimum of the along-track error and
a local maximum of the SIC can be considered to be the optimal observation time
for that object.
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Figure 3.1: Evolution of the SIC for a GPS object in the time span of two days.
Credits: [35].

3.2 Development of Autonomous Cataloguing
Strategies

This chapter is going to explore the new development in the CM framework that
has been realized in the scope of this Thesis. The typical scheduling techniques that
have been investigated within this projects are of two main types: offline scheduling
strategies and real-time (or dynamic) tasking. The first type of techniques is the
most classical scheduling method analysed by the literature.

3.2.1 Heuristic Optimization

To the class of offline scheduling methods belongs the so-called heuristic optimization
strategies. The optimization in this case is performed via heuristic methods such as
genetic algorithm or Particle Swarm Optimization (PSO). The performance of these
methods, in terms of quality of the collected information and coverage of the objects,
is quite constrained by the success of the optimizer and the offline constraint itself.
Addressing to the first issue involved in this generalization, the optimization method
is based on a specific objective function that needs to be optimized. The solution
space of this objective function is usually heavily irregular and not always convex.

3.2.1.1 Genetic Algorithm

the genetic algorithm presented in this framework analyses the usage of an encoding
procedure specifically designed for the scheduling problem. This method has been
presented for the first time by the author in [35]. The SPOOK implementation,
specifically, makes use of a dedicated binary encoding logic where each individual,
inside a population of possible scheduling solutions, correspond to a possible obser-
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Figure 3.2: Encoding logic for the genetic algorithm as implemented in SPOOK.

vation plan made of pointing requests for each specific time step, see Fig. 3.2. A
possible observation plan is called individual and is represented by a chromosome.
The length of the chromosome corresponds to the number of time windows available
in the plan. The scheduled object at each time step is called gene. The algorithm
is encoding in binary formulation each gene to form an allele. As classical rules of
for genetic algorithm both allele and chromosome are going through modification
processes passing from a generation to another. A modification in the chromosome
sequence is called crossover, while for the single allele is called mutation. At each
generation, with a proper user-selected percentage (called elitism percentage), indi-
viduals close to the maximum fitness will remain unmodified. As shown in Fig. 3.2,
the size of an individual corresponds to the number of observing tasks (the number
of time steps during an observation night) and the number of genes is the total
number of accessible objects.
The method evaluates the overall benefit of an observation plan (fitness of a popula-
tion) with the following objective function:

fitnessvalue =

nw∑
i=1

SICi (3.3)

Where SIC has been defined in Eq. 3.2.

3.2.2 Local Optimization

Local optimization methods are a class of simplified offline scheduling problems that
perform a local grid optimization to find the best observation plan.

3.2.2.1 Greedy Method

The greedy-method is a type of local optimization method for simplified scheduling
problem. usually involving few observers and a small population of objects to
be observed. The performance of this method are a good trade-off between low
computational resources and objective function optimization. Such a method, in
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Figure 3.3: Visual representation of the sorting technique for the greedy-method.

fact, has been selected as main scheduling core for the single-observer system of the
first Airbus Catalogue deployed within this Thesis. It has also been presented for
the first time by the author in [35].
The greedy-method, as introduced by Tamassia in [20], is a sub-class of dynamic
programming problems that aims to reduce considerably the computational time
of the scheduling problem. The algorithm itself involves the partition of a big
problem into smaller sub problems, reducing the computational time of a n-dimension
problem into an O(n) of time. The algorithm is composed into two steps: sorting the
requests and the main optimization loop. In Fig. 3.3, it is represented a simplified
visualization of the sorting algorithm. The observations tasks, the dark boxes, are
sorted accordingly to the final observation time fi of each task i = 1, Ntasks. The
starting times si, may be in conflict with previous and next tasks. This conflict will
introduce the prioritization of the algorithm when discriminating from performing
one task or another. To start, the list of requests is initially sorted, involving recursive
functions like in-place quick-partition algorithms [20, 35], accordingly to increasing
final time fi of the request. Then, inside the main loop, for each sorted requested is
evaluated the observation predecessor. The predecessor of an observation task i is
the closest previous observation e whose final time is before the start of the current
task fe < si.
For each sorted request is so evaluated the benefit of the observation, accordingly to
the following rules:

• Maximum coverage: observe as many objects as possible.

• Follow-up service: maintain track of the objects with re-observations.

• Close passages: observe more objects inside the same FOV.

• Proximity with the previous observation: minimize the slewing time, or angular
distance, with the previous observation.

Finally, the optimal observation is evaluated thanks to the greedy rule:

B(i) = max (B(i− 1), bi +B(P (i))) (3.4)
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Where B(i) is the total benefit associated with the i-th scheduled observation, bi is
the benefit of the current observation requested analysed inside the loop and P (i) is
the index of the request predecessor. The intuitive greedy rule can be explained as
follow: it is better to perform the previous observation request, or the current one
and its predecessor? After this main loop is completed, the observation schedule is
automatically generated.

3.2.2.2 Constrained Optimization

The real-world performance of a scheduling plan depends also on different observation
constraints that need to be analysed in detail for the perfect implementation of
an optimization algorithm. Despite the quite classical visibility and geometrical
constraints an observation can occur, there is a set of quite important mechanical
constraints that depends strongly on the type of platform that hosts the sensor.
One of the main mechanical constraint depends on the dynamical model that steers
the observer during the observation. Depending on how fast a sensor can update
its pointing direction different observation possibilities can be taken into account
starting from a certain pointing direction. If the re-pointing angle is too far to be
reached in the necessary time, some observation possibilities need to be excluded.
To absolve this task, for a standard off-the-shelves equatorial-mounted telescope
ART, it is required a dedicated scheduler. This is the case for the Airbus cataloguer,
where a dynamic model of the telescope platform has been integrated in SPOOK. A
possible example of dynamical model for an equatorial-mounted telescope is described
in Fig.s 3.4 and 3.5. Such a model takes into account the moving and settling time.
Fig.s 3.4 and 3.5, refers to a local reference frame based on the local hour angle and
declination coordinates. The mount of the telescope in those examples is German
equatorial. In Fig. 3.4 it is considered the starting position of the telescope’s mount
to be always in parking position: 0° elevation and the local South meridian, the
slewing time represented in this graph is the time in seconds necessary to move to
the desired value of right ascension and elevation. Due to geometrical constraints of
a realistic observatory room, only values of declination greater than 15° has been
considered. The graph highlights also the change of pier-side of the mount. In
Fig. 3.5 is showed the slewing time in seconds of the telescope that is necessary to
move from a parking position to a higher value of elevation and for different ranges
of hour angle. The considered parking position is the same as in fig. 3.4. As general
reference for medium-sized telescopes (≈ 40 cm) in equatorial mount (classical type
of mounting to achieve high tracking accuracy < 2′′), this dynamic model has been
also applied for generic simulations of similar sensors, during the work of this Thesis.

3.2.3 Real-time Approach: myopic approach with CPHD filter

The next class of problem is considering a real-time dynamic tasking. Real-time
tasking aims to solve the problem of unpredictability of observation conditions and
gives more robustness to a plan completely scheduled offline. Additionally, such a
class methods offer the possibility of wider development to absolve different tasks -
e.g. dealing with unpredicted passages objects, specific tracking request for targets
of interests. In Fig. 3.6, it is schematized the basic approach behind a real-time
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Figure 3.4: Example of an equatorial-mounted telescope dynamical model. The
color expresses the magnitude of the slewing time needed to move from parking
position to a certain local hour angle at fixed elevation.

Figure 3.5: Slewing times in function of right ascension and elevation angles. The
color expresses the magnitude of the slewing time needed to move from parking
position to a certain elevation at fixed local hour angle.
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Figure 3.6: Sequential steps scheduling approach.

scheduling system. The idea behind a real-time scheduling is to create a myopic
optimization problem that schedule just the imminent observation task, making use
only of the information collected at the current and previous time steps. The method
presented within this thesis aims to realize a baseline for future real-time methods. It
is based on the realization of an optimization method for observation that schedules
just the next observation task considering only the information obtained at the
current and previous time steps.

3.3 Multi-sensors Multi-targets filtering
The content of the upcoming sections has previously been presented by the author
in [37]. To maintain the continuity of this thesis, some definitions and mathematical
analyses will be reiterated and further integrated. Multi-target tracking theories
originally emerged to address air traffic management issues, primarily for radar
systems. Over time, as discussed in [19] and [7], they have also been considered as
potential avenues for the development of SSA.
A general definition of the problem is given by Ronald Mahler in [34] (Chapter 12),
as follow:

1. Formulate the complete set of all observers and targets as single joint dynam-
ically evolving stochastic system using point process theory (e.g. Random
Finite Sets (RFS) theory).

2. Propagate the unknown probability density function (pdf) of the system using
a recursive joint multi-sensors multi-targets Bayesian estimation.

3. Define and apply suitable reward functions that express global probabilistic
goals for sensor tasking.

4. Use a valid optimization strategy to cope with the intrinsic unknowability of
future observations.

5. Apply appropriate simplifications of this general (but usually intractable)
formulation.

On the next sub-sections will be given a presentation of the problem for single state
(or target) problem, and for analogy will be explained the definition of multi-targets
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and multi-sensors spaces and how the CPHD finds a suitable trade-off between the
analytical solution of the problem and its tractability.

3.3.1 Gaussian Mixtures

A common practice in space surveillance literature is to assume the results of
IOD and OD methodologies as a Gaussian pdf [41]. This assumption allows to
describe the full orbital uncertainty of the objects with the first two moments of a
single Gaussian pdf: the mean and the covariance. In this framework, the linear
Gaussian assumption is extended to the whole catalogue of objects. In the FISST
framework, the first moment of the multi-target pdf is called intensity (or Probability
Hypotesis Density (PHD)). It can be shown, that under the aforementioned Gaussian
assumptions on the single target dynamics, also the posterior intensity will be a
Gaussian mixture[49]. The linear Gaussian assumptions are so extended for the
multi-target model.
An example of Gaussian mixture can be represented by the following equation:

f̂t(x|zk) =
N∑
i=1

ωiN (xi,mi, Pi) (3.5)

where f̂t indicates the pdf estimate at time t given the zk measurement set, N is the
number of objects (or kernels) in the mixture, and ωi denotes the weight of the i-th
object. N (xi,mi, Pi) expresses the normal distribution evaluated in xi, conditioned
by the mean mi and covariance Pi.

3.3.2 Weights propagation

In the context of Gaussian Mixtures Models (GMM), two are the possible philosophies
to be considered for weight propagation. One is to incorporate the propagation of
the weights values together with object means and covariances propagation. Despite
this method offers a good understanding of how weights and covariances are related,
this procedure also leads to fast expiration of not-observed objects during the time,
that is not a good behaviour inside a CM framework. The second method for weight
propagation is to consider the weights as fixed properties of the objects, keeping
their relative weight inside the mixture constant during only-propagation phases.
The weights are so only governed by CPHD filter updates after each observation (or
missed observation, e.g. detection probability very low) and by two other refinement
procedure for GMM: splitting and merging of mixture components.
The propagation of the weights within the autonomous cataloguer has been realized
as simplified in Fig. 3.7. As it is possible to note on that block diagram, and explained
in Sec. 3.4.2.1, the weights are maintained constant during pure propagation phases,
and updated only by splitting and merging routines to maintain valid the Gaussian
assumptions and during the CPHD filtering. At the beginning of the scheduling
scenario, supposed that the starting level of information is equal for all the objects,
every object of the catalogue will initialize a single component inside the Gaussian
Mixtures (GM). During the propagation of the GM, some of the components will
experience high non-linearity index [41], that expresses how the uncertainty level
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Figure 3.7: Weights propagation implementation inside the autonomous cataloguer.

of the object prediction is border-line with the Gaussian assumptions. That state
is a clear signal that new measurements are needed, and its priority during the
scheduling recursion will be increased. In case of no measurements are present, if
the non-linearity index exceeds a certain level the object information is no more
enough to express all the possible evolution of the objects and new components are
needed. Those new components will be created thanks to splitting (and merging for
the inverse process) techniques.

3.3.3 CPHD Filter

In the FISST framework for multi-targets filters one of the simplest estimator is the
PHD filter, that predicts, updates and corrects the first moment of the multi-target
pdf, known also as intensity function ν(·) or PHD. The CPHD filter propagates
and updates also the cardinality distribution together to the first moment estimate
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[50]. The cardinality function is a discrete probability distribution on the number of
components inside a mixture [19].
Inside this filter framework, for each component of the mixture is associated a weight
ω, that corresponds to its ”intensity” inside the mixture. When the uncertainties
around the state are increasing, that is, the covariance is increasing, the relative
weight of the component will be low, since the relative Gaussian uncertainty will be
spread on more space. Vice-versa, when there is a good estimate of the state (for
example after an observation), the weight of the component will be higher.

3.3.3.1 Problem formulation

A good introduction to the single-target filtering can be found in [49]. The first
assumption that is going to be done for such formulation is to consider the space
object dynamic as a partially observed Markov decision problem1. It is assumed,
additionally, that both the predicted and updated state can be represented by
Independent Identically Distributed (IID) clusters of RFS.
Further assumptions for the CPHD formulation will be presented later.
The proposed description of the method will follow the one presented in [49, 50, 19].
Space objects state propagation problems can be easily considered to follow a Markov
process. Inside this process, the transition from state space at time k − 1 to the
current time step k can be seen thanks to a transition function:

fk|k−1(xk|xk−1) → prior density (3.6)

that represents the orbital dynamic propagation. This prior density is partially
observed in the observation space through the likelihood function:

gk(zk|xk) → likelihood function (3.7)

that represents the function related to measurement generation given an orbital
state.
Given the measurements set, it is possible to evaluate the probability of a state after
an observation:

pk(xk|zk) → posterior density (3.8)

that gives us the posterior density. The posterior density pk can be computed using
the Bayes recursion:

pk|k−1(xk|z1:k−1) =∫
fk|k−1(xk|x)pk−1(x|z1:k−1)dx

pk(xk|z1:k−1) =

gk(zk|xk)pk|k−1(xk|z1:k−1)∫
gk(zk|x)pk|k−1(x|z1:k−1)dx

(3.9)

different numerical methods can be used to solve this recursion, as explained in [49].

1The current state of a target depends only on the state of the last time step.
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This formulation can be easily extended to a multi-state scenario: let M(k) be
the number of components inside a mixture at time k and N(k) the number of
measurements at time k. In such framework are not considered any specific ordering
rules for the states and measurements collections:

Xk = {xk,1, ..., xk,M(k)}
Zk = {zk,1, ..., zk,N(k)}.

(3.10)

Analogously to single-state formulation, in multi-targets formulation the state of
each target or component (xk,yk) can be modelled as random vectors, hence, also
Xk and Zk are RFS. An equal recursion formulation as above can be formulated.
However, the recursion formulation in multi-targets space is computationally in-
tractable, but adding the GMM approximation to the problem it is possible to yield
a closed-form solution. This approximation assumes that targets evolve and generate
measurements independently one from the other.

3.3.3.2 CPHD algorithm

The complete CPHD recursion derivation is out of the scope of this Thesis, and just
the main results and routines utilized during this work, are going to be explained.
In this framework two simplifications have been adopted to yield the tractability of
this tool: the mixture is approximated to a GMM and the number of components,
as this is the case, of objects that originates the mixture (the catalogue of space
objects) is considered to be known a priory. The latter simplification, as will be
showed during the report, allows to a special formulation of the filter that integrates
the Unscented Kalman Filter (UKF) prediction and updates procedures.
The Algorithm of the implemented filter is partially presented in [50] and [19], with
some extensions regarding the splitting and merging generations of new components
during targets propagation phase to assess the non-linearity of Gaussian assumptions
needed for precise processing of orbit propagation.
Suppose the posterior intensity, at time k − 1, is a GM:

νk−1 (x) =

Jk−1∑
i=1

ωi
k−1N

(
x;mi

k−1, P
i
k−1

)
(3.11)

where ωi
k is the relative weight inside the mixture of the i-component at time k,

Jk−1 is the estimated number of components of the GM at the previous time step
k− 1. As in eq. 3.5, N (x;m,P ) indicates the pdf of an estimate x, given a Gaussian
component with mean value m and covariance P .
The predicted intensity will be itself a GM:

νk|k−1 (x) = νS,k|k−1 (x) + γk(x) (3.12)

As well the cardinality will be given by:

pk|k−1 (n) =

n∑
j=0

pΓ,k(n− j)

inf∑
l=j

C l
jpk−1(l)p

j
S,k(1− pS,k)

l−j (3.13)
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where νS,k (·) is the intensity of the survived targets at time k and γk(·) the intensity
of the new target births at time k. The survival intensity, corresponds to the intensity
of the propagated targets present in the mixture at the previous time step:

νS,k|k−1 (x)

= pS,k

Jk−1∑
j=1

ωj
k−1N

(
x;mj

S,k|k−1, P
j
S,k|k−1

)
mj

S,k|k−1 = Fk−1m
j
k−1

P j
S,k|k−1 = Qk−1 + Fk−1P

j
k−1F

t
k−1

(3.14)

where Fk−1 is the state transition matrix (stm) of time step k − 1 and Qk−1 the
process noise. As will be presented later, in the actual implementation of the
filter the orbital dynamic is represented by a proper transition function for the
propagation and any stm is really utilized. For the covariance, as well, the Unscented
Transformation theory is exploited and the covariance is propagated through the
propagation of the so-called sigma-cloud [51].
Supposed the predicted intensity νk|k−1 is a Gaussian distribution, the CPHD update
simply to:

pk (n) =
Ψ0

k

[
ωk|k−1, Zk

]
(n)pk|k−1(n)〈

Ψ0
k

[
ωk|k−1, Zk

]
, pk|k−1

〉 (3.15)

νk (x) =〈
Ψ1

k

[
ωk|k−1, Zk

]
, pk|k−1

〉〈
Ψ0

k

[
ωk|k−1, Zk

]
, pk|k−1

〉 (1− pD,k) νk|k−1 (x)

+

Jk−1∑
z∈Zk

Jk|k−1∑
j=1

ωj
kN

(
x;mj

k(z), P
j
k

) (3.16)

Where the auxiliary vectorial functions Ψ1
k and Ψ0

k are widely explained in [50], and
〈·, ·〉 is the internal product operator.
However, some further simplifications are possible if the number of objects is supposed
to be known a priori during the propagation.
In this particular case, in fact, the cardinality distribution at any time will be equal
to a Dirac delta centered on the current number of objects δN (·) with N ∈ N. In
this special case, a closed form solution for the filter update is possible [50], and
with the form:

νk (x) =

Ψ1
k

[
ωk|k−1, Zk

]
(N)

Ψ0
k

[
ωk|k−1, Zk

]
(N)

(1− pD,k) νk|k−1 (x)+

Jk−1∑
z∈Zk

Jk|k−1∑
j=1

ωj
kN

(
x;mj

k(z), P
j
k

) (3.17)
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Where:
ω
(j)
k =

pD,kω
(j)
k|k−1q

(j)
k (z)

Ψ1
k

[
ωk|k−1, Zk \ z

]
(N)

Ψ0
k

[
ωk|k−1, Zk

]
(N)

〈1,Kk〉
Kk(z)

(3.18)

Where q
(j)
k (z) is the likelihood function of the measurement set z and Kk(z) are the

number of clutters (noise level) of the current measurement set.
In the current work, the GM CPHD recursion is based on Unscented Transformation.
The idea is to propagate through Unscented Transformation the first and second
moments of each GM through the non-linear transformation as follows[51]:

1. each j component of the GM, defined by a mean µ
(j)
k and a covariance C

(j)
k ,

generates a set of L sigma points x and weights u.

2. each sigma point is then propagated to next time step according to the
transition function x

(l)
k|k−1 = φk

(
x
(l)
k−1, ν

(l)
k−1

)
for l = 0 → L, and with ν

(l)
k−1

process noise.

3. the prediction step is so computed:

m
(j)
k|k−1 =

L∑
l=0

ulx
(l)
k|k−1

P
(j)
k|k−1 =

L∑
l=0

ul
(
x
(l)
k|k−1 −m

(j)
k|k−1

)(
x
(l)
k|k−1 −m

(j)
k|k−1

)T
(3.19)

4. for the update, the sigma points are propagated through the likelihood function
into measurements z = hk

(
x
(l)
k−1, ε

(l)
k−1

)
, with ε

(l)
k−1 sensor noise, for l = 0 → L.

5. the update step can be so computed:

η
(i)
k|k−1 =

L∑
l=0

ulz
(l)
k|k−1

P
(i)
k = P

(i)
k|k−1 −G

(i)
k

[
S
(i)
k

]−1 [
G

(i)
k

]T
K

(i)
k = G

(i)
k

[
S
(i)
k

]−1

G
(i)
k =

L∑
l=0

ul
(
x
(l)
k|k−1 −m

(j)
k|k−1

)(
z
(l)
k|k−1 −m

(j)
k|k−1

)T
(3.20)

Where the S
(i)
k formulation will be presented in Eq. 3.23, and corresponds to

the uncertainty related with the measurement set Zk with mean η
(i)
k|k−1.
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3.4 Algorithm implementation

This section is going to present the integration of the scheduler inside the SPOOK
software tool as will be presented in chapter 5. This section will present the main
building blocks of the scheduler referring to fig. 3.8.

3.4.1 Architecture of the scheduler

The baseline architecture for the automatic scheduler consists in all the loop necessary
to: define a pool of objects from a catalogue, initialize a GM with the properties of
the catalogues objects, propagate the objects from one time step to the next one,
move the FOV, simulate/estimate measurements, perform OD on data, evaluate the
reward function and choose the best pointing.
As visible from Fig. 3.8, the GM is defined at the beginning of the main integration
loop with the a priori knowledge that we have of the objects inside the catalogue.
Each integration step is made of the following phases: propagate all the objects to
the next time step and evaluate the accessibility2, select all the possible observation
possibilities and evaluate for all of them the reward function associated with the
observation. The observation possibility with the highest associated reward function
value will be selected as next pointing for the FOV.
When a pointing position is selected, the observed objects information inside the
catalogue is updated accordingly to the previously presented UKF-CPHD filter.

3.4.2 Mixture propagation

The propagation of the mixture applies the UT theories, where the covariances (or
uncertainties) of the objects inside the GM are updated propagating a user defined
cloud of sigma points.
The propagation of the mixture relies on the already-present Airbus software called
Special Perturbations Orbit Propagator (SPOP) [13]. The options for propagation
can be selected by the user to different levels of accuracy. Inside the results sections,
the selected options are going to be thoroughly defined.

3.4.2.1 Splitting and Merging routines

As introduced above, inside the GMM framework different theories for weights and
components propagations can be adopted, that could be incorporated into two
categories. The first idea is to not change the value of component weights during the
simple propagation but only follow the splitting and merging rule when the covariance
related with the states reach certain characteristics, the second idea, instead, is to
have a direct influence of the uncertainty level on the weights propagation. The
first method allows to safe the Gaussian hypothesis, and for this reason is to be
considered the most suitable when dealing with GM. In fact, the first method allows
to never exceed certain value on the uncertainty or covariance by means of the
so-called non-linearity index. On the other side, this method can lead to a huge

2With accessibility is meant the crossing of the object with the observable celestial sphere of
the sensor, see fig. 2.5.
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Iterative Loop

Catalogue of objects

Define a GM distribution

Propagate objects to next time step

Select TOI

Move FOV

Check objects inside the FOV

Simulate measurements

CPHD

Calculate reward function

Choose best FOV pointing

Loop again

Figure 3.8: Baseline implementation of the automatic scheduler inside SPOOK.
Credits: [37]
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number of components very easily and in order to maintain a proper computational
tractability, a proper components pruning routines should be applied. The second
method is, the other side, very suitable for big dimension problems as SST, since is
not affecting in a valuable way the number of components inside a mixture.
The approach used in this work is a combination of the previous two: for each
component at each time step the non-linearity index is evaluated and used as input
for the splitting and merging routines. Every time a splitting routine is triggered,
the component is virtually split, that means, the mean value of the component
state remains the same while its weight inside the mixture is reduced accordingly
to the number of splitting kernels that have been evaluated. This procedure is
adopted for this special case of observation scheduling, since the mean values of the
object state has no sense to be modified being, in fact, a simulation and no real
observations/measurements are really performed.

3.4.3 Measurements generation

The measurements generation routine works into two levels: estimated measurements
and simulated measurements. Besides the differences in the evaluation, the first
are used as reference for the CPHD filter update and are evaluated for each objects
for all the sigma points and the second are the results of the scheduler simulation,
containing all the noise and false detection according to the simulation options.

3.4.3.1 Predicted Ideal Measurement Set: PIMS

In the framework of measurements simulation, a great problem is how to evaluate
all the possible observation combinations given a set of catalogued objects and a
network of observers. The idea at the basis of this work is to generate at each time
step a Predicted Ideal Measurement Set (PIMS) taking into account the position
information of the objects and their weights.
The PIMS is generated starting from the real position of the objects inside the GM
and no false detections or clutters, are considered at this step, see [34] chapter 12,
pag. 269.
An additional filtering has been performed on the possible combinations of observa-
tions, to obtain a feasible computational time and tractability. In fact, if considering
two observers and being m and n the numbers of visible objects for the first and
second sensors respectively, the total number of possible combinations is n · m.
Considering cases of ≈ 400 objects visible for each observer, the number of possible
observation combinations for a big network of observers can be huge. To overcome
this issue a maximum number of possible combinations per each time step has been
selected, accordingly to the lowest weights inside the mixture.

3.4.4 Detection prediction

The detection probability is to be evaluated as the potential position of an object to
the FOV. In Fig. 3.9 it is show the meaning of the intersection between an observer
FOV and the object pdf. In Fig. 3.9, on the left the mean object position fell inside
the rectangular FOV a standard detection algorithm will consider the object as
observable. Opposite is the case on the right, where the mean of the normal pdf is
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Figure 3.9: Intersection examples of a possible sensor’s rectangular FOV and
normal uncertainty ellipsoid corresponding to the object position.

outside the rectangular FOV.
The probability of detection can be seen as product of two terms:

PD = PD,sensor · PD,FOV (3.21)

The first term is a state-independent quantity, that represents the properties of the
observer (and the images processing pipeline that is connected). This term takes
into account all the instrumental errors connected with sensor performances. The
exploitation of all these characteristics is out of the scope of this report. On the
other hand, the second term is a state-dependent quantity, that accounts for the
relative position of the mean state of the object, the FOV and its covariance.
A component of the GM is considered to be perfectly observable (ideally PD,FOV = 1)
when its estimate measurement is completely inside the FOV and the uncertainty
”cloud” around that measurement is completely contained inside the FOV too.
An object is considered to be partially observable when the cumulative probability
density of its pdf (integrated inside the FOV) is constrained by the following values:

0.05 ≤
∫
FOV

pg

(
z; zjk, P

j
zz

)
dz ≤ 0.95 (3.22)

A good measure of the uncertainty (Si
k) around the mean measurement can be easily

given thanks to the Unscented Transformation theory:

Si
k =

L∑
l=0

ul
(
zlk|k−1 − ηik|k−1

)(
zlk|k−1 − ηik|k−1

)T
(3.23)

where the k index indicates the time step, the indices from l to L corresponds to the
components of the sigma cloud3, η is the mean estimated measurement generated
with the mean position of the object and z are the estimated measurements for all
the sigma points.
An expression for the detection probability calculation is given assuming a bi-variate
normal distribution of the uncertainty in the FOV space, and it is presented in
appendix 3.5.

3In this case the sigma cloud refers to the set of sigma components created accordingly to the
Unscented Transformation theory.
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3.4.5 Reward function

The proposed reward function in this work is though to be completely based on
the weights information of the GM. Suitable for this case is the Renyi function,
that express the gain in information after a possible measurements evaluating the
improvements of the gain values after the filter update. A wide dissertation on the
Renyi reward function can be found in [40].
The general formulation of the information gain is:

R(u) =
1

α− 1
log
∫

f1(X;u)αf0(X)1−αdX (3.24)

where u is the FOV control vector and f0(·) and f1(·) are the prior and posterior
pdfs of the GM.
This formulation could be quite simplified, with the assumptions described in the
previous sections, and related completely to the weights information [40]:

R(u) ≈
N∑
i=1

wi
k|k−1 +

α

1− α

N∑
i=1

wi
k−

1

1− α

N∑
i=1

(
wi
k|k

)α (
wi
k|k−1

)1−α

(3.25)

In both Eq.s 3.243.25, the parameter α is to be selected by the user to optimize the
performances. According to the literature, and in this work, the value selected is 0.5.

3.5 Bi-variate normal distribution
The bi-variate normal or Gaussian distribution is a generalization of the one-
dimensional probability density function to two dimensions fields [27]. In this
case the formula for the pdf evaluation is the following:

f(α, δ) =

1

2πσασδ
√
1− p2

exp−Θ

Θ = 1
1−p2

[
(α−µα)2

σ2
α

+ (δ−µδ)
2

σ2
δ

− 2p(α−µα)(δ−µδ)
σασδ

] (3.26)

Where α and δ are the coordinates, σα and σδ the relatives uncertainties and p is the
correlation parameter. As the coordinates indicates the dimension of the observables
is due to the observation measurements type.
In fact, considering for simplicity an optical observer the usual reference system for
measurements are expressed by means of two angles, that for consistency with stan-
dards are right ascension and declination angles. To find the cumulative probability,
that is, the integral of the bi-variate pdf inside the FOV of the sensor:∫ ∫

FOV
f(α, δ)dFOV =

∫
α

∫
δ
f(α, δ)dαdδ (3.27)
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an integration step is required.
Different formulas can be found in literature for bi-variate cumulative probability,
see [27]. In this framework three different strategies for probability integration have
been implemented. A first strategy consider the equations for bi-variate normal
cumulative density presented in the aforementioned paper, the second is an approach
consisting in the evaluation of the Mahalanobis distance between the target and the
edges of the FOV and from that evaluating the probability of falling inside the FOV
thanks to the formula:

pD = 1− exp
−r2

2 (3.28)

Despite this method is not very precise is very fast in computation.
The third method consists in the full integration of the bi-variate normal density
presented in Eq. 3.26. The integration has been realized first integrating analytically
the expression on the right ascension dimension:

I =

G

∫
δ

expC(δ−µδ)
2
[erf(F (D(δ − µδ) + Eb))

−erf(F (D(δ − µδ) + Ea))] dδ

(3.29)

with:
A =

1

2πσασδ
√
1− p2

B =
1

2(1− p2)

C = −B

σ2
δ

(1 + p2)

D = pσα

E|ab = σδ(η(1)− α)|ab

F =

√
B

σασδ

G =

√
πσαA

2
√
B

(3.30)

and then integrating numerically, via Simpson’s method, long the declination
dimension according to Eq. 3.30.

3.5.1 Possible Extensions

The strength of this method for observation planning relies in its high versatility.
As shown in Fig. 3.10, the inner algorithm of the scheduler allows a set (the blue
box on the bottom right) of possible extensions. Depending on the degree of realism
the scheduler should acquire to simulate at best the real observation scenario the
following source of noise on the measurements can be considered:

• the optical performance model;

• the astrometric performance in the image processing routines;
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3. Autonomous Observation Strategies for Catalogue Maintenance

• the detection probability due to camera and image processing processes;

• possible data association uncertainty due to the correlation models.

Inside the planning routine, can be additionally considered the definition of Targets
of Interest (ToI). It has been shown that the scheduling tool can be biased to
specific targets simply increasing the relative value of the weights in the mixture [19].
Priority of some targets can be increased for scientific reasons or military intelligence.
Automatically the algorithm will recognize the objects with increased weight for
observation and allocate more observation tasks to them.
Additionally, thanks to the scheduler formulation, different observation scenarios can
be considered. This is the case highlighted in Fig. 3.10 next to Success of observation.
In the graph are visible the possible extensions to highlight the versatility of the
real-time algorithm. Communication channel drop-out, obscuration period, can be
simulated as well for space-based observers in order to consider possible lack of
measurements from one of the sensor in the network.
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3. Autonomous Observation Strategies for Catalogue Maintenance

3.5.2 Real Catalogue Maintenance for orbital classes

In [37], has been presented a simulation of the new CPHD applied to catalogue
maintenance of objects in the GEO region.
This section will present the results of some simulations conducted to test the
performances of CM with the new real-time method and the comparison of these
results with classical optimization strategies. The latter rely on the assumption
that the CM problem can have a convex-shape representation. They aim to find
the optimal solution (understood as possible combinations of observer-target in the
time) that maximizes a certain objective function. The objective function can vary
according to the method used and will be presented later on.
The first part of this section will describe the background of the simulation: how the
catalogue of object has been generated and which sensor network has been considered.
The second part of this simulation section will describe the principal results obtained
with the CPHD filter implementation for both single optical observers and a network
of 2 optical sensors. Additionally, both cases of space-based observers and ground-
based facilities will be considered.

3.5.2.1 Creation of the Simulation Catalogue

For this simulations the selected objects for generating the catalogue belong to the
geosynchronous class, one of the most crowded orbital region. The initial catalogue
of object has been built-up using the online available TLEs for all the objects that
respect the following criteria:

• for the same object there are at least 20 instances in the 30 days before the
start of the simulation;

• the mean motion of the object is between 0.99 and
1.01 revolution d−1;

• the eccentricity of the orbit is less than 0.001;

• and finally, the object type is one of the following two classes: Payload or
debris.

The epoch of the simulation start is the 12th of February 2021 at 19 : 00 UTC.
As for that date, the objects that respected the previously mentioned constraints
were 1076. Starting from the TLEs instances a catalogue of objects has been created,
with a mean position and covariance initialization obtained with the same method
described in chapter 2.

3.5.2.2 Sensors network

During these simulations four different optical sensors have been considered to
highlight the performances for different selections of observer location, accuracy
and FOV size. The sensor characteristics are specified in table 3.1. Location of the
sensors have been chosen starting from existing facilities, but in order to maintain
the generality of this formulation, names and characteristics have been randomly
selected. Referring again to table 3.1, the Space-Based Optical Observer (SBOB) is
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3.6. Results

Table 3.1: Characteristics of the sensors used during the simulations:

Name Coordinates FOV dimension Sensor accuracy

ART −6.63°W 38.22°N ∅ = 2 deg, 2 deg σα = 1′′,σδ = 1′′
AT1 150.0°W −31.0°N ∅ = 3.4 deg, 3.4 deg σα = 2′′,σδ = 2′′
AT2 133.87°W −23.70°N ∅ = 2 deg, 2 deg σα = 0.5′′,σδ = 0.5′′

SBOB Sun-synchronous orbit at 715 km altitude ∅ = 3.0 deg, 3.0 deg σα = 0.5′′,σδ = 0.5′′

a fictitious LEO object with the following mean orbital elements:

• semi-major axis, a = 7093 km;

• eccentricity, e = 0.0014265;

• inclination, i = 98.2283°;

• right-ascension of the ascending node, Ω = 150.8478°;

• argument of the pericenter, ω = 129.1774°.

The Australian Telescopes 1 and 2 (AT1 and AT2, respectively), have been chosen
to test different accuracy and FOV size conditions.

3.5.2.3 Accessibility Analysis

For each sensor the following constraints have been applied to check the accessibility
of the targets inside the initial complete catalogue presented in subsection 3.5.2.1.
As visible in fig. 2.5, with accessibility of an object is meant the observability of the
target by a certain observer during all the simulation time. The constraints applied
in this framework are:

• that the object must be illuminated by the Sun or being in the penumbra;

• for ground sensors: the Sun shall be below the nautical night elevation of −9°;

• for ground sensors: the target shall be between 20° and 85° of elevation;

• finally, for space sensors: the target shall not be obstructed by the Earth with
a limb of 150 km over the surface.

Fig.s 3.11 and 3.13, highlight the visibility constraints for the ground-based observers
in a specific instant of time.

3.6 Results
This subsection presents the main results of the simulations conducted within this
project. The start of the simulation is the same specified in subsection 3.5.2.1, and
the duration of the simulation is 7 days.
The objects propagation is the most time consuming step of the all the simulation.
In particular, considering that starting from an initial catalogue of 1076 objects,
during the propagation phase 2nstates + 1 = 134 times the objects are propagated

4with nstates the number of states inside the state vector
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Table 3.2: Coverage performances of the CPHD scheduler for different sensors and
SN configurations:

observer or SN total objects visible objects detected objects

ART 1076 342 342 (100.0%)
SBOB 1076 1076 1075 (99.9%)

SN: ART + AT1 1076 674 674 (100.0%)
SN: ART + AT1 + AT2 1076 761 759 (99.7%)

according to the UT theory.
For the propagation has been used 2-body model for gravity perturbations and solar
radiation pressure for disturbances.
Before the overall observation-scheduling simulation, a simple accessibility analysis
has been conducted for all the observers and all the targets inside the initial catalogue
of 1076 objects, to see how many objects are really observable by the specific sensor or
SN. The results of this investigation are present in tab. 3.2, together with the detection
results obtained with the CPHD scheduler. In this case, with detected objects is
meant that the object has been maintained inside the catalogue. The first two
simulations have been done with a single observer configuration, to test the different
coverage conditions for two sensor configurations: in-space and on-ground. The
fig.s 3.11 and 3.12, represent the coverage conditions for the sensor ART and SBOB
respectively. In fig. 3.11 the represented object positions refer to a small propagation
of their orbits for few hours starting from the 12th of February at midnight. The
cyan spot represents the position of the ART telescope in Extremadura, Spain. The
red dashed line indicates the limit of accessibility of the ART observer, in particular,
for the 20° elevation constraint. The objects represented in blue describe the full
GEO catalogue used for the simulation, while the green objects correspond to the
actually detected targets during the 7 days of simulation. Fig. 3.12, in the same way,
represent the detected objects considering the Space-Based Optical OBserver (SBOB)
observer, and the red objects are the objects that the algorithm did not manage
to maintain inside the catalogue. Table 3.2, shows that the ratio of coverage5 for
the ART case is 100.0%. However, not all of these objects are directly tracked or
scheduled to be tracked, by the scheduler. In fact, due to the high density of objects,
especially in the 0° declination area, some objects will fall inside the FOV of the
sensor even when not tracked, that is, the telescope is not pointing directly to them
but to an object next to them. Fig. 3.13 shows, on the other hand, the coverage
results of the network of sensors composed by ART, AT1 and AT2 sensors. The
yellow spot corresponds to the AT2 sensor in Australia. The purple spot, instead,
corresponds to the AT1 observer. The dashed lines indicate the limit of accessibility
for the three observers, in particular, for the 20° elevation constraint. Each line has
the same colour as the sensor to which it refers. The objects represented in blue
describe the full GEO catalogue used for the simulation, while the green objects
correspond to the actually detected targets during the 7 days of simulation. In

5The coverage ratio is the number of observed objects over the total number of visible objects
during all the propagation coverage = Nobserved/Nvisible.
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Figure 3.11: This figure shows the positions of all the objects inside the catalogue
used for the space-based observer simulation of the CPHD filter. Credits: [37].

Figure 3.12: This figure shows the positions of all the objects inside the catalogue
used for the single ground-based observer simulation of the CPHD filter. Credits:
[37].
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Figure 3.13: This figure shows the positions of all the objects inside the catalogue
used for the multiple ground-based observers simulation of the CPHD filter. Credits:
[37].

fig. 3.14 is presented the covariance trend of the ART sensor scheduling simulation
for 7 days. This figure shows the uncertainty trends of all the GM of objects during
the 7 nights of propagation. Each plot corresponds to a direction in position and
velocity of the Radial, Tangential, Normal (RTN)6 frame: the radial, the tangential
and the normal directions. The smaller and dashed lines are for all the objects
propagated by the filter, while the ticker red line is the mean value line at each time
step for all the objects. Similar results can be shown for other two simulations with
AT1, AT2 and SBOB. In particular in fig. 3.15, it is visible the trend of the mean
position and velocity errors for all the observation configurations in tab. 3.2. The
mean trend corresponds to the average value of all the norm of the diagonal elements
of all the covariances of the accessible objects relative to the observer configuration.
The mean trend depends on several factors, as the scheduler configuration or the
sensor properties. SN configurations, e.g. ART and the Australian observers, can
have huge number of observation combinations as specified in subsection 3.4.3.1.
The selection of pointing directions at each time step is so reduced for every observer
inside the network. This setting explains the peaks u 60 km of the SN configuration
at the beginning of the simulation. A better sensor resolution, instead, leads to a
smaller covariance envelope at the end of the simulation.

Simulations have been conducted for single-observer configurations for both cases.
Figure 3.16 shows the results of two single-observer simulations performed with
ART and SBOB observers. In green the genetic algorithm, in red the CPHD filter
presented in this chapter and in blue the greedy method. The upper figure shows
the results for the ART telescope case for three days of propagation, while the figure

6See Appendix 7.1.
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Figure 3.14: Uncertainty trends of all the GM of objects during the 7 nights of
propagation. Credits: [37].
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Figure 3.15: The mean covariance trends for the four observation configurations
presented in tab. 3.2. Credits: [37].

51



3. Autonomous Observation Strategies for Catalogue Maintenance

Table 3.3: Coverage performances for the three scheduling methods presented in
this Chapter 3, for the ground-observer ART:

3 nights simulation

observer Nobjects CPHD ga greedy

ART 342 98.2% 97.1% 80.4%

Table 3.4: Coverage performances for the three scheduling methods presented in
Chapter 3, for the space-observer SBOB:

1 night simulation

observer Nobjects CPHD ga greedy

SBOB 1076 65.5% 82.4% 27.5%

below shows the results for one day of propagation for the SBOB observer. As
visible, the CPHD method grants in both cases better performances in averaged
accuracy of the object mixture. The greedy-method instead, is very conditioned
by the high number of not-observed objects, which covariance trend tends to be
dominant. Additionally, due to a fast saturation of the available memory, the
simulations have been performed for three days for the ART observer and one single
day for SBOB. Tables 3.3 and 3.4, show the coverage performances of the three
methods. However, the coverage is not the only parameter that should be taken
into account in CM, since also the correct timing to perform a certain observation
should be considered. The dimension of the scheduling problem can be defined
as number of observation windows Nwindows times the number of objects Nobjects.
Considering that the simulations have been set to perform each observation every 3
minutes, the scheduling dimension of three days simulations for ART and one day
for SBOB is around half million. Computationally speaking, the greedy method is
the best method for observation scheduling. The dimension of the problem, which
can be defined as number of observation windows times the number of objects, is
not completely exploited with the greedy method where only the number of actually
observable requests is taken into account. Despite the intuitiveness of this method,
the main drawback is the extreme simplification of the cost function which does
not take into account information gain of an observation. The genetic algorithm,
on its side, can be very efficient for small-sized problems (e.g. one night telescope
scheduling), but it requires high memory resources when the number of objects to
maintain is high. In fact, as said, it makes use of a dedicated binary encoding where
the number of bits nbits(also referred as alleles in genetics) is directly related by the
number of objects nobjects and is given by: nbits = floor (log(nobjects)) + 1.
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Figure 3.16: Mean total position error trends for the three methods analysed.
Credits: [37].
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The rise of new satellite constellations, especially in the LEO region, together with
an increasing number of new launches and wider participation in space-related
activities from various entities is pushing Earth’s orbits toward maximum capacity.
Together with the necessity of a worldwide set of regulations for the Space Traffic
Management (STM), there is the need to provide proper surveillance support for the
cataloguing of the increasing number of uncooperative space objects, e.g. launchers
bodies, dismissed satellites and fragmentation events. Differently from radar facilities,
in-space and on-ground optical observers can offer additional data (with respect
to the canonical observables like coordinates, range and relative rates) and cover
higher orbital regions with reduced energy consumptions. Optical sensors offer
the possibility to deal with illuminance information of the objects, the albedo
information and the change of measured magnitude with time. This information
can be combined to perform initial object characterization (e.g. shape and attitude
information). However, a certain number of constraints come together with optical
sensors: mechanical-constrained slewing capabilities, narrow FOVs, illumination
constraints such as the objects need to be in direct sunlight and local darkness
(night) in case of ground station observer. When any particular observation strategy
is adopted, unpredicted passages or new object detections are generally constituted
by short arcs, produced by objects crossing the FOV of an observer at high relative
velocities. These short arcs are generally insufficient to trigger properly a weighted
least squares reduction of the orbit. Since any initial orbit guess can be correctly
established for short detections, the features that possibly generated those detections
need to be re-observed in order to be correlated with each other. Despite the
wide literature available in the field of short arcs correlation, the sensor scheduling
strategies that are necessary to re-observe the same object after a short crossing of
the FOV are difficult to be realized by common telescopes and often involve a great
number of world-distributed observers to create feasible object coverage. Currently,
the biggest challenge for a network of observers is to not be overloaded by redundant
tasks and to be optimized in their operations. This chapter will open with a state-
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of-the-art review of the common sensor scheduling strategies for re-observation of
short arcs, followed by the description of some new methods. The state-of-the-art
review will summarize the requirements coming from the correlation and initial orbit
determination cataloguing tools necessary for the creation of a catalogue of space
objects. The new methods will consider both real-time scheduling strategies to auto-
track fast features that are suddenly crossing the FOV of a sensor and post processing
strategies to keep track of new detections using CAR to triangulate possible objects
that may have generated the measurements. A proper triangulation of the CAR
generated by a short arc, together with some refinement filtering techniques in case
of more measurements, will allow the generation of a family of VD. Eventually,
a proper covariance matrix can be associated with each family of VD and their
future observability studied. Additionally, results of the new strategies are going
to be present both for simulated scenarios and also for real observation of short
arcs campaigns done with ART. The observation strategies will be presented as
the completion of a wider cataloguing system that can be fed by different sources,
i.e. space-track online catalogue and SMARTnet participation. However, special
attention will be given to the catalogue creation chain that is the first essential part
of a cataloguing system.

4.1 State of the Art

Collecting measurements for new or undiscovered objects has always been one of
the trickiest task for a surveillance system. The aim of surveillance is indeed to
build-up a catalogue, even starting from an empty one. Different methods have been
presented to support at best the processing chain of measurements coming from
newly discovered objects.
Are examples of this the study for an innovative surveillance system presented by
Farnocchia in [11], that is considering the studies of Milani on CAR OD methods
[30],[29] and [28], and by DeMars [8]. Despite answering well to the necessity
of making best use of the collected measurements, especially in the case of very
fast observations (or short arcs), lack on the aspects related with the first place
observation of the targets themselves.
The literature presents also several studies connected with survey of the sky, strategies
to map efficiently the Field Of Regard (FoR) of an observer, with the specific scope
of collecting measurements of unknown objects. Depending on the orbital region of
interest for the survey, some scenarios apply more efficiently than others. It is the
case of the geosynchronous area, that has been well studied due to its peculiarity:
highly crowded area of objects where most of them are concentrated on the zero
declination belt and close to each other and for their relative angular velocity fixed
with the Earth’s. Scanning strategies for the GEO belt involve heuristic and machine
learning methods [17] [25] and applied also to space-based scenario [21].
Ad-hoc methods for real-time tracking are also under the attention of LEO object
building catalogues.
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4.2 Development of new Observation Strategies
This section collects the new developments that have been introduced in the context
of CG during this Thesis. In particular, this new development, is going to be
presented divided into three main blocks:

• real-time survey strategies: this is the case of stare-and-chase survey strategies,
where a sensor is autonomously scheduled to follow an object as soon it crosses
its FOV.

• Sky-scanning strategies: that correspond to passive scheduling strategies, where
a sensor or network of sensor is performing an offline computed observation
plan.

• Post-processing techniques: where survey observation plans are generated after
fast or partial observation of objects for which initialization inside a catalogue
has been unsuccessful.

This section will analyse the new development and the ideas on the base of these
different techniques. Results and analyses are going to be provided for the most
relevant cases and example of application scenarios or validation experiments are
going to be presented instead on the next chapters, see chapter 6.

4.2.1 Real-time Strategies

One of the most innovative solutions to absolve the task of CG is to respond in
real-time to unexpected observations. This type of active scheduling method is
supposed to work in a closed-loop framework within the sensor itself, to enhance
its autonomy. Despite the great advantages that are related to such a capability,
several constraints are challenging to be fulfilled. First of all, there are mechanical
constraints, for which not all the platforms supporting the mount of the sensor are
able to track within a determined level of accuracy fast objects like LEO satellites.
There are computational constraints, like the real-time processing of images and
feature detection, which impose strong delays for the sensor tasking. As of last,
there can be also sensing constraints. In the case of optical detection, in fact, such a
scenario should require at the same time a wide FOV, to cover the biggest portion
of the sky as possible, and good accuracy to detect objects that are not in focus
and even very faint features. In the context of this Thesis, and as supervision of a
student Master’s Thesis [26], a new baseline for real-time sensor scheduling, called
auto-tracker has been developed and tested. A short presentation of the innovation
of this method and its characteristics is explained in the next section, sec. 4.2.1.1.
The implementation and characteristics are going to be explained instead in sec. 6.4
on chapter 6.

4.2.1.1 Stare-and-chase scenario

The innovation of the method is based on a different type of image processing that
has been implemented specifically for this observation scenario. The idea is to avoid
performing a detailed photometric and astrometric reduction of the image but to
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use, instead, a coarse processing tool that is simply comparing two sidereal images
between each other to detect anomalous features. The limitations of this system
are that only a sidereal survey is allowed as the first detection method to check new
features crossing the instrument’s FOV. Additionally, no proper orbital estimation
is performed but a simple first-order approximation of the observables is done.
Due to limitations to the facilities of ART, to perform real-time commanded obser-
vations, a first simulation as a baseline for the method has been developed. Later on,
real-world observation has been also performed, to detect and track GPS objects.
The overall algorithm is composed of a first survey phase, in which the telescope
is supposed to point to a fixed position in the sky, compensating for the relative
angular velocity of the Earth, in such a way that the stars appear as fixed points
in the image. As soon as a non-star object crosses the FOV, and at least three
consecutive measurements are collected, the algorithm enters into the auto-tracking
phase in which the telescope assumes new pointing positions in order to maintain
that feature at the centre of the FOV itself.
The two main components of this auto-tracker are so:

• The pattern-matching routine to compare two consecutive images;

• the closed-loop control system to predict, correct and update the pointing
position of the telescope.

A detailed presentation of the method is presented by Lopera in [26].
In Fig. 4.1 is presented an example of the pattern-matching routine applied to a
sequence of two images (the first two images starting from the left). The first two
images on the left are two consecutive sidereal images, in which a streak feature is
visible. On the right, there is the image result of the pattern-matching routine that
subtract the two previous images. The algorithm first applies a masking filter to
both images in order to transform all the pixel values to either 0 or 1 accordingly if
they are over or below the average noise level plus 3σ. Finally, the two images are
subtracted from one to the other. Eventually, all the fixed stars will be eliminated
one by one and only the object features will remain (with values 1 or −1).

4.2.2 Sky scanning

Sky scanning, or mapping, techniques have a long history in SST field. The idea
of Sky scanning is to design an observation grid in the FoR of an observer. That
consists in subdividing the accessible sky over an observer in a grid of rectangles,
where each element has dimension equal to or smaller than the sensor’s FOV. During
the observation, the sensor then points the instrument iteratively on those grid
elements and performs surveillance. In Fig. 4.2, it is visible a schematization of this
approach. The Sky scanning is performed by observing each rectangle element of the
sky grid in order to eventually observe objects crossing the FOV. The FoR of the
observer is subdiveded in grids, where each rectangular element corresponds to the
FOV size of the sensor. During the observation, the sensor points iteratively to each
element of the sky-grid to perform surveillance. This approach can be optimized in
order to make the best use of the allocated resources inside a sensor network.
Indeed, depending on the orbital area of interest of the object research the scanning
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Figure 4.1: Example of pattern-matching as implemented in the auto-tracker
feature of SPOOK. Credits: [26].

Figure 4.2: Example of a ground-based observer Sky scanning.
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Figure 4.3: Distribution of geostationary objects (retrieved from space-track) in
the celestial right ascension and declination plane.

techniques may be optimized in order to avoid redundancies and allow the best
observation conditions. The following sections will describe in detail two examples
of this optimization for GEO and LEO orbit regions respectively.

4.2.2.1 GEO fence

The GEO fence strategy is based on the observation of the objects that belong to
the Geostationary belt around the Earth, at an altitude between 35 000 km and
36 000 km. Due to the peculiar shape of the GEO belt region, some particular
observation strategies can be adopted. The scenario has been already presented by
the author as a SPOOK’s feature in [36].

As visible in Fig. 4.3, the objects on the GEO belt are located around the 0°
horizontal line in the geocentric celestial right-ascension and declination plane.
Although the objects follow a sinusoidal distribution around the 0°, the effect of
the lunisolar orbital perturbation, most of the active satellites are concentrated on
the 0° line. This high concentration is even more visible with a look-up on that
area, as shown in Fig. 4.4. Properly-placed scanning grids can be placed over the
GEO belt in order to maximize observations and revisit times. The most classical
observation methods for the GEO belt involve declination-wise scanning. That is,
the observer is pointing at a constant right-ascension value (where eventually all the
objects will pass during their 1-day revolution) and swiping vertically to higher and
lower declination positions in order to catch also more inclined objects.
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Figure 4.4: Zoom-in of the geostationary object distribution from Fig. 4.3.

A property that is important to take into consideration for the GEO belt strategies
is the cycle or revisit time. The cycle time is the time that takes to the observer to
perform a cycle of observations before coming back to the initial position. When
the cycle time is lower than the time the objects need to cross horizontally the FOV,
then all the objects that are at that declination will be observed. If an observation
plan respects this property, the plan can be considered leak-proof. For this purpose,
Fig. 4.4 presents an example of a single fence observation strategy for a random
observer. In this figure it is also highlighted in green the scanning fence profile of a
certain sensor. The main aim of the GEO fence strategy is to fix an observation fence
at a precise right-ascension value, where all the objects eventually will pass through,
and swap vertically to different declination values in order to increase the coverage.
In green are highlighted the rectangular profiles of the FOV positions during the
observation. Such a plan is theoretically able to observe all the objects crossing
in that declination interval during the whole night, with the condition of being
leak-proof. An observer on the ground, of course, may have additional constraints,
e.g. the Sun elevation, and will have accessibility only to a smaller portion of the
GEO belt during a single night. Usually, a typical optical observer with a FOV
around 3° has accessibility to a 100° arc of the GEO belt ( 27% of the total objects).
A plan that involves a single fence, however, allows as said a maximum of one
observation per object per night. In order to increase the number of observed
passages for each object, more vertical fences are necessary. This can be achieved
using more sensors or by decreasing the vertical coverage of a single fence and
splitting it into more fences.

61



4. Autonomous Observation Strategies for Catalogue Creation

As described by the author in [36], a dedicated GEO fence method has been integrated
inside SPOOK for the generation of plans for ART.

4.2.2.2 LEO mapping

One of the trickiest regions of objects to perform a survey is the LEO region. The
LEO region considers all the objects with perigee within 2000 km of altitude from
the Earth’s surface. It is a highly crowded area of space around Earth (in space-track
at least 19 thousand LEO objects are listed).
A survey method to map that region, via a network of optical sensors, has been
integrated into SPOOK. A presentation of this new development is going to be
presented also in Chapter 6.
The mapping method, suitable for a machine learning application, is based on
mapping techniques as presented by Früh in [17]. Differently from that GEO
application, in this case, the optimization method is based on LEO observations.
The starting point of the algorithm is a dummy catalogue of LEO TLE, as retrieved
from space-track. From the catalogue, the position of the objects is propagated at
each observation time step and stored properly on some temporary variables.
The algorithm aims to first produce a grid of the spherical observable sky of a given
sensor. The dimension of the grid corresponds to the size of the FOV. Afterwards, a
specific reward function is associated to each element of this grid in order to estimate
the best pointing position (accordingly to the highest reward value). This strategy
is performed at each observation step and a mapping observation plan is produced.
The overall optimization is based on three main cost functions:

• The observation geometry: it is evaluated in this case the elevation of the point-
ing element, the phase angle (or distance from the Sun) and other observation
constraints relevant for the type of sensor.

• The IOD factor: that means to increase the reward of a possible observation
that allows to observe for three times the same object. This reward will be
strictly increasing till the third re-observation and then set to a static low
value in case of additional observations.

• the urgency factor: corresponds to an increased priority to objects that are
going to disappear sooner (low elevation and setting velocity).

The second two cost functions, require an initial catalogue of objects to be taken
into account as reference system. As explained before, a GP-generated catalogue is
used to this scope.
The geometrical constraints can be visualized in Fig. 4.5. This graphics shows the
mapping grid generated for a ground-based optical observer at a specific time step.
The pointing directions below 20° have not been considered due to observer ground
limitations (the walls of the room). The grid colour represent the elevation value,
the contour lines represent the angle with respect to the Sun (Sun-observer-pointing
direction). In red are visualized the selected pointing direction of the plan up to
that instant of time. As visible, the performed pointing directions are concentrated
in an area below 100° of angle with the Sun.
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Figure 4.5: Observation mapping grid generated for a ground-based optical observer
at a specific time step.

4.2.2.3 Space-based Solutions

Similarly to the example of LEO observations from ground-based optical observer,
the mapping method can be easily extended to space-based platforms. This is the
case of the use case presented in Sec. 6.1.

4.2.2.4 Conjunctions screening

The conjunctions screening is a survey-based technique to monitor the status of close
passages of objects as predicted by the conjunction assessment tool. This technique,
presented in [36], consists in the following steps:

1. Fetching the last updated LEO catalogue.

2. Perform raw (30 s of time step) accessibility screening to filter only the visible
objects.

3. Perform n× n conjunction assessment on the filtered list.

4. Filter out the conjunctions that are not within the visibility windows of the
objects.

5. Perform precise (1 s of time step) accessibility screening of the filtered objects
(choosing only one of the object involved in the conjunction) and compute
scheduling of the observations.
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The information connected with the altitude of the objects and their relative angular
velocity is used to assess the integration time of the images and the binning or
windowing of the survey. It is estimated that one optical telescope, at an average
latitude of 38°, has access to 5− 10 conjunctions per night, for an average time of a
few minutes per night. Such a plan is not removing too many resources to a sensor
involved in SST and can be easily added to each observation plan. In SPOOK and
ART operations, this plan has been added as an autonomous service in a separate
server with respect to the one where the Autonomous Cataloguer is running and
added automatically to the ART plan in the morning when it is generated.

4.2.3 Post-processing Strategies

This section presents a new scheduling method as proposed by the author in [38].
The VD method takes its name from the Admissible Region (AR) theory developed
by Milani [29] [30] [28]. The VD are so-called because they are not real solutions
of the orbit but correspond to the classical under-determined problem of the IOD.
In fact, a single space object measurement hardly contains enough information to
efficiently close the Gauss’s problem of IOD.
The main problem that wants to be addressed in this framework is how to deal
with short arc observations. As will be explained later in this section, a short arc
observation does not contain, typically, enough information to identify precisely
the orbit of the object that generated it. And when the orbit of the object that
generated the observation cannot be estimated, the object cannot be catalogued,
and eventually, it will be lost.
The main question that will be answered in this section is:

• How to observe again an object which orbit has not been successfully
catalogued yet?

To answer this will be analysed the canonical cataloguing pipeline, as presented in
Fig. 4.6, with the addition of a new method for observation planning. The main
goal of this new method is to skip the classic cataloguing tools of correlation and
orbit determination, in favour of heuristic methods.

4.2.3.1 Virtual Debris algorithm

The new development, related with the VD algorithm, has been presented for the
first time by the author in [38]. For the sake of continuity, however, some of the
definitions and explanations, are going to be again presented in this section.
The VD algorithm analyses the feasibility of not directly using the measurements of
an object to estimate its orbit, but to consider a family of possible orbital solutions
for planning observations. If the network of sensors is well optimized for the following
up of these objects and the number of these virtual objects is limited, the real object
that generated the measurements can be eventually tracked and its orbit finally
estimated with enough accuracy.
Fig. 4.6 shows a classical example of concept diagram related to the problem of
CG. In Fig. 4.6, inside the two decision blocks: T2O stands for Tracklet-to-Object
and T2T for Tracklet-to-Tracklet. A short arc observation, corresponds to a list
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of measurements belonging to an object that crosses the FOV of an observer at a
certain time. Those measurements are meant to belong to a single passage of this
object. The standard cataloguing processing pipeline can be initialized as usual,
and the short arc observation is tried to be correlated to a known object that is
already inside an available object catalogue. When the correlation succeeds, OD is

Short Arc

T2O Cor-
relation

T2T Cor-
relation

Orbit Determination

Object Catalogue

More than
3?

Initial Orbit Determination

Tracklet Catalogue

Observation Planning

yes

no

yes

yes

no

no

Figure 4.6: Standard Catalogue Generation flow chart, plus observation planning
block as closing ring of the chain.

applied and the information of that object are updated inside the catalogue. If no
correlation is possible, the same measurements are then tried to be correlated with
others measurements that are still uncorrelated. If more short arcs are correlated
between each other, the literature suggests at least three different passages, the
precise orbit of the object can be reduced through classical IOD methods.
In the case all these cataloguing tools are failing, i.e. the object is unknown and
cannot be correlated or the measurements are not enough to close the orbit, a new
strategy can be adopted to follow up those objects and eventually insert a new object
inside the catalogue.
Fig. 4.7, the main block diagram of the VD algorithm is presented. All the short
arc observations that have been collected during the observation time, for example
a collision survey or a LEO mapping scenario, are processed together to generate
a family of possible orbital solutions. Those virtual debris are generated via CAR
method.
The process of VD generation will be now presented in details. The main algorithm
structure is composed by the four blocks in Fig. 4.7: CAR evaluation, optimal
sampling, attribution penalty filter and proximity filter. While the first three blocks
are specific to each single short arc observation (or tracklet), the latter is applied to
the whole set of VD iteratively.
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Iterative Loop

Short Arc List CAR evaluation Optimal sampling More than
2 meas?

Att. Penalty filter

Proximity filter

VD propagation Generate survey tasks Simulate observation

yes
no

Figure 4.7: Catalogue Generation after short arc measurement flow chart.

Figure 4.8: Geometrical representation of a point in space expressed with spherical
coordinates.

4.2.3.2 CAR evaluation

To familiarize with the concept of CAR, some definition will be proposed in this
section. However, the full theory behind this method, as proposed for the first time
by Milani [30], will not be topic of this dissertation. Additionally, the author has
already provided in [38] a description of how the optimal sampling of the CAR is
performed, by means of Delaunay triangulation.
A short arc observation, that can be called also short tracklet, is a list of measurements
belonging to a certain object. The measurements, depending from which sources
are coming from -i.e. radar, optical telescope, etc., may contain different type of
observables. The observables are the quantities that can be directly extracted from
the measurements without need to perform any time of estimation filter.
To understand better this nomenclature, it will be useful to express the state vector
x of an object through a spherical coordinates representation. Eq. 4.1 express the
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spherical coordinates representation of a state vector:

x =
(
α, δ, ρ, α̇, δ̇, ρ̇

)
(4.1)

Where α is the right ascension, δ is the declination and ρ is the range. In Fig. 4.8
those angles can be better understood with an easy geometrical representation. The
horizontal angle starting from the γ point is called the right ascension: α. The
vertical angle, that starts from the celestial equator to the point, is the declination
angle: δ. The radial vector to the point, is instead the range: ρ.
With the spherical coordinates representation, it becomes straightforward the passage
from observables to state; being the observables themselves part of the state.
The idea of Milani, is so to subdivide the state vector of the object in two parts.
The first part collects what can be directly extracted from the measurements and it
is called attributable: A =

[
α, δ, α̇, δ̇

]
. The second part represents what can only

be estimated (or guessed): B = [ρ, ρ̇]. Considering an optical observation, but by
analogy can be easily extended to radar measurements, the observable is given by the
right ascension and declination α, δ couple. Assuming to initialize the attributable
using three optical measurements, a simple Weighted Least Squares (WLS) method
can be used to extract the attributable:

m1 =(α1, δ1) , t = t1

m2 =(α2, δ2) , t = t2

m3 =(α3, δ3) , t = t3

(4.2)

Where each measurement is been considered to be taken at a specific time: t1, t2
and t3. The measurement observables can be redistributed in two separated vectors:

α =
[
α1, α2, α3

]
δ =

[
δ1, δ2, δ3

] (4.3)

The vectors can be used in a matrix formulation of a WLS linear regression method
as in:

SSE =
3∑

i=1

ωi

(
αi − α̂− ˆ̇α∆ti

)2
ωi =1/σi

(4.4)

Where σi is the sensor accuracy, or precision of the measurements. It depends on the
telescope system itself and the image processing routine applied. The hat variables:
α̂ and ˆ̇α are the result of the minimization of the residuals of the Sum of Squares
SSE. They correspond to the averaged position of the object at the averaged time:

t̂ =

(
3∑

i=1

ti

)
/3,∆ti = t̂− ti i = 1, 3 (4.5)

Now we can collect the main coefficients of Eq. 4.4 into the weights W and linear
regression X matrices:
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W =

σ12 0 0
0 σ2

2 0
0 0 σ3

2

 (4.6) X =

1 ∆t1
1 ∆t2
1 ∆t3

 (4.7)

Finally the innovation matrix can be evaluated and os the respective angular
coordinate:

I = XTWX →


P = I−1

dα = PXTWα

dδ = PXTWδ

(4.8)

The attributable A and its accuracy ΓA can be so evaluated:

A =
[
α, δ, α̇, δ̇

]
,ΓA =


σα 0 0 0
0 σδ 0 0
0 0 σα̇ 0
0 0 0 σδ̇

 (4.9)

where: 
α = dα[1]; α̇ = dα[2]

δ = dδ[1]; δ̇ = dδ[2]

σα = σδ = P [1, 1]

σα̇ = σδ̇ = P [2, 2]

(4.10)

For this framework two strong assumptions have been considered:

• The accuracies in declination and right ascension directions are uncorrelated:
σαδ = 0.

• The accuracy of angular coordinates are the same: σα = σδ

Once the attributable has been found, the CAR can be defined, based on some
a-priori assumptions. The classical methods to extract the admissible region have
been proposed by Milani in [30] and [29]. The principal constraints that have been
adopted in this framework are:

• Zero-energy condition: closed orbit assumption.

• Minimum and maximum range.

• Minimum and maximum semi-major axis.

• Maximum eccentricity.

In Fig. 4.9 it is presented an example of CAR typical of optical observations. The
constrained region has been on the right ascension and declination plane. In fact, in
the case of optical observation the observables are the angular quantities and the
unknown set of variables is the range and range rate. In Fig. 4.9 the measurements
belong to a GPS satellite, and as typical for that orbital class, the constraints have
been chosen accordingly. As visible, the CAR can be quite a wide area, where more
orbital regions may be present. The next step will be correct selection of samples to
represent this region.
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Figure 4.9: Example of CAR obtained for a tracklet of optical measurements
belonging to a GPS satellite.

4.2.3.3 Optimal Sampling

The definition of the attributable gives a precise idea of the Observable state of the
object at a precise time. However, the quantities that are not directly observed may
assume any value within the CAR. In order to deal in a computational sustainable
way with this region, a finite number of samples must be extracted by that region.
The sampling can be performed by an easy grid subdivision of the CAR by selecting
a minimum interval for the range and range-rate. Another possible solution to
perform this task is through the generation of iso-energetic lines to ”cut” vertically
the CAR and an equally spaced grid division in the range-rate domain.
Anyway, for this algorithm has been selected an optimal sampling method via
Delaunay Triangulation [29, 45]. The sampling method has been slightly readapted
by the method presented in Milani [29] to include different end-of-iterations routines
and border-sampling methods. The sampling algorithm is so composed by a first
border-sampling routine, to correct sample the corder of the CAR area, and finally
by an iterative Delaunay triangulation-based loop to sample points inside the region.

4.2.3.4 Attribution Penalty Filter

As seen during the attributable generation, only few measurements (3 in the example)
are necessary up to this step. However it might be common the case in which the
short passage of the object over the observer’s FOV have been registered in even
more measurements. Even in the case one or two more measurements have been
collected, their information can still be used to filter better the area inside the
CAR. This passage can be done through the so called attribution penalty filter. A
description of how the attribution penalty value is calculated is provided by the
author in [38].
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Figure 4.10: Example of streak feature that can be extracted by an image.

4.2.3.5 Proximity Filter

When more short arcs observation are processed in batch, it can be possible that
more VD superimpose. In this case it is necessary to filter out all the generated CAR
points that are sufficiently close to each other. This passage needs to compare the
object positions at the same time and for all the objects. To reduce the computational
demand of this task a proper Breadth First Search algorithm has been adopted.

4.2.3.6 VD extension

This section concerns a possible extension for the VD algorithm to filter further
the number of VD inside the processing loop. The reason behind this choice is to
improve the computational tractability of the overall algorithm.
The proposed method makes use of a re-designed version of the heuristic Initial
Orbit Determination (hIOD) approach made by Wishnek in [53]. Such a method, has
been shown to have a great applicability with short-arc streak survey observations.
Differently from point-like measurements, where only the central right ascension
and declination of the feature is provided, a streak measurement is combined with
the value of the streak length. Knowing the length of the streak in arcseconds and
the integration time of the image, the relative angular velocity of the object can be
deduced.
Fig. 4.10 shows an example of streak feature, as can be obtained from a telescope’s
image. The image has been realized by ART during a sidereal survey scenario. The
streak corresponds to an object crossing the FOV of the telescope. Knowing the
exposure time of the image te and the length of the streak in pixels s = (∆xpx, ∆ypx),
a first idea of relative angular velocity of the feature can be estimated:

v =

{
∆xpx ∗ pscale/te
∆ypx ∗ pscale/te

(4.11)

Where, in Eq. 4.11, ∆xpx and ∆ypx are the horizontal and vertical components of
the streak in the image plane measured in pixels and pscale is the pixel scale1.

1The pixel scale of an optical image is the averaged conversion factor between pixel and
arcseconds.
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The streak angular velocity, together with the coordinates of the centre of the streak,
gives the 4 observables of the measurements. As introduced in the previous sections,
6 elements (plus the time) are necessary to completely identify the orbit of an object.
For such a reason, only two measurements are theoretically necessary to build-up an
overdetermined system for the target state estimation. This allow for a more efficient
use of the collected data, and allows to save as many measurement as possible for
the next steps of the algorithm, i.e. the attribution penalty filter. The algorithm
implementation, with this new integration of the hIOD is presented in Fig. 4.11.
In this diagram has been added the extension for the hIOD filter. A system for

Iterative Loop

Short Arc List CAR evaluation Optimal sampling More than
2 meas? hIOD filter

Att. Penalty filter

Proximity filter

VD propagation Generate survey tasks Simulate observation

yes

no

Figure 4.11: Catalogue Generation after short arc measurement flow chart.

the estimation of the target state, can be established considering the observation
geometry. Indicating with robj|k the position of the target at time tk, with robs|k the
position of the observer, ρ the range or distance between the observer and the target
and uk the pointing direction to the target, the following relation is valid:

robj|k = robs|k + ρkuk (4.12)

As support for vectors visualization the reader can refer to Fig. 6.11 in Chapter 6.
The first derivative of Eq. 4.12 can be expressed:

ṙobj|k = ṙobs|k + ρ̇kuk + ρu̇k (4.13)

The following relations involving the Lagrange coefficients, can be now considered:
robj|k+1 =fkrobj|k + gkṙobj|k

ṙobj|k+1 =ḟkrobj|k + ġkṙobj|k
(4.14)

Where fk and gk are the Lagrange coefficients as defined in [6] (in Ch. 2). Just
as explanatory example, it can be considered to have observed the object in two
different instant of time t1 and t2, very close between each other. That is, there
are two available measurements. let it be robj|1 the position of the object at t1 and
robj|2 at t2. The Lagrange equations will become:

robj|2 =frobj|1 + gṙobj|1

ṙobj|2 =ḟrobj|1 + ġṙobj|1
(4.15)
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Where the Lagrange coefficients can be so expressed:

f =1−
µ|robj|2|

h2
(1− cos∆θ)

g =
|robj|1||robj|2|

h
sin∆θ

ḟ =
µ

h

1− cos∆θ

sin∆θ

[
µ

h2
(1− cos∆θ)− 1

|robj|1|
− 1

|robj|2|

]
ġ =1−

µ|robj|1|
h2

(1− cos∆θ)

(4.16)

Where the following relation is also valid:

ḟ =
1

g
(fġ − 1) (4.17)

The angle ∆θ is the angle between the two positions robj|1 and robj|2, can be so
defined:

∆θ = arccos
(

robj|1 · robj|2
|robj|1||robj|2|

)
(4.18)

And where h is the modulus of angular momentum:

h = robj · vobj (4.19)

Combing together Eq.s 4.12 and 4.13 with 4.14:

robs|k+1+ρk+1robj|k+1 = fk
(
robs|k + ρkrobj|k

)
+

+gk
(
ṙobs|k + ρ̇krobj|k + ρkṙobj|k

)
ṙobs|k+1 + ρ̇k+1robj|k+1+ρk+1ṙobj|k+1 = ḟk

(
robs|k + ρkrobj|k

)
+

+ġk
(
ṙobs|k + ρ̇krobj|k + ρkṙobj|k

) (4.20)

As suggested by [53], from Eq. 4.20 the terms with the unknowns (ρ and ρ̇) can be
separated from the others and a systems of equations with unknown variable the
range and range can be built:

ρk+1robj|k+1 − fkρkrobj|k − gkρ̇krobj|k − gkρkṙobj|k =

fkrobs|k + gkṙobs|k − robs|k+1

ρ̇k+1robj|k+1 + ρk+1ṙobj|k+1 − ḟkρkrobj|k − ġkρ̇krobj|k+

− ġkρkṙobj|k = ḟkrobs|k + ġkṙobs|k+

− ṙobs|k+1

(4.21)

From Eq. 4.21, the following system can be extracted:

Mx = ξ (4.22)

Where:
M =

[
−fkrobj|k − gkṙobj|k −gkrobj|k robj|k+1 0

−ḟkrobj|k − ġkṙobj|k −ġkrobj|k ṙobj|k+1 robj|k+1

]
(4.23)
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x−1 =
[
ρk ρ̇k ρk+1 ρ̇k+1

]
(4.24)

ξ =

[
fkrobs|k + gkṙobs|k − robs|k+1

ḟkrobs|k + ġkṙobs|k − ṙobs|k+1

]
(4.25)

For this 2-measurements example, the dimension of the system is: M = (6 × 4),
x = (4) and ξ = (6).
Eventually the system may allow more than 2 measurements entry. In this case
the system can be extended for more measurements steps, respecting the relation
of Eq. 4.22 for each couple of consecutive measurements. The generalization of M
matrix in case of n measurements and the other components of the system, x and ξ
can be so represented:

M =



−fkrobj|1 − gkṙobj|1 −gkrobj|1 robj|2 0 0 0 · · ·
−ḟkrobj|1 − ġkṙobj|1 −ġkrobj|1 ṙobj|2 robj|2 0 0 · · ·

0 0 −fkrobj|2 − gkṙobj|2 −gkrobj|2 robj|3 0 · · ·
0 0 −ḟkrobj|2 − ġkṙobj|2 −ġkrobj|2 ṙobj|3 robj|3 · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 −fkrobj|n−1 − gkṙobj|n−1 −gkrobj|n−1 robj|n 0

0 · · · 0 −ḟkrobj|n−1 − ġkṙobj|n−1 −ġkrobj|n−1 ṙobj|n robj|n


(4.26)

x−1 =
[
ρ1 ρ̇1 ρ2 ρ̇2 ρ3 ρ̇3 · · · ρn ρ̇n

]
(4.27)

ξ =



f1robs|1 + g1ṙobs|1 − robs|2
ḟ1robs|1 + ġ1ṙobs|1 − ṙobs|2
f2robs|2 + g2ṙobs|2 − robs|3
ḟ2robs|2 + ġ2ṙobs|2 − ṙobs|3

· · ·
fn−1robs|n−1 + gn−1ṙobs|n−1 − robs|n
ḟn−1robs|n−1 + ġn−1ṙobs|n−1 − ṙobs|n


(4.28)

In this generalized n-measurements case, the dimension of the system is: M =
(6(n−1)×2n), x = (2n) and ξ = (6(n−1)). Although the system can be used directly
for a least-squares method to determine the vector of unknowns x, as a common
IOD method, this approach it is not well applicable to short arcs observations, where
the number of measurements is very limited and the time step is very short. The
idea, as suggested by [53], is to use an heuristic approach (hIOD) to find a minimum
solution to the problem:

Mx− ξ = 0 (4.29)

That can be reformulated in a cost function for a minimization problem, to find the
root x which minimizes the function:

f(x) = W (Mx− ξ) (4.30)

Where the weighting matrix W can express the different weights that can be
considered for the variables of the problem. The typical case is in fact to increase the
weights associated with the orbital range and decrease for orbital velocities which
have usually less accuracy.
In the next section (sec. 4.2.3.7), the minimization problem will be explained as
optimization problem through PSO.
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4.2.3.7 PSO optimization

Without the need of an detailed description of the method, quite well presented in
the literature, the heuristic optimization has been realized through a PSO method.
The standard algorithm for hIOD is presented in Fig. 4.12, where it is visible that
the initial population of particles is initialized through the canonical CAR analysis.
Similarly for the hIOD filter, as the block presented in Fig. 4.11, the initial population

Short arc tracklet

Initialize Measurements

Get CAR

Initialize PSO

PSO Optimization

Get best State

Refine Solution via WLS

Figure 4.12: Generalized block diagram of a hIOD algorithm.

is the direct output of the Delaunay triangulation. This process, with particular
highlight to the PSO implementation is presented in Fig. 4.13. In blue scope, it
is visible the algorithm of the PSO optimization as implemented in SPOOK. In
alg. 1, it is reported the algorithm internal of the PSO optimization algorithm.
The canonical PSO makes use of a set of particles (Nparticles) which correspond to
possible solution of the system. This particles are characterized by a position, posi,k
with i the iteration step and k the particle number, (with the size of the unknown
variable, in this case posi,k =

[
α, δ
]
) and a velocity veli,k. The velocity correspond

to the position the particles will reach at the next iteration. The particles will be so
updated for all the iterations (Niterations) in this way:

posi,k = posi−1,k + veli−1,k (4.31)

For i = 1, Nierations and for k = 1, Nparticles.
During each iteration, for each particle it is evaluated the fitness function. The
fitness function itself is the weighted combination of 5 different objective functions:

1. the Lagrangian objective function from Eq. 4.30;
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Short arc tracklet Delaunay triangulation

Initialize Measurements

VD algorithm

Initialize PSO

Algorithm 1: PSO optimization
get variable space limits
for i = 1, Niterations do

enter parallel computation
for ip = 1, Np do

pos(i, ip) = pos(i− 1, ip) + vel(i− 1, ip)
get fitness value

end
exit parallel computation
compute global best → pos(glob, ibest)
compute local best → pos(loc, ibest)
for ip = 1, Np do

vel(glob, ip) = pos(i, ip)− pos(glob, ibest)
vel(loc, ip) = pos(i, ip)− pos(loc, ibest)
vel(i, ip) =
ωvel(i−1, ip)+r1c1vel(loc, ip)+r2c2vel(glob, ip)

end
end

Proximity filter

VD points in Output

Figure 4.13: Detailed block diagram of the hIOD filter as extension of the VD
algorithm.

2. the difference between the propagated pointing vector from the initial guess
and the real pointing vector to the object from the measurement;
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3. the difference between the propagated angular velocity from the initial guess
and the real angular velocity of the object from the measurements;

4. the range distance from the circular IOD guess;

5. the range rate difference with respect to the circular IOD guess.

To understand the points 2 and 3 needs to be considered the hIOD optimization as
described in [53]. When more than 2 measurements are available, the additional
measurements will go to extend the system size as in Eq. 4.26. However, the range
and range rate guess are done only for the first measurement instant of time (ρ1, ρ̇1).
The range and range rate couples for the future time steps, corresponding to the
additional measurements, is obtained propagating the initial spherical state vector
using SPOP. The propagation of the full state, will also update the propagated
observables at the next measurement times. These quantities can be, indeed,
compared with the real observed ones to obtain an additional objective function
that needs to be minimized.
As for the last two points (4 and 5), it has been considered the solution to the
simplified-circular IOD as explained in [2] (pp. 369-370). For the circular orbit
assumption are, in fact, necessary only 2 measurements. Given the specific geometry
of a perfectly circular orbit centred on Earth and the position of the observer, it is
possible to determine the range ρcircular and range-rate ρ̇circular of the object through
an easy bi-section method. Specifically, the method attempts to compare the time
the object required to cover the angular distance between the two measurements
considering the dynamic model of a circular orbit, and the real time difference
between the measurements instances.
The general expression of such a fitness function is given in Eq. 4.32.

f =ω1f1 + ω2f2 + ω3f3 + ω4f4 + ω5f5

f1 = ‖W (Mx− ξ)‖
f2 = arccos (upropagated · ureal)

f3 =

√
(α̇real − α̇propagated)

2 +
(
δ̇real − δ̇propagated

)2
f4 =ρ1 − ρcircular

f5 =ρ̇1 − ρ̇circular

(4.32)

Where ωi with i = 1, 5 are the weights applied to each fitness contribution. To recall
the observable definition presented in 4.2.3.2, the pointing vector to the object can
be obtained from the observables as follow:

u =

cosα cos δ
sinα cos δ

sin δ

 (4.33)

Inside alg. 1, it is visible that the fitness function evaluation is done in parallel
computation loop. Out of the parallel loop, after all the fitness values have been
calculated for all the particles, the velocities of the particles are updated:

vel(i, k) = ωvvel(i− 1, k) + r1c1vel(loc, k) + r2c2vel(glob, k) (4.34)
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Figure 4.14: Evolution of the position of the particles at each new generation step,
plotted against the CAR.

Where ωv is the weight associated to the inertia of the particle, that means, how
much the particle tends to maintain the same velocity. vel(loc, k) and vel(glob, k) are
the vector pointing to the local minimum of the iteration i and the global minimum
of all the iterations. r1 and r2 are inherent random variables that may assume any
value between 0 and 1 for each different particle, and c1 and c2 are the corresponding
weights to assure convergence to the best solution both locally and globally for all
the iterations.
The weights ωv, c1 and c2 have not been considered to be static, but are evolving
during the iterations:

ωv =0.4
iiteration −Niterations

N2
iterations

+ 0.5

c1 =− 1
iiteration
Niterations

+ 1.05

c2 =0.5
iiteration −Niterations

N2
iterations

+ 0.05

(4.35)

Those values have been found empirically.
An example of particle position evolution during the iterations is visible in Fig. 4.14.
In Fig. 4.14, the color-bar of the CAR area respects the values of the fitness function
as evaluated with Eq. 4.32. The particles have been highlighted in green. On top:
the case of a LEO observation. On the bottom: the case of a MEO observation. The
plots evolve from left to right with the number of the iterations.

Referring again to Fig. 4.12 and the last block, it is important to highlight how
the heuristic method for IOD lack of a good analysis of the uncertainty connect
with the optimal orbital solution found. For such a reason the algorithm for hIOD
has been integrated with a WLS refinement of the solution using the collected
measurements in order to produce a scaled covariance for the state vector. In the
case of the hIOD filter extension to the VD algorithm, this passage has been skipped
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and the uncertainty has been taken into account selecting all the particles at the end
of the iterations and not only the one corresponding to the best fitness. As shown
in Fig. 4.13, the heuristic filter is followed by the proximity filter block, completely
analogue to the proximity filter in sec. 4.2.3.5, that has the aim to prune the number
of particles in the cloud of solutions, but still keeps the uncertainty information
given the cloud of resulting points after filtering.

4.3 Results

Results of the first version of the VD scheduler have been presented by the author
in [38]. In this case, the code have tested with a practical example of fragmentation
bodies detection. For the seek of continuity and completeness of the Thesis, the
example will be proposed again in the next chapters, see chapter 6, sec. 6.3.1.2.
In Fig.s 4.15 and 4.16 are presented some results of hIOD applied to real short
arc observations obtained with ART. In both cases has been analysed a short of 4
measurements coming from a LEO mapping survey, the tracklet has been collected
over a time span of 4.2 seconds with a frame rate of 1.4 seconds. The images have
been collected using a 2 × 2 binning and 0.5 seconds of exposure. The observed
object belonged to the M067 satellite of the GLOBALSTAR constellation, NORAD:
32263. The plot in Fig. 4.15 shows the result of the hIOD algorithm as error of
the orbit determination results against the ephemeris generated via TLE (General
Perturbations method) over a 2.5 hours propagation after the measurements. The
reference has been originated via TLE. Measurements are real-word data obtained
with ART. The results show that the heuristic algorithm manages well to contain
the tangential and radial errors within the uncertainty intervals, but the errors on
the radial position and tangential velocity are quite underestimated. In Fig. 4.16
instead, the same hIOD results are compared against the ephemeris obtained via
Special Perturbations (SP). The reference has been originated via SP. Measurements
are real-word data obtained with ART. In this case it is visible how the OD routines
manage to maintain the error within the uncertainty limits. These examples, aimed
to represent a validation of the heuristic method for IOD, show how the algorithm
can be good enough to already give a good estimation of the orbit, but lack of a good
uncertainty estimation that will eventually make diverge whatever propagation tool
can be used after the initial estimation. To assess this problem a better analysis of the
results of IOD should be conducted with well known orbits in order to refine the scale
factor to give to the covariance after the WLS final refinement. A possible analysis
of this type can be conducted with SP data from space-track. For completeness of
information, and to validate the robustness of the estimator and WLS refinement,
an example of 100 MC simulation of orbit propagation after hIOD estimation is
proposed in Fig. 4.17. Also in this case the reference has been originated via SP.
Measurements are real-word data obtained with ART. The MC distribution of
random orbital solution has been realized considering the mean value of the solution
of the heuristic estimator and the covariance resulting from the WLS refinement. As
shown in the figure, the possible orbital solution are well contained within the 3σ
covariance envelope. Also for this cases, the errors have been considered against the
SP ephemeris of that specific object. The validation of the hIOD extension to the
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Figure 4.15: Estimated covariance and residuals to orbit reference after heuristic
IOD for a single object propagation with initialization via TLE.

Figure 4.16: Estimated covariance and residuals to orbit reference after heuristic
IOD for a single object propagation with initialization via SP.
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Figure 4.17: Estimated covariance and residuals to orbit reference after heuristic
IOD using a 100 elements MC distribution (object: 32263).

VD scheduler is presented in Fig.s 4.18 and 4.19. In Fig. 4.18, the reference has been
originated via SP. Measurements have been simulated via SPOOK tool. A green line
has been added to highlight the reference error to consider the uncertainty entirely
contained inside a 3° FOV. As visible from the graphs, the classical OD routines
are not enough to reduce efficiently the orbit of the object, being the real error after
one day of simulation higher than the 3σ covariance envelope. The real error is
also higher than the FOV limit envelope. Anyway, the VD algorithm managed to
observe the object again and reduce its orbital uncertainty.
As for Fig. 4.19, the reference has been originated via SP. Measurements have been
simulated via SPOOK tool. A green line has been added to highlight the reference
error to consider the uncertainty entirely contained inside a 3° FOV. As visible
from the graphs, the classical OD routines are not enough to reduce efficiently the
orbit of the object, being the real error after one day of simulation higher than the
3σ covariance envelope. The real error is also higher than the FOV limit envelope.
Anyway, the VD algorithm managed to observe the object again and reduce its
orbital uncertainty.
Both scenarios tries to highlight the importance of the method in terms of re-
observability of objects that generated short arcs observations. In fact, an even
precise IOD estimation is not enough to allow a late revisit of the target, for example
the day after. This limit can be visualized on both graphs thanks to an horizontal
green line on the tangential and normal position panels. This line corresponds to
the pointing error envelope at which the object, with its specific distance from the
observer, can be observed and remain within the FOV. On both cases, it is visible
how all the 100 MC cloud of orbital solutions get outside this envelope (especially on
the tangential frame), that means the object is not observable anymore due to the
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Figure 4.18: Estimated covariance and residuals to orbit reference after heuristic
IOD using a 100 elements MC distribution (object: 25853).

unpredictability of the pointing direction. However, the VD algorithm managed to
schedule an efficient observation plan and the object has been observed anyway, as
visible from the covariance drops after 20 hours of propagation. A second observation
of the object, and eventually more than one, may allow a better estimation of its
orbit and a correct creation of an instance inside a catalogue, in order to be able
to keep following and schedule the observation of that target. The VD scheduler,
so implemented, has been validated to correctly follow-up an object which first
estimation has been proven to be faulty. The hIOD extension to the algorithm allows
an additional gain in terms of computational tractability of the overall system. In
fact, the simulations show an overall 50% reduction (optimal cases showed up to
98.7%) of VD solutions that need to be propagated and followed-up. The result is
a more efficient scheduling routine with less saturation of unnecessary observation
tasks to be respected by the sensors. Such a good gain in terms of less VD solutions
to be followed up, allowed a complete re-observation of short arcs tracklets even
with one single observer configuration as the case presented in Fig.s 4.18 and 4.19
even after the following night. Additionally, a reduction of the virtual points to
be propagated and scheduled allows more efficient scheduling techniques as the
greedy-method, that has been also used as tasking tool for those two examples.
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Figure 4.19: Estimated covariance and residuals to orbit reference after heuristic
IOD using a 100 elements MC distribution 25678.

82



Framework and SPOOK 5

The context in which the Thesis took place has been reported in Appendix 7.1. This
chapter will present the high-level functionalities of the SPOOK software suite and
their importance for the SST pipeline, together with new developments introduced
by this thesis that have not been presented so far.

5.1 Airbus SST

The SPOOK is a versatile software suite developed at Airbus, with the aim to
support SST activities. The core characteristics of SPOOK were introduced on
2019 [13] and recently updated by the author in 2021 [36], to extend to the new
developments. This section is going to present a short overview of the functionalities
that are currently available, and that have been widely used during this Thesis work.
As represented in Fig. 5.1, SPOOK provides the complete set of tools necessary for
the SST cataloguing pipeline; these are tracklet linking of measurements, correlation
with internal or external catalogues (e.g. Space-Track GP catalogue), IOD and OD.
Additionally, SPOOK can simulate realistic radar and optical measurements and
export them in several standard formats. Ideally, from the optical images on top,
photometric and astrometric analysis are obtained. Those information are used
inside dedicated filter to obtain object information, both in terms of object state
vector and characteristics (e.g. attitude, shape, material, etc.). Those information
are used inside scheduling tool to create personalized observation plans that are
finally performed by ART. Furthermore, SPOOK has been upgraded with the
capability to create different types of observation plan that can be used to task
an arbitrary sensor. These include geostationary belt surveys, coverage-optimized
tracking strategies for all classes of objects, including celestial bodies and known
artificial objects (e.g. GPS), and calibration scenarios. Consequently, SPOOK is
now able to create observation plans autonomously or based on specific user re-
quests. Once observations have been performed, it can process the obtained images
through external or internal tools in order to extract relevant features (astrometric
and photometric quantities). Finally, other relevant SPOOK upgrades have been
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5. Framework and SPOOK

Figure 5.1: Representation of the E2E capabilities made possible by the activity
of ART and SPOOK.

implemented; namely photometric analysis of optical measurements, manoeuvrer
simulation capabilities, conjunction analysis and visualization of the results through
plots, tables and animations. With the ART, which was deployed in June 2018,
SPOOK has become an E2E prototype of a ground-based SST data centre.

Airbus acknowledges SSA as key to ensure Space Safety and Sustainability. Both
software tool SPOOK and ART sensor aim to better understand the challenges of
an increasingly congested space environment, thanks to real-world sensor’s data
and enhanced data processing capabilities. As presented by the author in [36], is
provided a list of the possible capabilities that this framework allows:

• First, SPOOK can perform IOD/OD and state vector/covariance propagation
with multiple different algorithms available (e.g. batch estimator, Kalmann’s
filters, augmented Gaussian Mixtures extensions, etc.).

• Moreover, it can perform sensor network simulation, including optical telescopes
and radars which can be placed either in space or on ground. With this,
the coverage of specific observation scenarios can be explored and simulated
measurements can be generated.

• Light curves can be generated from optical observation data and analysed for
object characterization tasks.
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5.2. SPOOK tool - the Cataloguer

• SPOOK includes the complete pipeline to perform end-to-end space object
catalogue creation and maintenance; i.e. tracklet linking, correlation and orbit
determination as shown in Fig. 5.2.

• Observation planning complements the cataloguing tools; SPOOK can create
sensor pointing profiles to perform both tracking of known objects and survey
of specific regions.

• Above core modules of SPOOK can be used to astrometically calibrate SST
sensors using GPS or ISLR objects as reference.

• Last but not least, a conjunction assessment module is available, as presented
in section 4.2.2.4.

• SPOOK is used to task ART and to process its data; Airbus’ own ground-based
SST sensor located in Spain and contributing to SMARTnet.

SPOOK is continuously developed further via PhD and Master Theses, as well as
internal research.

5.2 SPOOK tool - the Cataloguer
The software SPOOK has been developed over the years to comprehend most of the
tools necessary for SST and, in particular, for space debris cataloguing. As presented
by the author in [36], a catalogue has been deployed during the time of this Thesis
project having as support the cookbook of tools of the aforementioned software.
The cataloguer baseline, already developed by previous Phd Student in the software
suite, has been deployed in July 2021, after a few rounds of tests in the previous
months. The cataloguing tool can be represented by the block chart in Fig. 5.2.
On the top of the image is represented the Catalogue of objects and the sensors
participating in the network. Between them are visualized, inside a green scope, the
Observation Planning routines that have been introduced during this thesis. Closing
the chain, are visualized the main blocks of the post-processing activities of the
images. This set of tools involves: the tracklet-linking techniques, the correlation
of measurements, IOD and OD. These tools are necessary to extract space debris
information out of measurements. On that block diagram is visualized inside a green
scope the extension of the cataloguing chain introduced with this new thesis. The
observation planning routines operate either in CM or CG mode, depending on the
user settings. As CM techniques a greedy-method has been adopted as well suitable
for small catalogues scheduling. The CG routines instead have been based on the
GEO fence survey mode. The planning can be anyway customized depending on the
user needs. As for ART observations, the following schedule has been respected:

1. tracking of light curve of interest;

2. GPS calibration tasks;

3. star fields for photometric calibration;

4. full light curve list for tracking;
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Figure 5.2: Cataloguer block diagram.

5. GEO fence plan;

6. GEO tracking.

As visible, there are additional tasks that are necessary for cataloguing purposes that
are not directly covered in the previous sections. This is the case of the calibration
tasks, that are important for determining the accuracy of the sensors. This accuracy
is a value of high importance for the post-processing tasks of correlation and OD,
since it indicates how good the new measurements can be trusted.

5.2.1 Planner GUI

To support complementary the cataloguing operations, or for general simulation of
the available observation strategies, a GUI based user interface has been released
inside SPOOK. Few captions of the new tool are given in Fig. 5.3 and Fig. 5.4. The
GUI allows the user to set up the observation scenario in terms of observer design
and catalogue of objects to be maintained. Given the observation scenario, the user
is able to visualize the accessibility intervals of the selected objects and can build
up a proper observation plan using different type of optimization and scheduling
options, e.g. greedy method based optimization. The user is able also to visualize
the observation profile as observer’s FOV at a specific range from the observer.

5.2.2 Image Simulation GUI

To complete the range of simulation scenarios obtainable with SPOOK a tool for
synthetic image generation is present. The tool has been developed as support for
the simulations of the auto-tracker observation strategy presented in sec.4.2.1.1.
The validation of the tool required, in fact, the possibility to autonomously generate
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5.2. SPOOK tool - the Cataloguer

Figure 5.3: SPOOK GUI accessibility study.

Figure 5.4: SPOOK GUI mapping analysis.
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Figure 5.5: Image Simulation GUI.

images with different level of background and cluster noise, to test the patter-
matching routines at best. An example of the related image simulation GUI is shown
in Fig. 5.5. the image simulation tool made use of an already available instrument
to generate optical synthetic images given specific value of signal electron power and
noise. The instrument has been extended to simulate those input values from object
propagation using the ART optical performance model and SPOOK propagator.
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Use Cases and Validation 6

This final chapter comprehends the main direct operational results connected with
the work presented in the previous chapters, thanks to their integration into the
software suite SPOOK. The main results for each use case will be presented and
discussed. Additionally, further development will be presented.
In Fig. 6.1 are visualised some examples of information and services that can
eventually be obtained with the data present inside a catalogue. The Data necessary
to build a catalogue are on the top of the graph. They represent the user’s questions
that can be directly answered with the information contained in a catalogue. On
the bottom are listed the services that can be obtained processing those data.
Information that can directly be extracted from the data present inside a catalogue
are paramount to answer some civil and governmental user questions: where are the
objects? What these objects can do? Is this object active or uncontrolled?
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6.1. Space-Based Study

Of higher interest, are anyway, the services that can be obtained from the data of
a catalogue. Processing the orbital and attitude information of the objects collected
in a catalogue it is possible to:

• perform collision avoidance: the use of special perturbations orbital propagators
is the basis for a precise conjunctions assessment capability. A fast alert in
providing warning for close conjunctions between objects in space, and control
techniques to manoeuvre a spacecraft reducing its risk of collision is of key
relevance for the space safety and sustainability.

• Support to Launch and early phases of a mission: Launch and Early OPerations
(LEOP) and Collision On Launch Assessment (COLA).

• Monitor uncontrollable collision by the use of precise Fragmentation models
and surveillance observation modes.

• Support during re-entry events: warning and observation support.

• Provide assistance to operations: assistance to special on-orbit operations (e.g.
Active Debris Removal (ADR)).

This chapter will investigate into more details only few of these possible use cases.
For example the fragmentation problem in sec. 6.3.1, as has been studied by the
author in [38], will be reported and expanded.
Additionally this chapter will report the work done in Airbus Defence and Space for
the deployment of an operative catalogue of space objects in sec. 6.3.

Differently from the above mentioned use cases, that were exploiting the func-
tionalities of a catalogue, this chapter is also going to present some other scenarios
in which an ad-hoc sensor scheduling capabilities can be used. This is the case of
sec. 6.1 and 6.2, where dedicated mapping survey strategies have been used to study
the detectability of population of objects (e.g. the GEO region).
Finally, sec. 6.4 will present a special observation mode, known as stare-and-chase
scenario, that is of great interest for the live detection of unknown objects.

6.1 Space-Based Study
The strength of in-space observations is quite a hot topic for the SSA community
nowadays. From space, some of the most constraining barriers for object observation
(e.g. the atmosphere, the Sun light diffusion, etc.) are removed. As expected,
much more objects can be observed and detected, and optical devices become even
more relevant for this scope. A much bigger population of objects can be observed,
expanding the catalogues also to smaller dimension debris, even below the centimetre
size. Some of the tools developed within the Thesis allow to generate pointing profiles
also for space-based observers and to study the object’s coverage and detectability.
However, space-based observations can have, on their own, observability constraints
dictated by reduced slewing capabilities or attitude specifications imposed by the
type of mission.
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6. Use Cases and Validation

A type of orbit that may allow a continuous coverage of the objects should be able
to point continuously in the anti-Sun direction. In this case, the observations may
reach the optimal performance by reducing to the minimum the Sun light noise and
reducing the phase angle of the observed objects. An orbit of such a type is the
Sun-synchronous orbit.
A case study is going to be presented within this section exactly for this kind of
mission, considering the observer on a LEO and Sun-synchronous orbit, with a plane
close to the termination plane. The altitude of the orbit has been set to 750 km
and the inclination to 98°. The control of the pointing vector can be considered of
three main types: completely unconstrained, partially constrained by the platform,
or completely fixed. The first case is to be understood as a mission in which the
observing telescope is the main payload on board. In such a scenario the telescope
may be capable of a totally free steering capacity. The constraints, in this case, are
only dictated by the exclusion zone of the Sun, the Earth’s limb, and the platform
constraints.
The second case can be seen as a scenario in which the telescope is not the first
payload on board the spacecraft and maybe some attitude modes need to be respected,
i.e. the nadir pointing to the Earth in an Earth’s observation mission for example.
In this case, the observer may be allowed to steer around its roll axis to sweep more
area with its field of view.
The last, and most constraining case, is the case of a telescope completely fixed to
the platform, in this case, the pointing direction is fixed to a certain direction in the
anti-Sun direction.
All of these scenarios are going to be analysed within this section. In Fig. 6.2 it is
schematized the orbital plane of the observer in the LEO orbit. It is shown with
some red arrows the possible pointing directions that lay in the plane perpendicular
to the orbit. The red arrows show different pointing direction of the observer, or Line
Of Sight (LOS), when the only allowed movement is on the roll angle (around the
flight direction axis) in xy plane. The control of the pointing vector can be ideally
represented by the roll angle of the spacecraft. Looking at Fig. 6.3, the LOS lays on
the plane perpendicular to the flight direction. It is free to rotate around the axis
described by the direction of flight v. In Fig. 6.3, the r vector shows the position of
the observer from the Earth centre, the v direction shows the flight direction and
the n vector (out of plane of the page) is the normal direction. The plane created
by the vectors r and n is the plane where the pointing vector lays. Knowing the
flight direction v and the position of the observer r, the perpendicular direction to
the orbital plane n can be found by Eq. 6.1

n =
r

|r|
× v

|v|
(6.1)

The LOS can be represented by the vector n rotated around the axis v by an angle
α. In case of partial control of the LOS around the roll axis, the control angle α can
be represented as function of the time α = α(t). In case of no-control, the LOS is
fixed to the observer platform and the control angle is constant α = α0. The LOS
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6.1. Space-Based Study

Figure 6.2: Example of an observer orbit on a LEO high-inclined orbit, on a plane
perpendicular to the orbit itself.

Figure 6.3: Example of an observer orbit on a LEO high-inclined orbit, as seen
from a the orbital plane.

can be so estimated:

LOS = R

1 0 0
0 cosα − sinα
0 sinα cosα

R (6.2)

Where R is the orthonormal basis described by the vector v. A visualization of
the pointing profile of such an observer is schematized in the geocentric plane in
Fig. 6.4. In this case can be easily identified the anti-Sun direction of the LOS,
built-up thanks to a Sun-synchronous orbit at the terminator plane. The observer is
efficiently pointing opposite to the Sun light and observing objects highly illuminated
by the Sun itself. A representation of the pointing profile pattern is also proposed
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6. Use Cases and Validation

Figure 6.4: Visual representation of the pointing profile generated by an observer
with LOS perpendicular to its orbit.

at a GEO distance from the Earth. The representation of this pointing profile
directly in the right ascension and declination plane with corrected proportion is
visualized in Fig. 6.5. In this case it is visible also the correct distribution of the
objects in the GEO belt. It is visible in black the shadow of the Earth and in green
is visualized the pattern of the LOS’s FOV. In case of pure passive pointing, the
telescope is fixed to the platform, the pattern of the FOV will remain always the
same as presented in Fig. 6.5. In Fig. 6.5 is visible the pointing profile (in green)
generated by a space-based observer, placed on a sun-synchronous orbit, with LOS
direction perpendicular to its orbit. In blue is highlighted the position of the objects
on the GEO belt and in Black the Earth shadow. The LOS of the observer will
sweep always the same area of the right ascension and declination plane. during
its motions the objects will move in their orbits following the Earth rotation and
are eventually observed by the observer when falling inside the ring created by the
pointing profile pattern. The case in which the pointing angle can be controlled
by means of the control angle α = α(t), different area of the right ascension and
declination plane can be swept. This is the case shown in Fig. 6.6. The image shows
the pointing profile (in green) generated by a space-based observer, placed on a
sun-synchronous orbit, with LOS variable on its roll angle. The control low of the
pointing angle is described via a sinusoidal function. The image is a capture of the
animation visualization tool of SPOOK. In this case the control angle has been
considered as a sinusoidal function:

α(t) = A sin (ωt) + b (6.3)

where A is the amplitude, ω the frequency and b is the mean value. In this case it
is possible to see that the FOV is covering more area, observing regions at higher
inclinations. In tab. 6.1 are reported the results of a simulation of a space-based
observation of a representative population of the GEO belt (obtained from space-
track) over 7 days. The simulation represents the case of partial active control with
sinusoidal control law as in Eq. 6.3. In this simulation case the amplitude A of the
angle control law has been considered equal to 20°, b = 15°, constraining the control
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6.1. Space-Based Study

Figure 6.5: Pointing profile generated by a space-based observer.

Figure 6.6: Pointing profile generated by a space-based observer, with LOS variable
on its roll angle.
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6. Use Cases and Validation

Table 6.1: Statistics summary of space-based observer in Sun-synchronous orbit with
constrained sinusoidal pointing over a simulation of 7 days:

Orbital Region Detected Undetected Total mean revisit frequency [days]

High MEO transient 1 (100%) 0 (0%) 1 0.4286
GEO resident, 0° ≤ i ≤ 20° 1125 (79.11%) 297 (20.89%) 1422 0.2615

GEO resident, i > 20° 10 (47.62%) 11 (52.38%) 21 0.2286
GEO transient 32 (96.97%) 1 (3.03%) 33 0.2634

Total 1168 (79.08%) 309 (20.92%) 1477 0.2614

Figure 6.7: Visualization (in or-
ange) of the observer pointing pro-
file along one orbit at a GEO dis-
tance from Earth. in green is visi-
ble also the LEO orbit of the ob-
server.

Figure 6.8: Visualization of the
pointing profiles of a network of 12
sensors with the same characteristics
described in Fig. 6.7.

angle between 35° and −5°. Even this configuration, is not optimal and the total
coverage of the sample population of GEO objects is around the 75%. The revisit
rate is however very high, and it can be a good requirement for cataloguing purposes.
Such an observer-pointing configuration is depicted in Fig. 6.7, where it is visible

the LEO orbit highly inclined and the pointing profile at a GEO distance from Earth.
In Fig. 6.8 are instead presented the orbital configuration of a network of 12 sensors
with the same characteristic of the previous one, to increase the pointing coverage.
However, the coverage and detection performances can be analysed by a deeper
level, taking into account the relative angular velocity between the sensor and the
objects and the apparent brightness, or magnitude. This analysis allows to separate
the simulation scenario to the optical analysis of detection. In fact, one thing are
the illuminated crossing of objects inside the observer’s FOV, another thing is the
detection capability of the telescope. To uncouple this relation, it is interesting to
visualize the crossings of the objects inside the FOV with respect to their angular
velocities and brightness. Both of these quality are decoupled from the type of
instrument is on-board and can be used as trade-off method for the selection of the
optical system itself.
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6.1. Space-Based Study

Figure 6.9: Visualization of the crossing statistics for a space-based observer study.

Figure 6.10: With reference to Fig. 6.9, this visualization shows only the sub-
population of GEO objects (lower part of the first graph).
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robj

vobs

vobj

E

O

T
uLOS robj−obs

robs

Figure 6.11: 2D simplification of the Earth-Observer and Target geometry in order
to identify the relative velocity between the observer and the target.

The apparent magnitude depends on the amount of light scattered by the object to
the observer and it is function of the observation geometry: phase angle, dimension
of the object and distance to the observer. The relative angular velocity is the
relative velocity of the object as it appears in the FOV. With reference to Fig. 6.11,
the relative angular velocity can be evaluated starting from the object position robj
and velocity vobj , and the observer’s robs and vobs. In Fig. 6.11, in dark green are
shown the position vectors, in light green their velocity. In blue is the pointing
vector.
The LOS itself may have an angular velocity on its own, relative to the observer-fixed
reference frame:

LOS =
[
αLOS δLOS

]
and ˙LOS

[
α̇LOS δ̇LOS

]
(6.4)

The LOS direction can be use to compute the pointing vector uLOS :

uLOS =

cos δLOS cosαLOS

cos δLOS sinαLOS

sin δLOS

 (6.5)

And its first derivative:

u̇LOS =

− sin δLOS cosαLOS δ̇LOS − cos δLOS sinαLOSα̇LOS

− sin δLOS sinαLOS δ̇LOS + cos δLOS cosαLOSα̇LOS

cos δLOS δ̇LOS

 (6.6)

At this point, it is possible to evaluate the pointing vector to the object rptg, assuming
the pointing and the object have a small angular distance and are very far part. The
latter is quite a relaxed assumption for these kind of optical observations, where
the FOV is very small and the average distance between observer and objects is
above 1000 km. For first thing, the distance ρ from the observer to the object can
be defined in the following way:

robj−obs = robj − robs, ρ = ‖robj−obs‖ (6.7)
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6.1. Space-Based Study

The pointing vector and its derivative can be so defined:

rptg = uLOSρ, ṙptg =
∂uLOS

∂t
ρ+

∂ρ

∂t
uLOS (6.8)

Where:
∂uLOS

∂t
= u̇LOS , and

∂ρ

∂t
=

∂‖robj−obs‖
∂t

(6.9)

It can be easily shown that:

∂‖robj−obs‖
∂t

=
∂ (robj−obs · robj−obs)

∂t
= 2

(
∂robj−obs

∂t

)
· robj−obs =

=2 (vobj − vobs) · robj−obs

(6.10)

the geocentric pointing velocity can be so evaluated:

vptg = vobs + ṙptg (6.11)

Which leads to the relative angular velocity ω, using the vectorial product:

ω =
‖robj−obs × vobj − vptg‖

ρ2
(6.12)

A graphical representation of the angular rate of the objects crossing the FOV in
function of the magnitude is proposed in Fig. 6.9. The graph is in the logarithm
angular rate vs brightness plane. The objects may changes sensibly their conditions
during the crossing with the observer, this range of values has been represented
with the vertical and horizontal bars. As visible the crossings are concentrated on
some islands which represent some sub-populations of the objects. The upper part
of the graph, with higher angular rates, are populated by LEO objects, while the
lower parts by more distant objects. This example has been obtained considering
a 2 days simulation in a single observation scenario. As reference population, it
has been considered instead the full space-track catalogue. The observer has been
considered to be free to move with respect to the platform and the only constraints
considered have been of geometrical type. The optimization of the observation
has been obtained via the space-based dedicated mapping method, as presented in
4.2.2.2.
The mapping method has been set to be optimized for distance from Earth’s limb
and geometrical distance from the Sun (angle between the Sun, the object and the
pointing direction). An example of this scenario is represented in Fig. 6.12, where
the white contour lines represent the angular distance from the Sun of the pointing
vector. The circular darker halo is the Earth’s shadow. The color background
express the Earth’s limb distance at this instant of time. The reference system is
the body local Geocentric Celestial Reference Frame (GCRF). Fig. 6.9 shows the
values of angular velocity and magnitude of the objects crossing the FOV during that
simulation. The red bar reports additionally the variation of those values during the
crossing period. This type of graph can be quite helpful as preliminary study before
the selection of an optical device that better allows detection. It is important, in fact,
to take in mind that the detection is function of the Signal to Noise Ratio (SNR).
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6. Use Cases and Validation

Figure 6.12: Capture of the SPOOK’s visualization tool of the mapping optimiza-
tion constraints at a specific instant of time during the simulation scenario.

The SNR itself depends on how much light radiance arrives to the detector’s pixel
for that specific object allowing the detection of both objects that are very fast and
very bright and objects that are slower and less brighter.
This behaviour can be understood also considering the orbital region of the objects.
It is easy to imagine that GEO objects will appear at slower rates in the FOV than
LEO. The lower part of the objects represented in Fig. 6.9 is populated by GEO
objects. A look-up of this area is also proposed in Fig. 6.10.

6.2 GEO fence Study
With respect to what has been presented in sec.4.2.2.1, the GEO fence scenario, this
section is going to explore some practical uses of this method both in simulations
and real-word with the ART.
When performing real observations with ART several constraints need to be taken
into account:

• the slewing time of the telescope;

• the mount flip when crossing the local horizon;

• the leak proof condition;

• the minimum amount of image obtainable per field and the read-out time.

That means, passing from simulated scenario to real-word observation scheduling
the constraints to be taken into account are much more strict. The first bottle
neck in real world observation with ground based telescope is the general slewing
capability. The slewing capabilities of most of ground based telescopes is based
on type of mount configuration: equatorial or azimuthal. In the case of ART an
equatorial mount is supporting the optical device. This type of mount configuration
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Figure 6.13: Visualization of the observation analysis results for the GEO fence
survey mode for ART.

Table 6.2: GEO fence mode specifics:

Obs. Mode Dec. Center Accessibility Stare Time N. Images Leak Proof Revisit Ratio

2× 1 0° 6-9 h 120 s 10 X 60%
4× 1 0° 6-9 h 96 s 8 X 29%
4× 1 adapt. 6-9 h 96 s 8 X 0% (34%)
2× 1 adapt. 6-9 h 120 s 10 X 0%
2× 2 ±0.74° 6-9 h 96 s 8 X 35%

has the generic constraint of inability to cross at high speed the local meridian of
reference. Usually the south meridian at local azimuth 0°. To prevent interruption
of observations during tracking the meridian should be considered as geometrical
constraints, and observation cannot be performed if crossing it. In case of ART
observation, a margin of 3° has been taken into account. In Fig. 6.13 are shown some
of the results of observation statistics collected during the validation campaign of the
GEO fence observation mode. In blue it is expressed the object coverage in relation
to the total amount of objects visible in the GEO belt by a ground based sensor are
∼ 462. In green it is reported the number of observed objects with inclination higher
than 5°. The GEO fence configuration that seems to be best trade-off in terms of
coverage and observation of inclined objects is the last one with 2 fences per 2 fields
in shifted mode. The observation modes that have been taken into account are listed
in Tab. 6.2. The number represented in the observation mode corresponds to the
number of fences and fields: number of fences × number of fields. Adaptation
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6. Use Cases and Validation

Table 6.3: Summary of the parameters utilized for the interpolation of the adaptation,
or fitting, line of the GEO belt in GCRF:

Parameter Value

A 6.411 27°
ω 1.001 04 rad−1
φ 0.000 44 rad
δ0 −4.849 91°

Figure 6.14: Visualization of the adaptation line of the GEO belt region.

means that the fences and fields are centred in the adaptation line of the GEO belt.
A schematization of the GEO belt and the adaptation line in red is given in Fig. 6.14.
The adaptation line has been generated fitting the averaged position of the GEO
objects in one day propagation. The results of this fitting curve, in GCRF reference
frame are given in Tab. 6.3.
The main goal of a GEO fence campaign is to scan the object belonging to the GEO
belt. Since the objects at 0° declination, are mostly operative well-known satellite,
the real interest of the survey relies in the observation of the objects with higher
inclinations, where the presence of space debris is more possible. Cataloguing
operations require multiple revisit of a single object during the night. Ideally,
according to literature [11], a minimum of three expositions of an object in different
orbital position shall be necessary to perform correctly IOD. The GEO fence mode,
is based on strategic revisit of the object thanks to the symmetric disposition of the
fences 30° apart. Such a configuration allows a 2 h revisit ratio with a single observer.
However, a single sensor used for observation does not allow a good revisit in case
of observation of the inclined objects. This can be easily visualized in Fig. 6.15,
where some inclined objects have been highlighted to show their orbit (grey lines) in
the time. As visible two symmetric fences does not allow the re-observation of the
objects. Shifting the center of an observation fence in the direction of the center of
the GEO belt, as represented in Fig.s 6.16 and 6.17, allows to have a great coverage
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Figure 6.15: Close-up to the adaptation survey scenario in GEO fence mode.

Figure 6.16: GEO fence survey
mode in 0° declination shifted ob-
servation mode.

Figure 6.17: Close-up of the GEO
fence observation mode in Fig. 6.16.

and revisit of the objects, and also detection of highly inclined objects.

6.3 Autonomous Cataloguer

In July 2021 a new version of the SPOOK Cataloguer, see sec. 5.2, has been deployed.
Since then the observations performed by ART are collected and processed into
objects inside the catalogue. Autonomously, every morning a new observation plan
is created and add to the telescope’s scheduler in the evening. This single observer
configuration and the limits imposed by the mount allow a good coverage of the
GEO accessible objects, daily observed in a GEO fence configuration and of the
GPS objects. The latter are twice per day observed for sensor calibration purposes.
A visualization of the objects collected inside the catalogue is proposed in Fig. 6.18.
The four diagrams represent the full orbits calculated during the cataloguing activity,
considering all together also objects that expired (because not observed further) as
of the date in the title: 19th November 2021.
The automatic observation plan has been realized with a greedy-method optimization
of the possible objects to be maintained. A dedicated priority has been given to
different orbital classes and objects of interest (e.g. the light curves objects). The
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Figure 6.18: Visualization of the Airbus catalogue object distribution in terms of
eccentricity, perigee, apogee and orbital period.

limit of the cataloguer are quite visible looking at the object growth trend in Fig. 6.19.
Starting from the date of formal catalogue initialization on July 2021, are notable
three distinct abrupt drops in the catalogue object counter. They corresponds to
relative long (more than one week) period of time in which no observations have
been performed by ART, due mainly to weather conditions and holidays. It is quite
visible that a single week of missed observations corresponds to a complete drop of
the objects maintained inside the catalogue.

6.3.1 Space Traffic Management

Space traffic management is of vital importance for the sustainability of the space
operations and its further development. SST is key to ensure this objective, providing
the necessary data to perform collision avoidance and fragmentation detection.
Since 2020 SPOOK has been integrated with a built-in conjunction assessment
capability to perform conjunction screening and probability of collision computation.
This system, built on top of an up-to-date catalogue of objects can provide in
time warning of close conjunctions between objects and possible collisions. The
observation scheduling tools presented in the previous chapters can be applied to
this kind of scenario: to perform surveillance of close conjunction and cataloguing
of the fragments in case of catastrophic collision. In particular in 4.2.3.1, the VD
algorithm can be used to perform observation scheduling of the fragments as support
for catalogue creation. To understand the amount of collision warnings that may
be predicted on a singly night time span, Fig. 6.20 is the result of a screening
analysis of a night in July 2021. In Fig. 6.20, the results obtained with the SPOOK’s
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Figure 6.19: Visualization of the catalogue object trend during the cataloguer
activity.

Figure 6.20: Probability of collision in logarithmic scale in relation to the minimum
distance at Time of Closest Approach (TCA).
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Figure 6.21: Example of close passage between two objects as a result of a
conjunction survey. Credits: ART in [4].

conjunction assessment tool, giving as input 10787 LEO objects from space-track
for 14 hours of propagation during the night of the 1st July 2021.
The number of close passages between objects in a ellipsoid of 10 km in tangential
direction and 4 km in the other two directions, gives as results an amount of ∼ 4358
conjunctions.

6.3.1.1 Survey of Conjunctions

As presented in 4.2.2.4, the default ART cataloguer plan can be enriched with an
automatic selection of conjunction survey tasks. Depending on the area of interest,
e.g., LEO region below 1000 km of orbit altitude and the sensor available, e.g., ART,
the number of visible conjunctions can be extremely reduced and allows an easy
integration inside a normal CM plan.
This is the case for the example presented in Fig. 6.20, where out of 4358 estimated
conjunctions, only 13 conjunctions have been estimated to be visible and detectable.
Each survey task at such a short orbit altitude, below 1000 km, requires around 20 s
of survey time. In total the original CM plan has been affected of only 4 mins and
30 s of conjunction surveys. In Fig. 6.21, is presented an example of a conjunction
survey as observed with ART.

6.3.1.2 Survey of Fragmentation Events

As presented by the author in [38], the VD algorithm finds immediately a suitable
application for fragmentation detection and cataloguing.
As simulation scenario, it has been selected a hypothetical catastrophic event of a
collision between two LEO objects: the micro-satellite SEDSAT 1 NORAD 25509 and
the Starlink satellite 1730 NORAD 46563. The close conjunction happened on 24th

of June 2021 at 18:07:16. The conjunction has been predicted with the new SPOOK’s
conjunctions screening tool, [4] [36]. The predicted absolute relative distance at time
of conjunction was 90.94 m with a relative velocity of 5.7260 km s−1. Accordingly
to the literature [28], a collision can be considered to be catastrophic when the
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6.3. Autonomous Cataloguer

Figure 6.22: Gabbard plot of the debris distribution originated after a simulated
collision.

ratio between the kinetic velocity of the projectile and the mass of the satellite
is over 40 000 J kg−1. Threshold largely reached in this case. The fragmentation
event has been simulated with the SPOOK’s fragmentation tool that uses the same
fragmentation model of NASA’s EVOLVE 4.0 as presented in [22].
The fragmentation tool has been developed by the author to fulfil this analysis, and
it has been validated through comparison with known collisions.
The fragmentation results are visible in the Gabbard plot in Fig.s 6.22, 6.23 and
6.24. In Fig. 6.22is shown the Gabbard plot of the debris distribution originated
after the simulated collision between object NORAD 46563, considered as the target,
and the object NORAD 25509, considered as the projectile on 24th of June 2021 at
18 : 07 : 16. The Gabbard plot shows the distribution of apogee and perigee radii
for all the fragments of the collision.
For this simulation, a 7-sensors1 network has been considered, as visible in Tab. 6.4,
where are listed their characteristics and locations. For simplicity of the simulation,
the Starlink satellite has been considered to have a mass of 260 kg and a characteristic
length of 5 m. The results of the fragmentation simulation totally found 262 objects
greater than 10 cm. The physical properties, visible in Fig. 6.24, have been used as
an initialization parameter for each object for the next simulation, during which the

1The sensors used in this work are to be considered not real. Selected by the author accordingly
to the principle of the best coverage in the 5 continents.
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Table 6.4: Characteristics of the sensors used during the simulations:

Name Coordinates FOV dimension Sensor accuracy

ART −6.63°W 38.22°N ∅ = 2.43 deg, 1.38 deg σα = 0.5′′,σδ = 0.5′′
CG_AUS_1 145.786°W −27.481 05°N ∅ = 3.0 deg, 3.0 deg σα = 1′′,σδ = 1′′
CG_FPO_1 −149.4826°W −17.6641°N ∅ = 3.0 deg, 3.0 deg σα = 1′′,σδ = 1′′
CG_FGU_1 −53.4916°W 3.6685°N ∅ = 3.0 deg, 3.0 deg σα = 1′′,σδ = 1′′
CG_ARG_1 −69.0801°W −35.8522°N ∅ = 3.0 deg, 3.0 deg σα = 1′′,σδ = 1′′
CG_USA_1 −76.1975°W 41.1947°N ∅ = 3.0 deg, 3.0 deg σα = 1′′,σδ = 1′′
CG_SCA_1 −14.042°W 28.310 89°N ∅ = 3.0 deg, 3.0 deg σα = 1′′,σδ = 1′′

Figure 6.23: Eccentricity distribution of
the orbits of the fragments result of the
collision.

Figure 6.24: Physical properties’ distri-
bution of the collision debris.

objects generated will be propagated for a time span of 10 days from the epoch of
the collision. Looking at Fig. 6.24:

• On the top left: the distribution of the Area-to-Mass A/M ratio in logarithmic
scale with respect to the characteristic size of the object.

• On the top right: the count of objects for each A/M ratio value.

• On the bottom left: the distribution of fragments accordingly to the ∆v
perturbation of the Debris from the master object (the Starlink satellite).

• On the bottom right: the distribution trend of the objects accordingly to their
Mass.

A visualization rendering of the propagation of the debris positions after the collision
at two different time steps is visible in Fig.s 6.25 and 6.26. This simulation is so
composed:

1. First, the collision’s debris are propagated for all the simulation time.

2. During the collision, the sensors are simulated to point in the direction of the
conjunction (if accessible). See, conjunctions planner of SPOOK in [36] and
sec. 4.2.2.4.
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Figure 6.25: Fragment debris orbit
visualization 1 hour after after the col-
lision event.

Figure 6.26: Fragment debris orbit
visualization 7 hours later the collision
event.

3. Observations are simulated for the first sensor who is able to observe the
immediate new passage of the debris cloud after the collision. In that case, it
was the Argentinian observer CG_ARG_1.

4. To be conservative, out of the whole set of 262 observable debris, only a 20%
of them has been considered able to generate successfully linked tracklets. And
50 tracklets have been considered as first set of measurements to set the VD
algorithm, as in Fig. 4.7.

5. The observations have been simulated as follows:

• Processing time of 6 hours (to be conservative);
• Observation by the full network for 1 day.

The simulation has been done for 10 consecutive days of observation, from 25-06-2021
to 07-07-2021.
All the observations have been planned to be sidereal with a 0.1 s exposure time. In
this way the trailing losses are reduced to minimum and the observers do not need
to perform active tracking of such fast objects.
In Fig. 6.27 it is shown an example of CAR region obtainable from a short arc
observation of a fragment object. For all the simulations, the minimum tracklet length
for a short arc to be processable has been considered to be 3 measurements. For
safety reasons, the first measurement in a tracklet has always been neglected, since it
is usually associated with the maximum noise level. The 2nd and 3rd measurements
are used to compute the first CAR area, using the following constraints:

• minimum range from the observer: 0.03 ·REarth ≈ 191.34 km;

• maximum range from the observer: 3 ·REarth ≈ 19 134 km;

• maximum eccentricity: 0.25;

• minimum semi-major axis: 6500 km;

• maximum semi-major axis: 16 000 km.
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Figure 6.27: LEO example of a CAR. Generated by one of the observed fragments
by observer in Argentina on 24(th) June 2021.

The typical length of a tracklet is between 3 and 5 measurements. The results of
this simulation, partially shown in Fig.s 6.28 and 6.29, are a total of 230 objects (out
of the 240 objects with eccentricity below 0.25 originated from the fragmentation)
observed. Among them, only 178 debris have been observed more than 3 times in 3
different passages, that is the condition for a proper Tracklet-to-Tracklet correlation
initialization (see Fig. 4.6). The 90% of the observed debris, around 208 objects,
have been observed at least two times. These results may increase further if the
VD algorithm would be initialized with an higher number of tracklets after the
fragmentation event, instead of the 20% of tracklets utilized in this simulation, and
considering less restrictive processing times. In this simulation, the processing of
short arcs for the VD algorithm has been considered to be operated with a centralized
processing unit and considering a total of 6 hours of time span to process the images,
collect the measurements and execute the VD algorithm pipeline.

6.4 Dynamic Tracking
One of the most challenging task for a robust SST scenario is to implement a
functional real-time controller for a specific sensor. One idea of real-time controller
is the so-called stare-and-chase scenario. A development of this functionality and
its integration inside SPOOK has been proposed in Thesis [26], supervised by the
author.
The integration inside SPOOK has been possible through the realization of an image
simulator, able to recreate astronomical images of objects propagated with SPOOK
as observed by a given sensor. A representation of this simulation framework is
presented in the block diagram in Fig. 6.30. The stare-and-chase scenario is specific
type of survey observation mode in which the sensor is initially supposed to point
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Figure 6.28: Number of observations
for each observer during all the simu-
lation.

!� � � � � 	 �� �� ��
����������������������

���

���

���

���

���

��
��

��
��

 

��������������������������������� ���������
������������

Figure 6.29: Observation statistics
of revisits for all the observed debris.

Figure 6.30: Closed-loop simulation framework for the auto-tracker campaign.
Credits: [26].
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(or stare) in a fixed direction in the sky looking for objects of interests that as soon
as cross the FOV they begin to be tracked and observed thoroughly their visibility
arc. A detailed representation of the auto-tracker loop is proposed in Fig. 6.31.
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Conclusions 7

This work tried to find a point of contact between the cataloguing state-of-the-art
and the observation scheduling strategies. Most of the new technologies applied
for the post-processing of measurements can have a direct influence also on the
way the observations are planned. This thesis pointed its focus on how, and with
which limitations, some of the classical cataloguing tools can be applied to simulated
scenarios to trigger a possible decision-making algorithm to schedule new observations.
So has been done in chapter 3, where multi-target finite statistics methods, currently
utilized for the real-time processing of tracking data, can be utilized for the scheduling
task of a sensor network.
Similarly, in chapter 4, correlation methods have been used to generate a set of
possible pointing directions to attempt the follow-up of uncatalogued objects.
As symbolically represented in Fig. 7.1, and presented in chapter 1, the Thesis found

Figure 7.1: Analytical approach to optimization of observation strategies for
cataloguing.
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some points of contact between the cataloguing studies and observation strategies
research. These innovations have been:

• The application of FISST-based multi-target filters to the sensor scheduling
problem, simulating measurements to select the best pointing direction in
terms of gain of information for a catalogue.

• The application of up-to-date techniques for IOD and correlation into the
scheduling problem to allow the follow-up of short arc observations.

• The combination of survey observation strategies with post-processing tech-
niques to improve the CG abilities for events of interest; in the case this is
realized in real-time, the stare-and-chase scenario has been validated to be
possible, and for centralized processing systems the combination of mapping
strategies and VD algorithm showed a valid application for fragmentation
detection and coverage.

The studies presented in this Thesis have a good range of possible applications since
have been designed taking always into account their practicality. This pragmatic
approach to observation strategies allowed to see the cataloguing operations from a
new point of view: of trying to observe what can be processed. The current litera-
ture, which has been instead based on the idea of trying to process what has been
observed, reached a high level of accuracy in estimation but (if outside simulation
scenarios) lacks practicability, being always substantially unable to predict what is
going to be observed. Anyway, the limitations of the new theories introduced with
this Thesis are still many. The CM algorithms showed to have a good application
for small catalogues and network scenarios. This is the case of the greedy-method
applied in the Airbus autonomous cataloguer as to the default scheduling tool,
where in this case the sensor was only one and there were a few hundred objects
to be maintained. This is the case also with the CPHD-based filter, that has been
applied to small networks and the GEO catalogue. The application of these theories
to a comprehensive space-debris catalogue is still challenging, both from practical
constraints in sensor communications and computational capabilities that are hard
to recreate.

To conclude, the Operations of a network of sensors should find an optimal trade-off
between CM activities and CG tasks. Sensors should be ready to change and mutates
their operations in case of unexpected events. A good sensor autonomy is connected
with a low computational effort (stare-and-chase scenario).

7.1 Future Work

The aforementioned limitations of the new theories could be overcome with the
realization of bigger scenarios simulations and high power computational resources.
The combinatorial essence of the scheduling problem involves the allocation of all
the possible resources, if the bigger-sized problem can be analysed, different and
more performant observation scenarios could be studied.
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One first aspect that would be essential to be studied, if more resources were avail-
able, is the CM and CG for a comprehensive LEO catalogue. As shown in chapter
6, the mapping survey approaches can give already a good level of analysis of the
possible coverage of LEO objects by a space-based sensor. However, together with
the involvement of space-based facilities different problems, from the point of view
of centralized controllability, are arising. If assuming a sensor able to slew and
steer, not completely passive as in the aforementioned example, a certain level of
autonomy shall be guaranteed to the sensor itself. Low computational power and
fast reaction time, would suggest the implementation of techniques similar to the
presented stare-and-chase scenario. In those cases, full processing of the images
would not be required nor the connection to a full catalogue. The results of this first
raw processing together with the full images obtained can be downloaded offline to
a centralized unit for further processing with the most advanced techniques.
To overcome also the practicability constraints of some of the state-of-the-art tech-
niques in front of bigger sensor networks and catalogues (the reader can recall the
ESA model estimation of 130 million of debris on orbit), new and not-analytical
techniques could be studied: like machine learning techniques. In that scenario a
comprehensive and centralised catalogue can be initially trained starting from images
and results of smaller catalogues collected by different users and SST systems, as is
the actual situation, and use the acquired knowledge to process more sensing data
all at once and schedule efficiently new observations, eventually in real-time.

As for the Airbus framework, the future works that can be the direct continu-
ation of this Thesis are:

• Integration of real-time autonomous scheduler inside SPOOK cataloguer.

• streamline of cataloguing activities to incorporate the advantages of the schedul-
ing outputs.
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Airbus SSA Department

The work of this Thesis has been conducted within the SSA department in Airbus
Defence and Space GmbH, in Friedrichshafen, Germany. In particular, the project
has supported the activities of SST team with the development of a dedicated
software tool SPOOK, and the observation and maintenance operations with ART.
Fig. 1 shows the ART telescope, since 2018 the ART telescope is operative for SST
activities commanded remotely by Airbus in Germany. Fig. 2 has been taken during
a maintenance visit to the telescope in 2022, from left to right: Dr. Jens Utzmann
(project manager), the author Guido Pedone and David Vallverdu Cabrera both
PhD students in Airbus.
Both software suite and telescope have been a great validation and testing frame-
work for the new developments introduced with this Thesis. The properties and
functionalities of both have been extensively presented in various publications [13],
[47], [36] and [4]. ART observations, in particular, supported the validation of
various algorithms, e.g. the deployment of cataloguing pipeline, providing real-world
optical measurements. While the software SPOOK has been a powerful resource of
high-precision tools like SP orbit propagators and measurement estimators.

Figure 1: ART facility in Ex-
tremadura, Spain.

Figure 2: Visit to the telescope facil-
ity by some members of the SST team
in May 2022.
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RTN Frame

The Radial, Tangential, Normal (RTN) frame is a commonly used body-fixed
reference frame for space objects. It provides a convenient way to describe the
relative position and motion of an object with respect to its central body (e.g., a
planet, moon, or star). The RTN frame consists of three mutually orthogonal unit
vectors: R̂ (Radial), T̂ (Tangential), and N̂ (Normal), as depicted in Fig.3. These
vectors are defined as follows:

R̂ : Radial vector, points outward from the central body, aligned with the
radial direction.

T̂ : Tangential vector, tangent to the object’s orbit, along the direction of
motion.

N̂ : Normal vector, perpendicular to the orbital plane, points in orbital angular
momentum direction.

The RTN frame is particularly useful for analyzing the relative motion of space-
craft, satellites, or other space objects in orbit around a celestial body. It allows for a

Earth

Object

R̂

T̂
N̂

r

v

Figure 3: Illustration of the RTN (Radial, Tangential, Normal) frame with an
orbiting object (sphere) and dashed vectors for r and v.
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RTN Frame

straightforward decomposition of position and velocity vectors into radial, tangential,
and normal components.
In mathematical terms, the RTN frame can be defined as follows:

R̂ =
r

‖r‖

T̂ =
v

‖v‖
N̂ = R̂× T̂

Where, r is the position vector from the central body to the space object and v
is the velocity vector of the space object. The RTN frame provides a local reference
frame that rotates with the object as it moves along its orbit. This rotation ensures
that the R̂, T̂ , and N̂ vectors remain aligned with their respective directions relative
to the object’s position and velocity.
The RTN frame is a valuable tool for analyzing the motion of space objects in orbit.
It simplifies the description of their position and velocity vectors and is particularly
useful in space navigation, guidance, and control applications.
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