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REGAININGLY APPROXIMABLE NUMBERS AND SETS

PETER HERTLING , RUPERT HÖLZL, AND PHILIP JANICKI

Abstract. We call an α ∈ R regainingly approximable if there exists a computable nondecreasing
sequence (an)n of rational numbers converging to α with α – an < 2–n for infinitely many n ∈ N. We
also call a set A ⊆ N regainingly approximable if it is c.e. and the strongly left-computable number 2–A is
regainingly approximable. We show that the set of regainingly approximable sets is neither closed under
union nor intersection and that every c.e. Turing degree contains such a set. Furthermore, the regainingly
approximable numbers lie properly between the computable and the left-computable numbers and are
not closed under addition. While regainingly approximable numbers are easily seen to be i.o. K-trivial,
we construct such an α such that K(α � n) > n for infinitely many n. Similarly, there exist regainingly
approximable sets whose initial segment complexity infinitely often reaches the maximum possible for c.e.
sets. Finally, there is a uniform algorithm splitting regular real numbers into two regainingly approximable
numbers that are still regular.

§1. Introduction. We call a sequence (an)n of real numbers increasing if,
for all n ∈ N, an < an+1, and nondecreasing if, for all n ∈ N, an ≤ an+1, and we
define the terms decreasing and nonincreasing analogously. A real number is called
left-computable if there exists a computable nondecreasing sequence of rational
numbers converging to it; note that some textbooks [4, 11] call such numbers
left-c.e. A real number α is called computable if there exists a computable sequence
(an)n of rational numbers satisfying |α – an| < 2–n, for all n ∈ N. It is easy to see
that any computable real number is left-computable. In this article, we study real
numbers that are limits of computable, nondecreasing, converging sequences (an)n
of rational numbers which are not required to satisfy the condition |α – an| < 2–n

for all but only for infinitely many n ∈ N.

Definition 1.1. We call a real number α regainingly approximable if there exists
a computable nondecreasing sequence of rational numbers (an)n converging to α
such that α – an < 2–n holds for infinitely many n ∈ N.

Intuitively speaking, regainingly approximable numbers are not required to
possess approximations that converge as speedily as those to computable numbers,
but they must possess approximations that “catch up” with that speed infinitely
often while being allowed to “dawdle” arbitrarily in between. Trivially, every
regainingly approximable number is left-computable, and every computable number
is regainingly approximable. In fact, even the following stronger observation holds.
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2 PETER HERTLING, RUPERT HÖLZL, AND PHILIP JANICKI

Example 1.2. Every non-high left-computable number is regainingly
approximable. Indeed, let α be a left-computable number that is not high. Fix
a computable nondecreasing sequence of rational numbers (an)n converging to α.
An increasing function s : N → Nwithα – as(n) < 2–n for all n ∈ N can be computed
from oracle α. Since α is not high, according to a characterization of highness by
Martin [8] (see Soare [15, Theorem XI.1.3]), there exists a computable, w.l.o.g.
increasing function r : N → N with r(n) ≥ s(n) for infinitely many n ∈ N. Then for
any n ∈ N with r(n) ≥ s(n) we obtain

α – ar(n) ≤ α – as(n) < 2–n.

Therefore, α is regainingly approximable.

The remainder of the article is structured as follows:

• In Section 3 we begin by showing that Definition 1.1 is robust under minor
modifications, with the equivalences between the different formulations turning
out to be effectively uniform. We also state some computability-theoretic
properties of the set {n ∈ N : α – an < 2–n}, that is, the set of points where
a regaining approximation (an)n “catches up.”

• We begin Section 4 by giving several characterizations of the sets A ⊆ N that
have the property that the real number

2–A :=
∑
a∈A

2–(a+1)

is regainingly approximable. For the rest of the section we then focus on
c.e. sets A ⊆ N: A real number x ∈ [0, 1] is called strongly left-computable
if there exists a computably enumerable set A ⊆ N with x = 2–A. It is well-
known that the set of strongly left-computable numbers is a proper superset of
the set of computable numbers in [0, 1] and a proper subset of the set of left-
computable numbers in [0, 1]. We consider c.e. sets A such that 2–A is regainingly
approximable and call such sets regainingly approximable. We give different
characterizations of this class of sets, and note that, unlike for regainingly
approximable numbers, not all arguments here can be fully effectively uniform.

• In Section 5, we state further computability-theoretic properties of regainingly
approximable sets. First, we observe an easy splitting result, namely that
every c.e. set C ⊆ N is the union of two disjoint regainingly approximable
sets A,B ⊆ N. Next, we prove that there is a c.e. set that is not regainingly
approximable. Finally, we show that every c.e. Turing degree contains a
regainingly approximable set.

• In Sections 6 and 7 we look at the Kolmogorov complexity of regainingly
approximable numbers and sets. On the one hand, we observe that every
regainingly approximable number is i.o. K-trivial and, hence, not Martin-
Löf random. On the other hand, we show that there exists a regainingly
approximable number such that the prefix-free Kolmogorov complexity of
infinitely many of its initial segments (in a sense to be explained in Section 2)
exceeds their length, and that there exist regainingly approximable sets whose
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REGAININGLY APPROXIMABLE NUMBERS AND SETS 3

initial segments infinitely often have the maximal Kolmogorov complexity that
is possible for a c.e. set.

• In Section 8 we observe that regainingly approximable sets and numbers
behave badly with respect to arithmetical operations: The set of regainingly
approximable sets is closed neither under union nor under intersection, and
while the set of regainingly approximable numbers is closed downwards under
Solovay reducibility it is not closed under addition.

• Finally, in Section 9 we formulate a uniformly effective algorithm for splitting
c.e. sets into two regainingly approximable sets, which strengthens the splitting
result of Section 5. In fact, this algorithm proves a stronger result, namely that
every real that is regular in the sense of Wu [18] can be split into two regular
reals that are additionally regainingly approximable.

We close this introduction by mentioning that isolating the notion of regaining
approximability was a key step needed for Hölzl and Janicki’s [6] negative answer
to the question posed by Merkle and Titov [10] whether among the left-computable
numbers, being Martin-Löf random is equivalent to being non-speedable.

§2. Notation. For general background on computability theory and algorithmic
randomness, we refer the reader to the usual textbooks [4, 11, 15]. We will use
Cantor’s pairing function 〈·, ·〉 : N2 → N defined by

〈m, n〉 :=
1
2

(m + n) (m + n + 1) + n,

for all m, n ∈ N. This is a computable bijection, so let �1 : N → N and �2 : N → N

denote the two components of its inverse function, that is, 〈�1(n), �2(n)〉 = n for
all n ∈ N. For n ∈ N, we write log(n) for the length of the binary representation of
n, thus log(n) = 	log2(n)
 + 1 if n > 0 and log2(0) = 1. Hence, log(n) is identical
to the usual binary logarithm up to a small additive constant.

For functions f, g : N → N we write f ≤+ g if there exists a constant c ∈ N

such that f(n) ≤ g(n) + c for all n. A set A ⊆ N will often be identified with its
characteristic sequence, that is, we defineA(n) := 1 if n ∈ A, andA(n) := 0 if n �∈ A.

We end this section by laying out the following conventions about how, in the
remainder of the article, we will (often tacitly) identify real numbers with infinite
binary sequences and subsets of the natural numbers:

• If we ascribe to some x ∈ R a property that is formally defined only for infinite
binary sequences, then we mean that a specific, uniquely determined infinite
binary sequence has that property; namely, the sequence containing infinitely
many ones and that is a binary representation of the unique real number
y ∈ (0, 1] with x – y ∈ Z.

• If we ascribe to some x ∈ R a property that is formally defined only for subsets
of N, then we mean that the uniquely determined infinite set A ⊆ N, whose
characteristic sequence is the infinite binary sequence defined in the previous
item, has that property.

• When we talk about “initial segments” of some x ∈ R, then we are again
referring to the initial segments of the infinite binary sequence defined in the
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4 PETER HERTLING, RUPERT HÖLZL, AND PHILIP JANICKI

first item. This will be used for instance when we talk about the plain or
prefix-free Kolmogorov complexity of initial segments of some such x.

• Similarly, when we talk about the initial segments of an A ⊆ N, then we are
referring to its characteristic sequence.

§3. Robustness. In this section, we first show that slight changes to the definition
of regainingly approximable numbers do not lead to a different notion. The following
lemma will be useful; note that no computability assumptions are made.

Lemma 3.1. Let (an)n be a nondecreasing sequence of real numbers converging
to some real number α such that, for infinitely many n ∈ N, α – an < 2–n.
Then, for every unbounded function f : N → N there exist infinitely many m with
α – af(m+1) < 2–f(m).

Proof. By assumption, the set

A := {n ∈ N : n ≥ f(0) and α – an < 2–n}

is infinite. We define a function g : A→ N by

g(n) := min{m ∈ N : f(m + 1) > n},

for n ∈ A. The function g is well-defined because f is unbounded. For every n ∈ A
we have f(g(n)) ≤ n < f(g(n) + 1). The set

g(A) := {g(n) : n ∈ A}

is infinite. Let m ∈ g(A) be arbitrary and let n ∈ A be such that m = g(n). Then

α – af(m+1) = α – af(g(n)+1) ≤ α – an < 2–n ≤ 2–f(g(n)) = 2–f(m). �

There are several obvious modifications of Definition 1.1 that one might want to
consider. First, instead of allowing nondecreasing (an)n, we might require (an)n to be
increasing. Secondly, one might replace the condition α – an < 2–n by the condition
α – an < 2–f(n) where f : N → N is an arbitrary computable, unbounded function
of one’s choice; or, one might ask for this to hold only for some fixed computable,
nondecreasing, unbounded function f : N → N, a seemingly weaker requirement.
However, it turns out that none of these modifications make any difference.

Proposition 3.2. For a real numberα ∈ R the following statements are equivalent:

(1) α is regainingly approximable.
(2) There exists a computable, increasing sequence of rational numbers (an)n

converging to α such that, for infinitely many n ∈ N, α – an < 2–n.
(3) For every computable, unbounded functionf : N → N there exists a computable

increasing sequence of rational numbers (an)n converging to α such that, for
infinitely many n ∈ N,

α – an < 2–f(n).

(4) There exist a computable, nondecreasing, and unbounded function f : N → N

and a computable nondecreasing sequence of rational numbers (an)n converging
to α such that, for infinitely many n ∈ N, α – an < 2–f(n).
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REGAININGLY APPROXIMABLE NUMBERS AND SETS 5

Note that this implies in particular that it makes no difference whether we use
“<” or “≤” in the definition of regaining approximability. We would also like to
point out that all implications in the following proof are uniformly effective.

Proof. (2) ⇒ (1): Trivial.
(3) ⇒ (2): Trivial.
(1) ⇒ (3): Letα be a regainingly approximable number. Let (bn)n be a computable

nondecreasing sequence of rational numbers converging to α with α – bn < 2–n for
infinitely many n ∈ N. Let f : N → N be a computable, unbounded function. Then
the function g : N → N defined by

g(n) := 1 + n + max{f(m) : m ≤ n}

is computable, increasing, and satisfies g(n) ≥ f(n) + 1, for all n ∈ N. In particular,
g is unbounded. The sequence (an)n of rational numbers defined by

an := bg(n+1) – 2–g(n)

is computable and increasing and converges toα. By Lemma 3.1 there exist infinitely
many n with α – bg(n+1) < 2–g(n). For all such n we obtain

α – an = α – bg(n+1) + 2–g(n) < 2–g(n)+1 ≤ 2–f(n).

(1) ⇒ (4): Trivial.
(4) ⇒ (1): Assume that f : N → N is a computable, nondecreasing, and

unbounded function and (bn)n is a computable nondecreasing sequence of rational
numbers converging to α such that, for infinitely many n ∈ N, α – bn < 2–f(n).
Define a function g : N → N via

g(0) := max{m ∈ N : f(m) = f(0)}

and

g(n + 1) := max{m ∈ N : f(m) = f(g(n) + 1)},

for n ∈ N; informally speaking, the graph of f is an infinite increasing sequence of
plateaus of finite length and g(n) gives the x-coordinate of the right-most point in
the (n + 1)th plateau.

Clearly, g is computable and increasing and satisfies f(g(n)) ≥ n for all n ∈ N.
Furthermore, for every k ∈ N there exists exactly one n ∈ N with f(k) = f(g(n)),
and this n satisfies k ≤ g(n). The sequence (an)n of rational numbers defined by
an := bg(n), for all n ∈ N, is computable and nondecreasing and converges to α. By
assumption, the set

B := {k ∈ N : α – bk < 2–f(k)}

is infinite. Hence, the set

A := {n ∈ N : (∃k ∈ B) f(k) = f(g(n))}

is infinite as well. Consider a number n ∈ A, and let k ∈ B be a number with
f(k) = f(g(n)). Then k ≤ g(n) and

α – an = α – bg(n) ≤ α – bk < 2–f(k) = 2–f(g(n)) ≤ 2–n. �
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6 PETER HERTLING, RUPERT HÖLZL, AND PHILIP JANICKI

Next, we observe that if a left-computable number α is regainingly approximable
then this will be apparent no matter which of its effective approximations we look at.

Proposition 3.3. Letα be a left-computable number, and let (an)n be a computable,
nondecreasing sequence of rational numbers converging to α. Then the following
conditions are equivalent.

(1) α is a regainingly approximable number.
(2) There exists a computable, increasing function r : N → N such that, for infinitely

many n, α – ar(n) < 2–n.

Note that the proof is effectively uniform in both directions.

Proof. (2) ⇒ (1): Assume that there exists a computable, increasing function
r : N → N such that we have α – ar(n) < 2–n for infinitely many n. Then the sequence
(bn)n of rational numbers defined by bn := ar(n) is computable, nondecreasing,
converges to α, and satisfies, for infinitely many n, α – bn < 2–n. Hence, α is
regainingly approximable.

(1) ⇒ (2): Assume that α is regainingly approximable. By Proposition 3.2 there
exists a computable, increasing sequence (bn)n of rational numbers converging to α
such that there exist infinitely many n with α – bn < 2–n. We define a computable,
increasing function r : N → N by r(0) := min{m ∈ N : am ≥ b0}, and

r(n + 1) := min{m ∈ N : m > r(n) and am ≥ bn+1},

for n ∈ N. For all n ∈ N we have ar(n) ≥ bn. Thus, for the infinitely many n ∈ N with
α – bn < 2–n, we obtain

α – ar(n) ≤ α – bn < 2–n. �

We close this section by investigating the computability-theoretic properties of
the set of points where a regaining approximation “catches up.”

Proposition 3.4. Let α be a regainingly approximable number, and let (an)n
be a computable nondecreasing sequence of rational numbers converging to α with
α – an < 2–n for infinitely many n ∈ N. Then

A := {n ∈ N : α – an < 2–n}

has the following properties:

(1) N \ A is computably enumerable.
(2) The following are equivalent:

(a) α is computable.
(b) A is decidable.
(c) A is not hyperimmune.

Proof. (1) If α is rational or if N \ A is empty then A and N \ A are decidable;
thus assume w.l.o.g. that α is irrational and that N \ A is non-empty. Then
α – an ≥ 2–n if and only if α – an > 2–n. Fix any e ∈ N \ A, and define a
computable function f : N → N via
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f(〈m, n〉) :=

{
n, if am – an ≥ 2–n,

e, otherwise.

Clearly, f computably enumerates N \ A.
(2) (a) ⇒ (b): Suppose that α is computable. Then there exists a computable

sequence (bm)m of rational numbers with |α – bm| < 2–m for all m ∈ N. Due
to (1) it suffices to show that A is computably enumerable. Fix some d ∈ A
and define a computable function g : N → N via

g(〈m, n〉) :=

{
n, if bm – an + 2–m < 2–n,

d, otherwise.

Then g computably enumerates A; indeed, if for some m it holds that
bm – an + 2–m < 2–n then α – an < 2–n; and for the other direction, if
α – an < 2–n holds, then for all m satisfying α – an + 2 · 2–m < 2–n we have
bm – an + 2–m < 2–n.
(b) ⇒ (c): Trivial.
(c) ⇒ (a): By assumption A is infinite. Define pA : N → N as the uniquely
determined increasing function with pA(N) = A. Suppose that A is not
hyperimmune. Then there exists a computable function r : N → N with
r(n) ≥ pA(n) for all n ∈ N (see, for instance, Soare [15, Theorem V.2.3]).
Then we have

α – ar(n) ≤ α – apA(n) < 2–pA(n) ≤ 2–n

for all n ∈ N. Hence, α is computable. �

§4. Regainingly approximable sets. In this section, we study sets A ⊆ N such
that 2–A is regainingly approximable. We start by characterizing these sets in ways
analogous to Propositions 3.2 and 3.3, before then focusing on the particularly
interesting case where A is c.e.

We need the following terminology and easy lemma: Following Soare [15] we call
a sequence (An)n of finite sets An ⊆ N a strong array if the function n �→

∑
i∈An 2i

is computable, and a strong array (An)n a uniformly computable approximation from
the left of a set A ⊆ N if:

(1) for all n ∈ N, An ⊆ {0, ... , n – 1},
(2) for all n ∈ N, 2–An ≤ 2–An+1 , and
(3) for all i ∈ N, limn→∞An(i) = A(i).

Lemma 4.1 (Soare [14]). For a set A ⊆ N the following conditions are equivalent.

(1) The number 2–A is left-computable.
(2) There exists a uniformly computable approximation from the left of the set
A ⊆ N.

With this we are ready to establish the following characterization.

Theorem 4.2. Let A ⊆ N be a set such that the number 2–A is left-computable.
Then the following conditions are equivalent.
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8 PETER HERTLING, RUPERT HÖLZL, AND PHILIP JANICKI

(1) The number 2–A is regainingly approximable.
(2) There exists a uniformly computable approximation (An)n of A from the left

such that, for infinitely many n,

A ∩ {0, ... , n – 1} = An.

(3) For every uniformly computable approximation (Bn)n of A from the left there
exists a computable, increasing function s : N → N such that, for infinitely
many n,

A ∩ {0, ... , n – 1} = Bs(n) ∩ {0, ... , n – 1}.

Proof. (3) ⇒ (2): By Lemma 4.1 some uniformly computable approximation
(Bn)n of A from the left exists. Then by assumption a function s as in (3) must exist
as well. Thus, (2) follows immediately by letting An := Bs(n) ∩ {0, ... , n – 1} for
all n ∈ N.

(2) ⇒ (1): Let (An)n be a uniformly computable approximation of A from the
left such that A ∩ {0, ... , n – 1} = An for infinitely many n. The sequence (2–An )n is
a nondecreasing computable sequence of rational numbers converging to 2–A. For
the infinitely many n with A ∩ {0, ... , n – 1} = An we have

2–A – 2–An ≤
∑∞

k=n+1
2–k = 2–n.

Thus, 2–A is regainingly approximable.
(1) ⇒ (3): If A is cofinite then it is easy to see that for any computable

approximation of A from the left there is a function s as required by (3); thus
w.l.o.g. let A be coinfinite.

Let (Bn)n be an arbitrary uniformly computable approximation of A from the
left. Then (2–Bn )n is a computable, nondecreasing sequence of rational numbers
converging to 2–A. By Proposition 3.3 there exists a computable increasing function
r : N → N such that, for infinitely many n, 2–A – 2–Br(n) < 2–n. If there are infinitely
many n with

A ∩ {0, ... , n – 1} = Br(n) ∩ {0, ... , n – 1},

then (3) holds with s := r. Otherwise there is an N > 0 such that for all n ≥ N we
have A ∩ {0, ... , n – 1} �= Br(n) ∩ {0, ... , n – 1}; that is, one of:

(i) 2–A∩{0,...,n–1} + 2–n ≤ 2–Br(n)∩{0,...,n–1}

(ii) 2–Br(n)∩{0,...,n–1} + 2–n ≤ 2–A∩{0,...,n–1}

must hold. But (i), together with A’s coinfiniteness, would imply

2–A < 2–A∩{0,...,n–1} + 2–n ≤ 2–Br(n)∩{0,...,n–1} ≤ 2–Br(n) ≤ 2–A,

a contradiction. Thus, for n ≥ N , (ii) must hold. Define s : N → N via

s(n) :=

⎧⎨⎩n, if n < N,

min
{
k : k > s(n – 1) ∧

2–Bk∩{0,...,n–1} ≥ 2–Br(n)∩{0,...,n–1}+2–n

}
, if n ≥ N,

https://doi.org/10.1017/jsl.2024.5 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2024.5


REGAININGLY APPROXIMABLE NUMBERS AND SETS 9

and note that this is well-defined as limn→∞ Bn(i) = A(i) for all i ∈ N. It is clear
that s is increasing and computable. Fix any of the infinitely many n ≥ N with
2–A – 2–Br(n) < 2–n.

We claim that A ∩ {0, ... , n – 1} = Bs(n) ∩ {0, ... , n – 1}. For the sake of a
contradiction, assume otherwise; then one of

(iii) 2–A∩{0,...,n–1} + 2–n ≤ 2–Bs(n)∩{0,...,n–1}

(iv) 2–Bs(n)∩{0,...,n–1} + 2–n ≤ 2–A∩{0,...,n–1}

must hold. From (iii) we can deduce

2–A < 2–A∩{0,...,n–1} + 2–n ≤ 2–Bs(n)∩{0,...,n–1} ≤ 2–Bs(n) ≤ 2–A,

a contradiction; from (iv) we obtain

2–A < 2–Br(n) + 2–n < 2–Br(n)∩{0,...,n–1} + 2–n + 2–n

≤ 2–Bs(n)∩{0,...,n–1} + 2–n ≤ 2–A∩{0,...,n–1} ≤ 2–A,

another contradiction. �

For the remainder of this section we will focus on c.e. sets.

Definition 4.3. We call a set A ⊆ N regainingly approximable if it is computably
enumerable and the real number 2–A is regainingly approximable.

That we resort to the number 2–A in this definition concerning sets may seem
unnatural and raises the question whether regainingly approximable sets could
alternatively be defined using enumerations of their elements. This is indeed possible,
as we will show now.

We call a total function f : N → N an enumeration of a set A ⊆ N if

A = {n ∈ N : (∃k ∈ N) f(k) = n + 1}.

If f(k) = n + 1 then we say that f enumerates n into A at stage k. Note that here
f(k) = 0 encodes that the function f does not enumerate anything into A at stage
k. It is clear that a set A ⊆ N is computably enumerable if and only if there exists
a computable enumeration of A. If f : N → N is an enumeration of a subset of N
then, for t ∈ N, we write

Enum(f)[t] := {n ∈ N : (∃k ∈ N) (k < t and f(k) = n + 1)}.

Definition 4.4. Let r : N → N be a nondecreasing, unbounded function. We call
an enumerationf : N → N of a setA ⊆ N r-good if there exist infinitely many n such
that

{0, ... , n – 1} ∩ A ⊆ Enum(f)[r(n)].

Remark 4.5. We call an enumeration of some A an enumeration without
repetitions if for every n ∈ A there exists exactly one k ∈ N with f(k) = n + 1.
From a given enumeration f of A one can easily compute one without repetitions
by defining, for all k ∈ N,

f̃(k) :=

{
f(k), if f(k) > 0 and (f(k) – 1) �∈ Enum(f)[k],
0, otherwise.
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Note that if f was r-good for some nondecreasing, unbounded function r then f̃ is
r-good as well.

Example 4.6. LetA ⊆ N be a decidable set. Then the functionf : N → N defined
by f(n) := n + 1 if n ∈ A, f(n) := 0 if n �∈ A, is a computable and idN-good
enumeration without repetitions of A.

Theorem 4.7. For a c.e. A ⊆ N the following conditions are equivalent.

(1) The number 2–A is regainingly approximable.
(2) There exists a computable idN-good enumeration of A.
(3) There exists a computable, nondecreasing, unbounded function r : N → N such

that there exists a computable r-good enumeration of A.
(4) For every computable enumeration f of A there exists a computable, increasing

function r : N → N such that f is r-good.

In particular, in analogy to Proposition 3.3, if a set A is regainingly approximable
then this will be apparent no matter which of its effective enumerations we look at.

Proof of Theorem 4.7. (3) ⇒ (1): Let r : N → N be a computable, nondecreas-
ing, unbounded function, and let f : N → N be a computable r-good enumeration
of A. Then (an)n defined for all n ∈ N via

an := 2–Enum(f)[r(n)]

is a computable, nondecreasing sequence of rational numbers converging to 2–A;
and since we have for infinitely many n that

{0, ... , n – 1} ∩ A ⊆ Enum(f)[r(n)]

it follows that 2–A – an ≤
∑∞
k=n 2–k–1 = 2–n. Thus 2–A is regainingly approximable.

(1) ⇒ (4): Let A ⊆ N be a c.e. set such that 2–A is regainingly approximable, and
let f : N → N be an arbitrary computable enumeration of A. Then (an)n defined by
an := 2–Enum(f)[n], for all n ∈ N, is a computable nondecreasing sequence of rational
numbers converging to 2–A. By Proposition 3.3 there exists a computable, increasing
function r : N → N such that, for infinitely many n, 2–A – ar(n) < 2–n. We obtain
{0, ... , n – 1} ∩ A ⊆ Enum(f)[r(n)] for infinitely many n. Hence, f is r-good.

(4) ⇒ (3): Trivial, as every c.e. set has a computable enumeration.
(2) ⇒ (3): Trivial.
(3) ⇒ (2): Assume that r : N → N is a computable, nondecreasing, unbounded

function and thatf : N → N is a computable r-good enumeration of A. If A is finite,
then f itself is trivially an idN-good enumeration of A; so assume that A is infinite.
Let L0,M0 := ∅ and for n ≥ 1 define Ln := {0, ... , n – 1} ∩ Enum(f)[r(n)] as well
asMn := Ln \ Ln–1; that is,M1, ... ,Mn forms a disjoint partition of Ln for every n.

We let g : N → N be the enumeration that first enumerates all elements of
M1 in increasing order, then those of M2 in increasing order, and so on. More
formally speaking, g : N → N is defined as follows: For every n ∈ N, let mn be the
cardinality ofMn, let k(n)

0 , ... , k
(n)
mn–1 be its elements in increasing order and, for t with
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0 ≤ t ≤ mn – 1, define

g

⎛⎝t +
∑
j<n

mj

⎞⎠ := 1 + k(n)
t .

This is well-defined due to A’s infinity. Clearly, g is a computable enumeration
(in fact, without repetitions) of A with g(n) �= 0 for all n. We claim that it is in fact
an idN-good enumeration of A. To see this, fix any of the, by assumption, infinitely
many n with

{0, ... , n – 1} ∩ A ⊆ Enum(f)[r(n)].

By construction, g enumerates exactly the elements of

Ln–1 =M0 ∪ ··· ∪Mn–1

during the first
∑
j<n mj stages and, by choice of n, all elements of {0, ... , n – 1} ∩ A

that are not enumerated during these stages must be inMn. In fact, they are exactly
all elements ofMn, and thus will be enumerated by g in the immediately following
stages, starting with stage

∑
j<n mj . As there cannot be more than n –

∑
j<n mj

such numbers, this process will be completed before stage n. �

Remark 4.8. Note that “(3) ⇒ (2)” is the only implication in Theorem 4.7 whose
proof is not fully uniformly effective; in its proof we non-uniformly distinguished
whether A is finite or not. A simple topological argument shows that this is
unavoidable; in fact, there does not even exist a continuous function F : NN → NN

mapping every 2idN-good enumeration without repetitions of an arbitrary A ⊆ N

to an idN-good enumeration of A. To see this, we use the following two facts:

(i) There exists only one enumeration of the empty set, namely the constant zero
function 0 : N → N, which is an idN-good enumeration.

(ii) For every function f : N → N that is an idN-good enumeration of N we have
f(n) �= 0 for all n ∈ N.

Now assume, for the sake of a contradiction, that there is an F as described. By (i), we
must have F (0) = 0, and as F was assumed to be continuous, there exists an n0 ∈ N

with F (0n0NN) ⊆ 0NN; that is, F must map all inputs starting with sufficiently many
0’s to a sequence starting with at least one 0. Define g : N → N as an enumeration
of N “delayed by n0 stages”, that is, let

g(n) :=

{
0, if n < n0,

1 + n – n0, if n ≥ n0,

for n ∈ N. Then while g is a 2idN-good enumeration without repetitions of N, we
have F (g) ∈ 0NN, and no such enumeration can be an idN-good enumeration of N,
contradiction.

§5. Computability-theoretic properties. We begin this section by observing an
easy splitting theorem that we will need later. Next, we will show that there are
c.e. sets that are not regainingly approximable. Finally, we will show that every c.e.
Turing degree contains a regainingly approximable set.
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Theorem 5.1. For any c.e. set C ⊆ N there exist two disjoint, regainingly
approximable sets A,B ⊆ N with C = A ∪ B .

Proof. By Sacks’ Splitting Theorem [13] (see, for instance, Soare [15, Theorem
VII.3.2]) there exist two disjoint, c.e., low subsets A,B ⊆ N with C = A ∪ B . Low
sets are not high. Hence, by Example 1.2 and Theorem 4.7, A and B are regainingly
approximable. �

The theorem leaves open whether the splitting can be done effectively. The answer
is yes: in Section 9 we will present a uniformly effective algorithm that even works
for a larger class of objects than just the c.e. sets.

As corollaries to Theorem 5.1 we obtain two easy ways to see that the regainingly
approximable sets are a strict superclass of the decidable ones.

Corollary 5.2. There exists a regainingly approximable set A ⊆ N that is not
decidable.

First proof. By Example 1.2, any c.e. set that is neither decidable nor high is
regainingly approximable.

Second proof. Let C ⊆ N be an undecidable c.e. set. By Theorem 5.1 there are
two disjoint regainingly approximable sets A,B such that C = A ∪ B . At least one of
A or B must be undecidable.

Next, we separate regaining approximability from computable enumerability.

Theorem 5.3. There exists a c.e. set A ⊆ N that is not regainingly approximable.

Proof. Let ϕ0, ϕ1, ϕ2, ... be a standard enumeration of all possibly partial
computable functions with domain and range in N. As usual, we write ϕe(n)[t]↓
to express that the eth Turing machine (which computes ϕe) stops after at
most t steps on input n.

We shall construct a computable enumeration g : N → N of a setA ⊆ N such that
the following requirements (Re) will be satisfied for all e ∈ N:

(Re) : if ϕe is total and increasing then
(∃ne ∈ N)(∀n > ne)({0, ... , n – 1} ∩ A �⊆ Enum(g)[ϕe(n)]).

According to Theorem 4.7 this is sufficient.
We construct g in stages; in stage t we proceed as follows: Define e := �1(�1(t))

and k := �2(�1(t)), hence, 〈e, k〉 = �1(t). Check whether the following conditions
are satisfied:

(∀n ≤ 〈e, k + 1〉) ϕe(n)[t]↓
and (∀n < 〈e, k + 1〉) ϕe(n) < ϕe(n + 1)

and t ≥ ϕe(〈e, k + 1〉)
and 〈e, k〉 �∈ Enum(g)[t].

If they are, set g(t) := 1 + 〈e, k〉, otherwise g(t) := 0.
This completes the construction; we proceed with the verification. It is clear that

g is computable and an enumeration without repetitions of some c.e. set A ⊆ N. We
wish to show that Re is satisfied for all e ∈ N. Consider an e ∈ N such that ϕe is
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total and increasing, as well as a number n > 〈e, 0〉. There exists a unique k ∈ N with
〈e, k〉 < n ≤ 〈e, k + 1〉. The function g enumerates 〈e, k〉 into A at some uniquely
determined stage t, that is, there exists exactly one t ∈ N with g(t) = 1 + 〈e, k〉.
Then

〈e, k〉 ∈ Enum(g)[t + 1] \ Enum(g)[t].

Since n ≤ 〈e, k + 1〉, we have ϕe(n) ≤ ϕe(〈e, k + 1〉) ≤ t, and therefore

〈e, k〉 �∈ Enum(g)[t] ⊇ Enum(g)[ϕe(n)].

Thus 〈e, k〉 ∈ {0, ... , n – 1} ∩ A witnesses that Re is satisfied with ne = 〈e, 0〉. �

Finally, we show that the regainingly approximable Turing degrees are exactly the
c.e. Turing degrees.

Theorem 5.4. For every computably enumerable set A ⊆ N there exists a
regainingly approximable set B ⊆ N with A ≡T B .

Proof. W.l.o.g. we may assume that A is infinite. Thus fix some computable
injective function f : N → N with f(N) = A.

We will build a c.e. B by defining a computable injective function g : N → N and
letting B := g(N). In parallel, we will define an increasing sequence (Si)i such that:

(i) for all i we have {0, ... , Si – 1} ∩ B ⊆ {g(0), ... , g(Si – 1)}, which implies that
B is regainingly approximable, and such that

(ii) A ≡T (Si)i ≡T B .

To ensure these properties, we will define (Si)i in such a way that, for all i and
for all t ≥ Si , we have on the one hand that f(t) ≥ i and on the other hand that
g(t) ≥ Si . This last property will imply (i); and concerning (ii), informally speaking,
our choice of (Si)i means that f and g can enumerate “small” numbers only for
arguments smaller than Si . This will allow us to show A ≤T (Si)i and B ≤T (Si)i .
Finally, the statements (Si)i ≤T A and (Si)i ≤T B will follow from the way we
define (Si)i alongside g.

After these informal remarks, we proceed with the full proof. The following
algorithm works recursively in infinitely many stages to compute two functions
g : N → N and s : N2 → N; we write si [t] for s(i, t). Since it will turn out below that
(si [t])t is eventually constant for every i, allowing us to define Si := limt→∞ si [t], it
is suggestive to think of si [t] as our preliminary guess for Si at stage t.

At stage 0 we let

si [0] := i

for all i ∈ N. And for every t ∈ N, at stage t + 1 we define

g(t) := sf(t)[t]

and set

si [t + 1] :=

{
si [t], if i ≤ f(t),
si [t] + max{t, g(0), ... , g(t)} + 1, if i > f(t),

for all i ∈ N. Finally, we define B := g(N).
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This ends the construction, and we proceed with the verification. First note that
B is clearly computably enumerable.

Claim 1. For every t ∈ N, the sequence (si [t])i is increasing.

Proof. This is clear for t = 0, and can easily be seen to hold for all other t by
induction. �

Claim 2. For every i ∈ N, the sequence (si [t])t is nondecreasing and eventually
constant.

Proof. By construction (si [t])t is nondecreasing for every i ∈ N. Fix some i ∈ N;
to see that (si [t])t is eventually constant, choose ti such that f(t) ≥ i for all t ≥ ti .
Note that such a ti exists because (f(t))t tends to infinity. Then, for every t ≥ ti , we
have si [t + 1] = si [t], and thus si [t] = si [ti ] for all t ≥ ti . �

Define the sequence (Si)i by Si := limt→∞ si [t]. By Claim 1, (Si)i is increasing.

Claim 3. For every i ∈ N and every t ≥ Si we have si [t] = Si .

Proof. Assume otherwise and choose t ≥ Si with si [t + 1] �= si [t]. Then

Si ≥ si [t + 1] = si [t] + max{t, g(0), ... , g(t)} + 1 > t ≥ Si ,
a contradiction. �

Claim 4. For every i ∈ N and every t ≥ Si we have f(t) ≥ i .
Proof. Consider any i ∈ N and some stage t ≥ Si . If we had f(t) < i , then we

would obtain

si [t + 1] = si [t] + max{t, g(0), ... , g(t)} + 1 > si [t] = Si ,

contradicting Claim 3. �
Claim 5. For every i ∈ N and every t ≥ Si we have g(t) ≥ Si .
Proof. Consider any i ∈ N and some stage t ≥ Si . By Claim 4, f(t) ≥ i , and by

Claim 1, (sj [t])j is increasing. Together with Claim 3, we obtain g(t) = sf(t)[t] ≥
si [t] = Si . �

Claim 6. B is regainingly approximable.

Proof. According to Claim 5 the function n �→ g(n) + 1 is an idN-good,
computable enumeration of B, and hence B is regainingly approximable. �

Claim 7. The function g is injective.

Proof. Consider two stages t1 < t2; we need to show g(t1) �= g(t2). Since f is
injective, we have f(t1) �= f(t2).

• If f(t1) < f(t2), then due to Claims 1 and 2 we have

g(t1) = sf(t1)[t1] < sf(t2)[t1] ≤ sf(t2)[t2] = g(t2).

• If f(t1) > f(t2), then sf(t1)[t1] > sf(t2)[t1] holds due to Claim 1.
If sf(t2)[t2] = sf(t2)[t1] then

g(t2) = sf(t2)[t2] = sf(t2)[t1] < sf(t1)[t1] = g(t1).
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Otherwise sf(t2)[t2] > sf(t2)[t1] due to Claim 2 and we obtain

g(t2) = sf(t2)[t2] ≥ sf(t2)[t1] + g(t1) + 1 > g(t1).

Thus, g is injective. �
Claim 8a. A is computable in (Si)i .

Proof. Given oracle (Si)i , in order to decide whether n ∈ A for arbitrary n ∈ N,
it suffices to check whether n is enumerated by f before stage Sn+1. If not, then since
by Claim 4 we have f(t) ≥ n + 1 for all t ≥ Sn+1, we must have n /∈ A. �

Claim 8b. B is computable in (Si)i .

Proof. Given oracle (Si)i , in order to decide whether n ∈ B for arbitrary n ∈ N

we proceed as follows: Compute the smallest i ∈ N with Si > n and check whether
n is enumerated by g before stage Si . If not, then since by Claim 5 we have
g(t) ≥ Si > n for all t ≥ Si , we must have n /∈ B . �

Claim 9a. The sequence (Si)i is computable in A.

Proof. To determine Si for any i ∈ N it suffices to use oracle A to compute the
smallest t such that

A ∩ {0, ... , i – 1} ⊆ {f(0), ... , f(t – 1)}
and to output Si = si [t]. �

Claim 9b. The sequence (Si)i is computable in B.

Proof. We claim that there is a recursive algorithm using oracle B that
computes (Si)i . By construction, we have S0 = 0. So suppose that for i ∈ N the
numbers S0, ... , Si are known. We claim that:

(i) ifSi ∈ B and if the uniquely determined (cf. Claim 7) number t with g(t) = Si
satisfies f(t) = i and t ≥ Si , then Si+1 = si+1[t + 1]; and that

(ii) Si+1 = si+1[Si ] holds otherwise.

Assuming this claim, oracle B clearly computes Si+1.
To see (i), assume that Si ∈ B and that the uniquely determined t with g(t) = Si

satisfies f(t) = i and t ≥ Si . By Claim 4 and because f is injective, for all t′ ≥ t + 1
we obtain f(t′) ≥ i + 1. This implies Si+1 = si+1[t + 1].

For (ii), if Si+1 �= si+1[Si ], then there must exist a number t ≥ Si with
si+1[t + 1] �= si+1[t] and hence with i + 1 > f(t). Then, by Claim 4, f(t) = i , and
by Claim 3, Si = si [t] = sf(t)(t) = g(t), hence, Si ∈ B . �

This concludes the proof that for every c.e. set A ⊆ N there exists a regainingly
approximable set B ⊆ N with A ≡T B . �

Corollary 5.5. There is a high regainingly approximable set.

§6. Complexity of regainingly approximable numbers. Let Σ := {0, 1}, let Σn

denote the set of finite binary strings of length n, and write Σ∗ for
⋃
n Σn. For a

binary string v, let |v| denote its length. By 0n we denote the string of length n
that consists of n zeros, and for any infinite binary sequence A and any number
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n ∈ N, by A � n we denote the string A(0) ... A(n – 1) of length n. For a function
f : dom(f) → Σ∗ with dom(f) ⊆ Σ∗ write

Cf(w) := min({|v| : f(v) = w} ∪ {∞})

for every w ∈ Σ∗. If dom(f) has the property that no two different elements in
it can be prefixes of each other then we say that f has prefix-free domain; and
in this case it is customary to write Kf for Cf . Let C denote CU1 for some
optimally universal Turing machine U1 and let K denote KU2 for some optimally
universal prefix-free Turing machine U2 (see, for instance, Downey and Hirschfeldt
[4, Sections 3.1 and 3.5] for a discussion of such Turing machines). In the remainder
of this section we will write U for U2. The functions C and K are called the plain
and the prefix-free Kolmogorov complexity, respectively.

An infinite binary sequence A is called i.o. K-trivial if there exists a constant c ∈ N

such that, for infinitely many n,

K(A � n) ≤ K(0n) + c.

Recalling the conventions laid out in Section 2, we can make the following
observation.

Proposition 6.1. Every regainingly approximable number α is i.o. K-trivial, and
hence not Martin-Löf random.

Proof. Assume w.l.o.g. that α is not computable and α ∈ (0, 1). Let (an)n be
an increasing, computable sequence of w.l.o.g. strictly positive rational numbers
converging to α such that, for infinitely many n, α – an < 2–n.

For every n ∈ N, let un be the binary string of length n with

0.un ≤ an < 0.un + 2–n.

If un �= 1n let vn ∈ Σn be such that 0.vn = 0.un + 2–n; otherwise let vn := un. Clearly,
(un)n and (vn)n are computable.

Define a computable function f : dom(f) → Σ∗ with prefix-free domain
dom(f) ⊆ Σ∗ as follows: If w ∈ Σ∗ satisfies U (w) = 0n, for some n ∈ N, then
let f(w0) := un and f(w1) := vn. Otherwise we leave f(wa) undefined for a ∈ Σ.
Note that the domain of f is prefix-free.

By construction, for infinitely many n, we have α – 0.un < 2 · 2–n. Then, for
these n, we have α � n ∈ {un, vn}; thus

K(α � n) ≤+ Kf(α � n) = K(0n) + 1,

and α is i.o. K-trivial. �
In view of Proposition 6.1, it is natural to wonder whether regainingly

approximable numbers can at the same time have infinitely many initial segments
of high Kolmogorov complexity. The answer is yes, as demonstrated by the next
theorem.

Theorem 6.2. There is a regainingly approximable number α ∈ (0, 1) such that
K(α � n) > n for infinitely many n.

We point out that an analogous result cannot hold for plain Kolmogorov
complexity; this is due to a result of Martin-Löf [9] (see Nies, Stephan, and Terwijn
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[12, Proposition 2.4]) who proved that any infinite binary sequence A for which
C (A � n) > n holds for infinitely many n is Martin-Löf random; thus such an A
cannot be regainingly approximable.

Proof of Theorem 6.2. Fix a computable injective function h : N → Σ∗ with
h(N) = dom(U ). For t ∈ N and v ∈ Σ∗ write

U –1{v}[t] := {u ∈ Σ∗ : U (u) = v and (∃s < t)(h(s) = u)},

K(v)[t] :=

{
∞, if U –1{v}[t] = ∅,
min{|u| : u ∈ U –1{v}[t]}, otherwise.

Then, for every v ∈ Σ∗, the function t �→ K(v)[t] is nonincreasing and eventually
constant with limit K(v).

We sketch the underlying idea before giving the formal proof. In order to ensure
that α has initial segments of high prefix-free Kolmogorov complexity, we want to
mimic Chaitin’s Ω, that is, the sum

∑
n 2–|h(n)|. Of course, overdoing this would

lead to a Martin-Löf random number in the limit, and such numbers cannot be
regainingly approximable. Instead, α is obtained from the series

∑
n 2–|h(n)| by

multiplying its elements by certain weights. More precisely, at any given time some
weight is fixed, and we keep adding elements to the series scaled by this weight.
As continuing to do this forever would lead to a scaled copy of Ω, that is, to
some Martin-Löf random number, that process must eventually produce a rational
number with an initial segment of high Kolmogorov complexity.

If at a stage t it looks as if that has happened, we change the weight to a new,
smaller value that is at most 2–t . As all new terms that are added to the series after t
will now be scaled by this new weight, their total sum cannot exceed 2–t . Doing this
for infinitely many t then ensures regaining approximability of α.

One issue with this approach is that we can never be sure about the stages when we
change weights. This is because prefix-free Kolmogorov complexity is uncomputable,
and we have to work with its approximations. Thus, it may turn out that what looked
like an initial segment of high complexity at stage t really has much lower complexity,
and as a result we may have dropped the weight too early. However, since α only
needs to be left-computable, it is easy to deal with this: we simply retroactively scale
up the weights of all terms that had been given too small a weight.

We now come to the formal construction, which will proceed in stages to define
computable functions �, r : N2 → N and w : N2 → N ∪ {∞} as well as a computable
sequence (at)t of dyadic rational numbers in the interval [0, 1). We shall write �(n)[t]
for �(n, t), r(n)[t] for r(n, t), and w(n)[t] for w(n, t).

At stage 0 define

�(n)[0] := 0 and r(n)[0] := n and w(n)[0] := ∞,

for all n ∈ N, as well as a0 := 0.
At a stage t with t > 0 first define �(0)[t] := 0 and, for n > 0,

�(n)[t] := min{m ∈ N : m > �(n – 1)[t] and K(at–1 � m)[t] > m}.

Note that this is well-defined because for a fixed t we have K(v)[t] = ∞ for almost
all v ∈ Σ∗. Intuitively speaking, �(n)[t] is our guess at stage t about the length of
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what we hope will be the nth witness for the existence of infinitely many initial
segments of α that have high complexity.

If there is no i < t with �(i)[t] �= �(i)[t – 1], then define

r(n)[t] := r(n)[t – 1] and w(n)[t] := w(n)[t – 1],

for every n ∈ N. Otherwise let it denote the minimal such i and define

r(n)[t] :=

{
r(n)[t – 1], if n ≤ it ,
r(n)[t – 1] + t, if it < n,

w(n)[t] :=

{
min(w(n)[t – 1], r(it)[t]), if n < t,
∞, otherwise,

for every n ∈ N. In either case, using the convention 2–∞ := 0, define

at :=
t–1∑
n=0

2–w(n)[t] · 2–|h(n)|.

Using the terminology from the informal proof sketch above, r is employed to reduce
weights when we believe that we discovered an initial segment of high complexity,
with the intent of ensuring regaining approximability ofα. This is then used to define
the function w determining the scaling factors that will be applied to the elements
of the series

∑
n 2–|h(n)|; note how the appearance of it in the definition of w enables

retroactively increasing these factors later if required.
This ends the description of the construction; we proceed with the verification.

It is easy to see that �, r, w, and (at)t are computable; we need to argue that
α := limt→∞ at exists with the desired properties. The following claims are
immediate.

Claim 1. For every t ∈ N the function n �→ r(n)[t] is increasing.
Claim 2. For every n ∈ N the function t �→ r(n)[t] is nondecreasing.
Claim 3. For every t ∈ N the function n �→ w(n)[t] is nondecreasing and satisfies

w(n)[t] = ∞ for all n ≥ t.
Claim 4. For every n ∈ N the function t �→ w(n)[t] is nonincreasing.
Due to Claim 3, using the convention 2–∞ = 0, we can write

at =
∞∑
n=0

2–w(n)[t] · 2–|h(n)|,

for all t ∈ N. By Claim 4, (at)t is nondecreasing, and since

at ≤
t–1∑
n=0

2–|h(n)| < 1,

for all t ∈ N, its limit α exists and is a left-computable number in (0, 1].

Claim 5. Let n0, t0 ∈ N be numbers such that:
(i) n0 < t0,

(ii) �(n0)[t0] �= �(n0)[t0 – 1],
(iii) for every t ≥ t0 and every i < n0, �(i)[t] = �(i)[t – 1].
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Then w(n)[t] = w(n)[t0] for all n < t0 and all t ≥ t0.

Proof. Fix any n < t0 and t > t0; in order to show w(n)[t] = w(n)[t0] we may
inductively assume that the statement has already been proven for t – 1, that is, that
w(n)[t – 1] = w(n)[t0] holds; thus it suffices to prove w(n)[t] = w(n)[t – 1].

This is clear by construction if there is no i < t with �(i)[t] �= �(i)[t – 1]; thus let
us assume that such an i does exist. In this case, by construction,

w(n)[t] = min(w(n)[t – 1], r(it)[t])

and hence it is enough to show that w(n)[t – 1] ≤ r(it)[t].
By definition we have �(it)[t] �= �(it)[t – 1]; thus (iii) implies it ≥ n0. Similarly,

(ii) and (iii) imply it0 = n0. Then using Claims 1 and 2 as well as the induction
hypothesis we obtain

w(n)[t – 1] = w(n)[t0] = min(w(n)[t0 – 1], r(it0 [t0]))

≤ r(it0)[t0] = r(n0)[t0] ≤ r(it)[t0] ≤ r(it)[t],

which concludes the proof. �

Claim 6. For every n ∈ N, the function t �→ �(n)[t] is eventually constant.

Proof. For the sake of a contradiction, assume that there is a smallest n0 ∈ N

such that t �→ �(n0)[t] is not eventually constant. By the definitions above we must
have n0 > 0. Define

t0 := min
{
t > n0 :

�(n0)[t] �= �(n0)[t – 1] and
(∀i < n0)(∀s ≥ t)(�(i)[s] = �(i)[s – 1])

}
and, for j > 0,

tj := min{t > tj–1 : �(n0)[t] �= �(n0)[t – 1]}.

The sequence (tj)j is trivially increasing and w(n)[tj ] = w(n)[t0] for all n < t0 and
all j ∈ N, by Claim 5.

We show by induction that w(n)[t] ≥ r(n0)[t0] for all n ≥ t0 and t ≥ t0:

• For t = t0 this is clear by Claim 3.
• For t > t0 and if there is no i < t with �(i)[t] �= �(i)[t – 1] then the assertion is

clear inductively by definition of w.
• If t > t0 and there is an i < t with �(i)[t] �= �(i)[t – 1] then,

– if n ≥ t we have w(n)[t] = ∞ > r(n0)[t0], and
– if n < t thenw(n)[t] = min(w(n)[t – 1], r(it)[t]) ≥ r(n0)[t0].This is because,

on the one hand, w(n)[t – 1] ≥ r(n0)[t0] can be assumed to hold inductively
and, on the other hand, r(it)[t] ≥ r(n0)[t] ≥ r(n0)[t0] by Claims 1 and 2
together with the fact that it ≥ n0 by choice of t0.

By choice of t0 we have for every j ∈ N that itj = n0 and thus

r(itj )[tj ] = r(n0)[tj ] = r(n0)[t0].
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Combining this with the previous results and using the definition of w, for j > 0 we
see that

w(n)[tj ] = r(n0)[t0] for t0 ≤ n < tj.
Hence, for all j > 0 we obtain

atj =
tj–1∑
n=0

2–w(n)[tj ] · 2–|h(n)|

=
t0–1∑
n=0

2–w(n)[t0] · 2–|h(n)| +
tj–1∑
n=t0

2–r(n0)[t0] · 2–|h(n)|

= b0 + 2–r(n0)[t0] ·
tj–1∑
n=0

2–|h(n)|,

where b0 is the rational number given by

b0 :=
t0–1∑
n=0

(
2–w(n)[t0] – 2–r(n0)[t0]

)
· 2–|h(n)|.

Writing Ω :=
∑
u∈dom(U ) 2–|u| =

∑∞
n=0 2–|h(n)| we conclude that

α = b0 + 2–r(n0)[t0] · Ω.

Thus we see that α is Martin-Löf random, and by a result of Chaitin [3] (see, for
instance, Downey and Hirschfeldt [4, Corollary 6.6.2]) we have for all sufficiently
large m that K(α � m) > m. Fix an m0 > �(n0 – 1)[t0] with K(α � m0) > m0, and
a j0 such that, for all t ≥ tj0 , we have at–1 � m0 = α � m0. Then, for t ≥ tj0 we obtain

K(at–1 � m0)[t] = K(α � m0)[t] ≥ K(α � m0) > m0,

hence, by definition, �(n0)[t] ≤ m0 for any such t. Combining this with the fact that
the map t �→ �(n0)[t] is by definition nondecreasing for t ≥ tj0 shows that it must
be eventually constant after all, a contradiction. �

Define Ln := limt→∞ �(n)[t], for n ∈ N. By the definition of � we have that (Ln)n
is increasing and that

K(α � Ln) > Ln for all n ∈ N. (∗)

It remains to show thatα is regainingly approximable. To that end, define a sequence
(sm)m by

sm := max
(
{0} ∪ {s ∈ N : (∃i < m) (i < s and �(i)[s] �= �(i)[s – 1])}) ,

for all m ∈ N. Clearly, (sm)m is nondecreasing.

Claim 7. The sequence (sm)m is unbounded.

Proof. For the sake of a contradiction, let us assume that (sm)m is bounded
and that S ∈ N is an upper bound. Then, for all t > S and all m ∈ N there is no
i < m with i < t and �(i)[t] �= �(i)[t – 1]. Hence, for all t > S and i < t we have
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�(i)[t] = �(i)[t – 1]. This implies w(n)[t] = w(n)[t – 1] for all n ∈ N and all t > S.
We obtain at = at–1 for all t > S, hence,α = aS . Thusα would be a rational number,
which contradicts (∗). �

Consider an m ∈ N with sm > 0. We claim that

α – asm < 2–sm .

By Claim 4, for every n ∈ N, the function t �→ w(n)[t] is eventually constant. Thus
we can defineWn := limt→∞w(n)[t] for every n ∈ N and write

α =
∞∑
n=0

2–W (n) · 2–|h(n)|.

Claim 8. For n < sm we haveW (n) = w(n)[sm].

Proof. By definition of sm, we have �(i)[t] = �(i)[t – 1] for
all t ≥ sm and all i < ism . Thus, the claim follows from Claim 5 with sm in place of
t0 and ism in place of n0. �

Claim 9. For n ≥ sm we haveW (n) ≥ sm.

Proof. It suffices to prove that w(n)[t] ≥ sm for all t ≥ sm and n ≥ sm. We
proceed by induction over t. By Claim 3 the assertion is clear for t = sm. Thus
consider an arbitrary t > sm. If there is no i < t with �(i)[t] �= �(i)[t – 1], then the
assertion is clear inductively by definition of w.

So let us assume that there exists such an i. In case that n ≥ t we obtain
w(n)[t] = ∞ > sm, and we are done. Otherwise, if n < t, then by definition
w(n)[t] = min(w(n)[t – 1], r(it)[t]). Assuming inductively that the assertion is
already proven for t – 1, it is thus enough to show r(it)[t] ≥ sm. By the definition
of sm we have it > ism , thus by Claim 2,

r(it)[t] ≥ r(it)[sm] = r(it)[sm – 1] + sm ≥ sm,

completing the proof of Claim 9. �

Using Claim 8 it follows that

asm =
sm–1∑
n=0

2–w(n)[sm ] · 2–|h(n)| =
sm–1∑
n=0

2–W (n) · 2–|h(n)|,

and thus, using Claim 9, we can conclude that

α – asm =
∞∑
n=sm

2–W (n) · 2–|h(n)|

≤
∞∑
n=sm

2–sm · 2–|h(n)|

< 2–sm · Ω

< 2–sm . �
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§7. Complexity of regainingly approximable sets. As every c.e. set is i.o. K-trivial
by a result of Barmpalias and Vlek [2, Proposition 2.2], this holds in particular for
every regainingly approximable set. Thus, in analogy to the results in the last section,
it is natural to wonder if a regainingly approximable set may at the same time have
infinitely many initial segments of high Kolmogorov complexity.

Of course, in the setting of c.e. sets, there is no hope of achieving complexities as
high as in the previous section; this is because for any such set A we trivially have
C (A � n) ≤+ 2 log n for all n. Kummer [7, Theorem 3.1] showed that there exist c.e.
sets that achieve this trivial upper bound infinitely often; to be precise, that there
exists a c.e. set A and a constant d ∈ N such that, for infinitely many n,

C (A � n) ≥ 2 log n – d. (†)

Such sets have been named Kummer complex (see, for instance, Downey and
Hirschfeldt [4, Section 16.1]). We will show that there are Kummer complex
regainingly approximable sets.

For prefix-free complexity, analogous observations can be made: In this setting it
is easy to see that for every computably enumerable set A we have

K(A � n) ≤+ 2 log(n) + 2 log log(n)

for all n ∈ N. Barmpalias and Downey [1, Theorem 1.10] constructed a c.e. set A
and a number d ∈ N with

K(A � n) ≥ 2 log(n) + log log(n) – d

for infinitely many n ∈ N; for the purposes of this article we will call such sets
Kummer K-complex. Again, we will show that there are Kummer K-complex
regainingly approximable sets.

Thus, in this sense, regainingly approximable sets can achieve both maximal plain
and maximal prefix-free complexity infinitely often.

Theorem 7.1. There exists a regainingly approximable set that is Kummer complex.

We will use the following lemma in the proof.

Lemma 7.2. For any c.e. sets X,Y ⊆ N there exists some d ∈ N with

C ((X ∪ Y ) � n) ≤ max{C (X � n), C (Y � n)} + d (‡)

for all n ∈ N.

In the remainder of this section we write U for the Turing machine U1 that was
used to define plain Kolmogorov complexity.

Proof of Lemma 7.2. Let fX : N → N and fY : N → N be computable enumer-
ations (in the sense defined in Section 4) of X and Y, respectively. Then fZ : N → N

defined by

fZ(n) :=

{
fX (n/2), if n is even,
fY ((n – 1)/2), if n is odd,

is a computable enumeration of Z := X ∪ Y . Define a computable function
g : dom(g) → Σ∗ with dom(g) ⊆ Σ∗ as follows for every v ∈ Σ∗:
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• If U (v) is defined and if there is a t ∈ N such that

U (v) = Enum(fX )[t] � |U (v)|,
then let t be the smallest such number and set

g(v0) := Enum(fZ)[2t] � |U (v)|.
Otherwise we leave g(v0) undefined.

• If U (v) is defined and if there is a t ∈ N such that

U (v) = Enum(fY )[t] � |U (v)|,
then let t be the smallest such number and set

g(v1) := Enum(fZ)[2t] � |U (v)|.
Otherwise we leave g(v1) undefined.

For the verification, consider any n ∈ N. Let sX ∈ N be the smallest
number with Enum(fX )[sX ] � n = X � n, and let sY ∈ N be the smallest
number with Enum(fY )[sY ] � n = Y � n. Then s := max{sX , sY } satisfies
Enum(fZ)[2s] � n = Z � n.

If s = sX , then for every v ∈ Σ∗ with U (v) = X � n we obtain g(v0) = Z �
n. Similarly, if s = sY , then for every v ∈ Σ∗ with U (v) = Y � n we obtain
g(v1) = Z � n. Thus,

C (Z � n) ≤+ Cg(Z � n) ≤ max{C (X � n), C (Y � n)} + 1. �

Note that the proof works equally well with prefix-free complexity in place of
plain complexity, leading to the following corollary.

Corollary 7.3. For any c.e. sets A,B ⊆ N there exists some d ∈ N with

K((A ∪ B) � n) ≤ max{K(A � n), K(B � n)} + d

for all n ∈ N.

Proof of Theorem 7.1. Let Z ⊆ N be a c.e. Kummer complex set. By
Theorem 5.1 there exist regainingly approximable sets X,Y ⊆ Z with X ∪ Y = Z.
Fix a constant d ∈ N that is large enough to witness the Kummer complexity (†) of
Z and such that (‡) is true for all n. If we let c := 2d , then we have, for the infinitely
many n satisfying (†), that

2 log(n) – d ≤ C (Z � n) ≤ max{C (X � n), C (Y � n)} + d,

hence,

max{C (X � n), C (Y � n)} ≥ 2 log(n) – c,

and at least one of X and Y has to be Kummer complex. �
By applying the same proof to a set Z that is Kummer K-complex instead of

Kummer complex and by replacing the use of Lemma 7.2 by that of Corollary 7.3,
we can also obtain the following result.

Theorem 7.4. There exists a regainingly approximable set that is Kummer
K-complex.
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§8. Arithmetical properties. The class of regainingly approximable sets is not
closed under union, according to Theorems 5.1 and 5.3. The following limited
closure properties do hold, however, and will be useful in the proof of the next
theorem.

Lemma 8.1. (1) The union of a regainingly approximable set and a decidable set
is regainingly approximable.

(2) If A is a regainingly approximable set and f : N → N is a computable,
nondecreasing function, then the set

f(A) := {n ∈ N : (∃k ∈ A) n = f(k)}

is regainingly approximable.

Proof. Let A ⊆ N be a regainingly approximable set. By Theorem 4.7 there
exists a computable idN-good enumeration g : N → N of A. For the first assertion,
let B ⊆ N be a decidable set. Then the function h : N → N defined by h(2n) := g(n)
and h(2n + 1) := n + 1 if n ∈ B , h(2n + 1) := 0 if n �∈ B , is a computable and
2n-good enumeration of A ∪ B .

For the second assertion, letf : N → N be a computable, nondecreasing function.
Then the function h : N → N defined by

h(n) :=

{
0, if g(n) = 0,
f(g(n) – 1) + 1, if g(n) > 0,

for n ∈ N, is a computable enumeration of f(A). If f is bounded then f(A) is
finite and h is trivially an idN-good enumeration of f(A). Thus assume that f is
unbounded. Then the function r : N → N defined by

r(n) := max{m ∈ N : f(m) ≤ n},

for n ∈ N, is computable, nondecreasing, and unbounded. We claim that h is an
r-good enumeration of f(A). By assumption, the set

B := {m ∈ N : {0, ... , m – 1} ∩ A ⊆ Enum(g)[m]}

is infinite. So is the set C := f(B). Consider numbers n ∈ C and m ∈ B with
f(m) = n. Then m ≤ r(n) and we obtain

{0, ... , n – 1} ∩ f(A) = {0, ... , f(m) – 1} ∩ f(A)

⊆ f({0, ... , m – 1} ∩ A)

⊆ f(Enum(g)[m])

= Enum(h)[m]

⊆ Enum(h)[r(n)]. �

The class of regainingly approximable sets is also not closed under intersection,
as the following theorem establishes.

Theorem 8.2. There exist regainingly approximable setsA,B ⊆ N such thatA ∩ B
is not regainingly approximable.
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Proof. For natural numbers a, b and a set D ⊆ N we write (a ·D + b) for the
set

(a ·D + b) := {n ∈ N : (∃d ∈ D) n = a · d + b}

and (a ·D) for the set (a ·D + 0). By Theorem 5.3 there exists a c.e. set C̃ ⊆ N that
is not regainingly approximable. By Theorem 5.1 there exist two disjoint, regainingly
approximable sets Ã, B̃ ⊆ N with Ã ∪ B̃ = C̃ . By Lemma 8.1 the sets

A := (2 · Ã) ∪ (2 · N + 1) and B := (2 · B̃ + 1) ∪ (2 · N)

are regainingly approximable. We claim that their intersection

A ∩ B = (2 · Ã) ∪ (2 · B̃ + 1)

is not regainingly approximable. To see this, let g : N → N be defined by
g(n) = 	n/2
 for all n ∈ N. We observe C̃ = g(A ∩ B). Thus, if A ∩ B were a
regainingly approximable set, then so would be C̃ according to Lemma 8.1(2),
a contradiction. �

We return to the study of regainingly approximable numbers.

Corollary 8.3. (1) There exists a strongly left-computable number that is not
regainingly approximable.

(2) There exists a strongly left-computable number that is regainingly approximable
but not computable.

Proof. The first assertion follows from Theorems 4.7 and 5.3. The second
assertion follows from Corollary 5.2 and Theorem 4.7 and from the well-known fact
that, for any A ⊆ N, the number 2–A is computable if and only if A is decidable. �

From now on, let ≤S denote Solovay [16] reducibility (see, for instance, Downey
and Hirschfeldt [4, Section 9.1]) between left-computable numbers. The following
result states that the regainingly approximable numbers are closed downwards with
respect to this reducibility.

Proposition 8.4. Let � be a regainingly approximable number, and let α be a
left-computable number with α ≤S � . Then α is regainingly approximable as well.

Proof. Let f : {q ∈ Q : q < �} → Q be a computable function and c ∈ N

be a number such that, for all q ∈ {q ∈ Q : q < �}, we have f(q) < α and
α – f(q) < 2c · (� – q). By Proposition 3.2 there exists a computable and increasing
sequence (bn)n of rational numbers converging to � such that � – bn < 2–n–c for
infinitely many n ∈ N. The sequence (an)n defined by

an := max{f(bi) : 0 ≤ i ≤ n}

is a nondecreasing, computable sequence of rational numbers converging to α. For
the infinitely many n with � – bn < 2–n–c we obtain

α – an ≤ α – f(bn) < 2c · (� – bn) < 2–n. �
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Corollary 8.5. (1) If the sum of two left-computable numbers is regainingly
approximable, then both of them are regainingly approximable.

(2) The sum of a regainingly approximable number and a computable number is
again a regainingly approximable number.

Proof. The first assertion follows from Proposition 8.4 and from the fact that
for any two left-computable numbers α, � one has α ≤S α + � and � ≤S α + � .

Since adding a computable number to a left-computable number does not change
its Solovay degree, the second assertion follows from Proposition 8.4 as well. �

Corollary 8.6. Every strongly left-computable number can be written as the sum
of two strongly left-computable numbers that are regainingly approximable.

Proof. This follows from Theorem 5.1 together with Theorem 4.7. �

Corollary 8.7. There exist two strongly left-computable and regainingly approx-
imable numbers whose sum is not regainingly approximable.

Proof. According to Corollary 8.3(1), there exists a strongly left-computable
number � that is not regainingly approximable. Then, according to Corollary 8.6,
there exist two strongly left-computable and regainingly approximable numbers
α, � with α + � = � that witness the truth of the assertion. �

Corollary 8.6 raises the question whether every left-computable number can be
written as the sum of two regainingly approximable numbers; the answer is no. This
follows from Proposition 6.1, from the fact that there exist Martin-Löf random
left-computable numbers, and from the result of Downey, Hirschfeldt, and Nies [5,
Corollary 3.6] that the sum of two left-computable numbers that are not Martin-Löf
random is again not Martin-Löf random.

§9. Splitting regular reals. In Theorem 5.1 we have seen that for any c.e. setC ⊆ N

there exist two disjoint, regainingly approximable sets A,B ⊆ N with C = A ∪ B .
That result left open whether this splitting can be obtained effectively. We now give
a positive answer by presenting an according algorithm in the following lemma. We
will formulate this splitting algorithm in a more general form so that we may apply
it not only to the class of c.e. sets, but in fact to a larger class of objects, namely to
the regular reals as defined by Wu [18].

For a function f : N → N and a set S ⊆ N from now on we will write

f–1S := {i ∈ N : f(i) ∈ S}.

Lemma 9.1. There is an algorithm which, given a function f : N → N with the
property that f–1{n + 1} is finite for every n, computes two functions g, h : N → N

such that for every n

|g–1{n + 1}| + |h–1{n + 1}| = |f–1{n + 1}| (∗)

and such that there exists an increasing sequence (Si)i with

g–1{1, ... , Si} ⊆ {0, ... , Si – 1} for all even i and

h–1{1, ... , Si} ⊆ {0, ... , Si – 1} for all odd i.
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Proof. Let a function f as in the statement be given. We will describe an
algorithm that works in stages to define the desired functions g and h, as well
as a function s : N× N → N. We write si [t] for s(i, t) to express the intuition that
si [t] is our current guess for Si at stage t.

We begin with a high-level overview of the proof strategy: Whenever f enumerates
a number n at stage t, we need to let either g or h enumerate it. To decide between
the two, we follow a greedy strategy in the following sense: for every t the sequence
(si [t])i will be increasing; if at stage t the largest number i with si [t] ≤ n is even
then we let g enumerate n, otherwise h. As we will show this is sufficient to prove
the statement of the lemma; in particular, for every i, (si [t])t will turn out to be
nondecreasing and eventually constant, allowing us to define Si := limt→∞ si [t].

With this we are ready to give the formal proof.
At stage 0 we define si [0] := i for all i ∈ N.
At a stage t + 1 with t ∈ N we proceed as follows:

• Iff(t) = 0 then we set g(t) := 0 and h(t) := 0. Intuitively speaking this means
that f does not enumerate any new element at stage t, and that we therefore do
not let g and h enumerate any new elements either. We also set si [t + 1] := si [t]
for all i ∈ N.

• If f(t) > 0 then this means n := f(t) – 1 is enumerated by f at stage t. We
want to let n be enumerated by either g or by h, as follows: If

kt := min{j ∈ N : sj [t] > n}

is even then we set g(t) := 0 and h(t) := n + 1 (which means that n is
enumerated by h); otherwise, ifkt is odd, then we setg(t) := n + 1 andh(t) := 0
(which means that n is enumerated by g). Furthermore, we define si [t + 1] for
all i ∈ N by

si [t + 1] :=

{
si [t], if i ≤ kt,
si [t] + t + 1, if kt < i.

This ends the description of stage t and of the algorithm; we proceed with the
verification.

Claim 1. For every t ∈ N, the sequence (si [t])i is increasing.

Proof. We prove the claim by induction over t; it clearly holds for t = 0. Fix any
t ∈ N and assume that (si [t])i is increasing. If f(t) = 0 then (si [t + 1])i is identical
to (si [t])i and hence it is increasing as well. Thus assume that f(t) > 0; then kt is
defined by the induction hypothesis and we can observe that (si [t])i is increasing:

• For any i < j ≤ kt we have

si [t + 1] = si [t] < sj [t] = sj [t + 1].

• For any i ≤ kt < j we have

si [t + 1] = si [t] < sj [t] < sj [t] + t + 1 = sj [t + 1].
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• For any kt < i < j we have

si [t + 1] = si [t] + t + 1 < sj [t] + t + 1 = sj [t + 1].

This proves the claim. �
By Claim 1, for every t ∈ N with f(t) > 0, the number kt is well defined; thus it is

clear that g and h as defined by the algorithm satisfy (∗) for every n ∈ N. It remains
to prove the second condition in the statement of the lemma.

Claim 2. For every i, the sequence (si [t])t is nondecreasing and eventually constant.

Proof. That (si [t])t is nondecreasing for every i is clear by definition. We show
by induction over i that it is eventually constant as well.

It is easy to see that s0[t] = 0 for all t. Thus consider an arbitrary
number i > 0. By the induction hypothesis there exists a number t1 such that,
for all t ≥ t1, si–1[t] = si–1[t1]. Let t2 be large enough so that t2 > t1 and

f–1{1, ... , si–1[t1]} ⊆ {0, ... , t2 – 1}
(meaning that numbers smaller than si–1[t1] are enumerated by f only in stages
before t2). Then, for every t ≥ t2 with f(t) > 0 and for every j < i we have

sj [t] ≤ si–1[t] = si–1[t1] ≤ f(t) – 1,

hence, kt ≥ i and consequently si [t + 1] = si [t]. By induction we obtain
si [t] = si [t2], for all t ≥ t2. Thus, (si [t])t is eventually constant, and Claim 2 is
proven. �

Let the sequence (Si)i be defined by Si := limt→∞ si [t]. Due to Claim 1, (Si)i is
increasing.

Claim 3. For every i ∈ N and every t ≥ Si , si [t] = Si .

Proof. If this were not true then there would be some t ≥ Si with
si [t + 1] �= si [t], hence, with Si ≥ si [t + 1] = si [t] + t + 1 ≥ t + 1 > Si , a con-
tradiction. �

Claim 4. For every even i, g–1{1, ... , Si} ⊆ {0, ... , Si – 1}.

Proof. Consider an even number i as well as some t ≥ Si with g(t) > 0; we need
to show that g(t) > Si . To see this, first observe that the assumption that g(t) > 0
implies that we must have f(t) = g(t) and that kt must be odd. Hence kt �= i .
If kt were smaller than i then we would obtain si [t + 1] = si [t] + t + 1 > si [t] = Si
in contradiction to Claim 3. We conclude i < kt . This implies si [t] ≤ f(t) – 1 by
the definition of kt . As t ≥ Si , using Claim 3 again, we obtain

Si = si [t] ≤ f(t) – 1 < f(t) = g(t),

which proves Claim 4. �
Claim 5. For every odd i, h–1{1, ... , Si} ⊆ {0, ... , Si – 1}.

Proof. The proof is symmetric to that of Claim 4; it is enough to interchange
“even” and “odd” and to replace “g” by “h”. �

�
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As a corollary we immediately obtain the following uniformly effective version
of Theorem 5.1. Note that the algorithm even provides idN-good enumerations
of A and B. While we already showed in Theorem 4.7 that idN-good computable
enumerations exist for all regainingly approximable sets, its proof was not fully
uniform.

Theorem 9.2. Given an enumeration fC : N → N of a set C ⊆ N one can compute
enumerations without repetitions fA : N → N of a set A ⊆ N and fB : N → N of a set
B ⊆ N such that:

(1) C is the disjoint union of A and B, and
(2) there exist infinitely many t with

A ∩ {0, ... , t – 1} ⊆ Enum(fA)[t]

and infinitely many t with

B ∩ {0, ... , t – 1} ⊆ Enum(fB)[t].

Proof. First transform fC into an enumeration without repetitions f̃C as
in Remark 4.5; then apply the algorithm described in the proof of Lemma 9.1
to f̃C . �

Lemma 9.1 can also be applied to regular reals as defined by Wu [18].

Definition 9.3 (Wu [18]). (1) For n ∈ N, a real number is called n-strongly
computably enumerable (n-strongly c.e.) if it can be written as the sum
of n strongly left-computable numbers.

(2) If a real number is n-strongly c.e. for some n ∈ N, then it is called regular.

Such numbers can be characterized conveniently by using the following repre-
sentation � (in the sense of Weihrauch [17]) of non-negative real numbers: Call
f : N → N a �-name of a non-negative real number α if the series

∑
k ak defined by

ak :=

{
2–f(k), if f(k) > 0,
0, if f(k) = 0,

converges to α. Note that, if some f : N → N is a �-name of a non-negative
real number, then f–1{i + 1} must be finite for every i ∈ N; if we even have
|f–1{i + 1}| ≤ n for some n ∈ N and all i ∈ N, then we say that f is a (�, n)-name
of α. Then the following lemma is obvious.

Lemma 9.4. For n ∈ N, a non-negative real number α is n-strongly c.e. if and only
if there exists a computable (�, n)-name f of α.

Applying our previous results to the regular reals, we obtain the following final
theorem.

Theorem 9.5. (1) Given a �-name (or a (�, n)-name)f� of a non-negative real
number �, one can compute �-names (or (�, n)-names)fα of a non-negative real
number α and f� of a non-negative real number � with α + � = � and such
that there exist infinitely many t with

f–1
α {1, ... , t} ⊆ {0, ... , t – 1}
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and infinitely many t with

f–1
� {1, ... , t} ⊆ {0, ... , t – 1}.

(2) For every n and every n-strongly c.e. real � there exist n-strongly c.e. reals
α and � with α + � = � that are additionally regainingly approximable.

(3) For every regular real � there exist regular reals α and � with α + � = � that
are additionally regainingly approximable.

Proof. Applying the algorithm in the proof of Lemma 9.1 to f� proves the first
assertion. For the second assertion, use the first assertion and the following claim.

Claim. Let f be a (�, n)-name of a non-negative real number α such that there
exist infinitely many t with f–1{1, ... , t} ⊆ {0, ... , t – 1}. Then α is regainingly
approximable.

Proof. As above, define

ak :=

{
2–f(k), if f(k) > 0,
0, if f(k) = 0,

and At :=
∑
k<t ak . Then the sequence (At)t is a computable nondecreasing

sequence converging to α =
∑∞
k=0 ak . For any of the infinitely many t with

f–1{1, ... , t} ⊆ {0, ... , t – 1} we obtain

α – At =
∞∑
k=t

ak ≤ n ·
∞∑
j=t+1

2–j = n · 2–t .

By Proposition 3.2 this implies that α is regainingly approximable. �
The third follows immediately from the second assertion. �
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