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Zusammenfassung

In dieser Studie wurde eine Untersuchung der zukünftigen Wasserressourcenbedingungen des
Untersuchungsgebiets durchgeführt, indem Klimamodellausgaben aus dem neuen CMIP6-
Archiv mit hydrologischen Modellen integriert wurden. Es wurden vergleichende Bewertun-
gen zwischen den Ergebnissen hydrologischer Modelle, die datengesteuerte Ansätze nutzen,
und solchen, die aus dem Soil and Water Assessment Tool (SWAT) abgeleitet wurden,
durchgeführt. Die Motivation für diese Forschung resultiert aus den Diskrepanzen in den
Ergebnissen zahlreicher früherer Studien im Teilbecken, die hauptsächlich darauf abzielten,
vergangene hydroklimatische Bedingungen zu erläutern.

Um Einblick in die zukünftige Wasserverfügbarkeit im Teilbecken zu erhalten, wurden
zwölf Klimamodelle zunächst ausgewählt und auf der Grundlage ihrer Fähigkeit zur Simu-
lation beobachteter historischer Klimazonen bewertet. Ein akribischer Downscaling-Prozess
wurde unter der CDO-Plattform implementiert, gefolgt von einer Bias-Korrektur unter Ver-
wendung der QM-Technik für alle Klimamodelldaten. Nach einer rigorosen Bewertung wur-
den fünf Klimamodelle (ECEARTH3, GFDL-ESM4, MPI-ESM1-2-HR, MRI-ESM2 und INM-
CM5-0) aufgrund ihrer relativ robusten Potenziale zur Erfassung verschiedener Merkmale der
beobachteten Klimaserien identifiziert.

Zeitreihenmodelle, die unter Regimewechsel- und datengesteuerten Ansätzen kategorisiert
sind, wurden auf ihr Potenzial hin untersucht. Selbstanregende TAR (SETAR) und Logistisch-
Glatte TAR (LSTAR) Modelle, Variationen von TAR-Modellen, wurden auf die Durch-
flussdaten ausgewählter Stationen im Teilbecken mit lobenswerter Genauigkeit angewendet.
Unter den datengesteuerten Modellen (DDMs) zeigte das Adaptive Neuro-Fuzzy Inference
System (ANFIS) Modell das größte Potenzial bei der Simulation der Durchflussreihen aus-
gewählter Pegelstationen im Teilbecken. Schließlich wurde das Nonlinear Auto-Regressive
with eXogenous inputs (NARX) Modell aus den DDMs aufgrund seiner minimalen Date-
nanforderungen und einfachen Modellkonfiguration ausgewählt. Zusätzlich unterzog sich das
SWAT-Modell einer Kalibrierung und Validierung.

In der Folge wurde das NARX-Modell zusammen mit dem SWAT-Modell eingesetzt, um
zukünftige Wasserressourcenbedingungen im Teilbecken zu analysieren.

Unter Verwendung des trainierten NARX-Modells und des zuvor validierten SWAT-
Modells fand die Untersuchung der zukünftigen Wasserressourcenbedingungen am Auslass
des Teilbeckens mit Hilfe neuer CMIP6-Klimaszenarien statt. Diese Szenarien wurden durch
die Zusammenstellung der Ausgaben der fünf ausgewählten Klimamodelle abgeleitet. Die
Analyse prognostizierte einen Anstieg des Frühjahrs- und Sommerabflusses für alle Szenar-
ien (SSP1.26, SSP2.45 und SSP5.85) über nahe (2022-2039), mittlere (2040-2069) und ferne
(2070-2099) Zeiträume hinweg. Darüber hinaus deuteten die Ergebnisse aus der Analyse
des Standardized Discharge Index (SDI) für simulierte zukünftige Wasserverfügbarkeit auf
eine höhere Wahrscheinlichkeit von feuchten Ereignissen im Vergleich zu trockenen hin. An-
gesichts der bestehenden Landnutzungs- und Wasserressourcenmanagementbedingungen im
Teilbecken legen diese Ergebnisse eine erhöhte Wahrscheinlichkeit zukünftiger Überschwemmungen
in den niedrig gelegenen Gebieten des Teilbeckens und der aufeinanderfolgenden unter-
stromgelegenen Teile des Awash-Beckens nahe.
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Abstract

In this study, an investigation into the prospective water resource conditions of the study
area was conducted by integrating climate model outputs from the new CMIP6 archive with
hydrological models. Comparative assessments were made between the outcomes of hydro-
logical models utilizing data-driven approaches and those derived from the Soil and Water
Assessment Tool (SWAT). The motivation for this research stems from the discrepancies in
the outputs of numerous past studies in the sub-basin that primarily aimed to elucidate past
hydro-climatic conditions.

To gain insight into future water availability within the sub-basin, twelve climate models
were initially selected and evaluated based on their capacity to simulate observed historical
climates. A meticulous downscaling process was implemented under the CDO platform,
followed by bias correction using the QM technique on all climate model outputs. Following
a rigorous evaluation, five climate models (ECEARTH3, GFDL-ESM4, MPI-ESM1-2-HR,
MRI-ESM2, and INM-CM5-0) were identified for their relatively robust potential in capturing
various characteristics of the observed climate series.

Time series models, categorized under regime switching and data-driven approaches, were
scrutinized for potential. Self-Exciting TAR (SETAR) and Logistic-Smooth TAR (LSTAR)
models, variations of TAR models, were applied to the flow data of selected stations in the
sub-basin with a commendable degree of accuracy. Among the data-driven models (DDMs),
the Adaptive Neuro-Fuzzy Inference System (ANFIS) model exhibited the greatest potential
in simulating the flow series of selected gauging stations in the sub-basin. Ultimately, the
Nonlinear Auto-Regressive with eXogenous inputs (NARX) model from DDMs was chosen
for its minimal data requirements and ease of model setup. Additionally, the SWAT model
underwent calibration and validation.

Subsequently, the NARX model, in conjunction with the SWAT model, was employed to
analyze future water resource conditions in the sub-basin.

Using the trained NARX model and the previously validated SWAT model, the examina-
tion of future water resource conditions took place at the sub-basin outlet with the assistance
of new CMIP6 climate scenarios. These scenarios were derived by ensembling the outputs
of the five selected climate models. The analysis projected an increase in both spring and
summer flow for all scenarios (SSP1.26, SSP2.45, and SSP5.85) across near (2022-2039), mid
(2040-2069), and far (2070-2099) time periods. Additionally, the outputs indicated a de-
crease in dry period flow. Results from the Standardized Discharge Index (SDI) analysis on
simulated future water availability suggested a higher likelihood of wet events compared to
dry ones. Considering existing land use and water resource management conditions in the
sub-basin, these findings imply an increased probability of future flooding in the low-lying
areas of the sub-basin and successive downstream parts of the Awash basin.
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5.10 Different types of fuzzy numbers and their mathematical notations. . . . . . 73
5.11 Defuzzification of fuzzy membership function for a given fuzzy set c̄ using

Maximum Membership Principle . . . . . . . . . . . . . . . . . . . . . . . . 73
5.12 Defuzzification of fuzzy membership function for a given fuzzy set c̄ using

Weighted Average Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
5.13 Defuzzification of fuzzy membership function for a given fuzzy set c̄ using

Mean-Max Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.14 Mamdani Inference System for two inputs, one output, one membership func-

tion for each, and two rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.15 Takagi-Sugeno Inference System for two inputs, one output, one membership

function for each, and two rules. . . . . . . . . . . . . . . . . . . . . . . . . 77
5.16 Tsykamoto Inference System for two inputs, one output, one membership func-

tion for each, and two rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.17 ANFIS layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.18 De-seasonlizing of monthly series of Hombole station. . . . . . . . . . . . . . 81
5.19 PACF of Monthly Box-Cox transformed and deseasonalized Hombole flow se-

ries to identify order(p). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xiii



5.20 Grid search for Hombole flow series to identify which combination of (mL,mH,d)
will yield low pooled AIC for SETAR model Fitting. . . . . . . . . . . . . . 83

5.21 PACF plot with confidence band (95%) for the residual of SETAR (1,7,5)
model fitted to deseasonalized series of monthly Hombole station. . . . . . . 84

5.22 Transformed and deseasonalized monthly Hombole station flow series with
threshold lines (SETAR threshold (Red line) = 0.065m3/s and LSTAR thresh-
old ( dotted blue line)= 0.068m3/s) overlaid. . . . . . . . . . . . . . . . . . . 84

5.23 Transition function (G(St)) of transformed and deseasonalized monthly Hom-
bole flow series (St) with the red dotted line indicating the threshold value =
0.068 m3/s used in the fitted model. . . . . . . . . . . . . . . . . . . . . . . 85

5.24 PACF plot with confidence band (95%) for the residual of LSTAR (1,7,7)
model fitted to deseasonalized series of monthly Hombole station. . . . . . . 87

5.25 Monthly plot of original and forecasted SETAR (Left) and LSTAR (right)
model outputs for the period (01/01/2003-12/01/2009) in Hombole station. . 88

5.26 Scatter plot of original and forecasted SETAR (Left) and LSTAR (right) model
outputs fo the test period for the monthly flow series in Hombole station. . . 89

5.27 Transformed and deseasonalized monthly MelkaKuntere station flow series
with threshold lines (SETAR threshold (Red line) = −0.288m3/s and LSTAR
threshold ( dotted blue line)= −0.356m3/s) overlaid. . . . . . . . . . . . . . 90

5.28 Original and Forecasted SETAR and LSTAR model output for Melka station. 91
5.29 Original and Forecasted SETAR (left) and LSTAR (right) model trend fit line

for Melka station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.30 Transformed and deseasonalized monthly Akaki station flow series with thresh-

old lines (SETAR threshold (Red line) = −0.26m3/s and LSTAR threshold (
dotted blue line)= −0.57m3/s) overlaid. . . . . . . . . . . . . . . . . . . . . 92

5.31 Original and Forecasted SETAR and LSTAR model output for Akaki station. 94
5.32 Original and Forecasted SETAR (left) and LSTAR (right) model trend fit line

for Akaki station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.33 Hombole station NARX model performance using different input combinations

for Train and Test period . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.34 Hombole station NARX simulation for Train and Test period and its perfor-

mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.35 Hombole station Observed versus NARX output scatter plot for train (left)

and test (right) period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.36 Hombole station NARX bootstrapped (Mean and 95% Lower Limit(LL) - Up-

per Limit (UL) versus Prediction for test period. . . . . . . . . . . . . . . . . 98
5.37 Melka Kuntere station NARX model performance using different input com-

binations for Train and Test period . . . . . . . . . . . . . . . . . . . . . . . 99
5.38 Melka station NARX simulation for Train and Test period and its performance. 99
5.39 Melka station Observed versus NARX output scatter plot for train (left) and

test (right) period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.40 Melkakuntere station NARX bootstrapped (Mean and 95% Lower Limit(LL)

- Upper Limit (UL) versus Prediction for test period. . . . . . . . . . . . . . 100
5.41 Akaki station NARX model performance using different input combinations

for Train and Test period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.42 Akaki station NARX simulation for Train and Test period and its performance.102

xiv



5.43 Akaki station Observed versus NARX output scatter plot for train (left) and
test (right) period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.44 Akaki station NARX bootstrapped (Mean and 95% Lower Limit(LL) - Upper
Limit (UL) versus Prediction for test period. . . . . . . . . . . . . . . . . . . 103

5.45 Performance of ANFIS model for different input combinations of variables to
predict 12 month ahead flow. . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.46 Hombole station ANFIS simulation for Train and Test period and its perfor-
mance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.47 Hombole station Observed versus ANFIS output scatter plot for train (left)
and test (right) period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.48 Hombole station ANFIS bootstrapped (Mean, Lower Limit (LL), and Upper
Limit(UL)) versus Prediction for test period. . . . . . . . . . . . . . . . . . . 108

5.49 Melkakuntere station ANFIS simulation for Train and Test period and its
performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.50 Melkakuntere station Observed versus ANFIS output scatter plot for train
(left) and test (right) period. . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.51 Melkakuntere station ANFIS bootstrapped (Mean, Lower Limit (LL), and
Upper Limit(UL)) versus Prediction for test period. . . . . . . . . . . . . . . 110

5.52 Akaki station ANFIS simulation for Train and Test period and its performance.112
5.53 Akaki station Observed versus ANFIS output scatter plot for train (left) and

test (right) period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.54 Akaki station ANFIS bootstrapped (Mean, Lower Limit (LL), and Upper

Limit(UL)) versus Prediction for test period. . . . . . . . . . . . . . . . . . . 113

6.1 General steps followed by SWAT Hydrological Model . . . . . . . . . . . . . 118
6.2 SWAT model sensitive parameters in calibration procedure at Hombole station.123
6.3 Hombole SWAT simulated stream flow for Calibration period plotted together

with observed flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 Hombole SWAT simulated stream flow for Validation period plotted together

with observed flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5 Future monthly average water availability scenarios at Hombole station ob-

tained using an ensemble of five CMIP6 climate model outputs under SWAT
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.6 Mean monthly changes between flows obtained from control (1980-2009) and
SWAT model simulated scenario periods. . . . . . . . . . . . . . . . . . . . . 125

6.7 Boxplots of future annual mean flows of observed and scenarios obtained using
an ensemble of five CMIP6 climate model outputs under SWAT model at
Hombole station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

6.8 Future monthly average water availability scenarios at Hombole station ob-
tained using an ensemble of five CMIP6 climate model outputs under NARX
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.9 Mean monthly changes between flows obtained from control (1980-2009) and
NARX model simulated scenario periods. . . . . . . . . . . . . . . . . . . . . 127

6.10 Boxplots of future annual mean flow scenarios at Hombole station obtained
using an ensemble of five CMIP6 climate model outputs under NARX model. 128

6.11 Return period versus return level plots for simulations of SWAT (left) and
NARX (right) model for different climate scenarios . . . . . . . . . . . . . . 129

xv



6.12 Mean (top left), maximum (top right), and minimum (bottom middle) of an-
nual mean flow simulations obtained from SWAT and NARX models. . . . . 129

6.13 Standardized Streamflow Index (SSI) for Upper Awash Basin at Hombole
guage station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.14 Summary table of 3 month SSI of outputs obtained from SWAT and NARX
models for Upper Awash Basin at Hombole guage station. . . . . . . . . . . 132

6.15 Summary table of 12 month SSI of outputs obtained from SWAT and NARX
models for Upper Awash Basin at Hombole guage station. . . . . . . . . . . 132

xvi



xvii



List of Tables

2.1 List of names of meteorological stations in the Upper Awash sub-basin with
their locations (Universal Transfer Mercator (Universal Transverse Mercator))
and altitude (m) used for analysis. . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 List of climate models used in the selection process . . . . . . . . . . . . . . 14
3.2 Fitted Distributions for all three climatic variables across the four time steps

of both observed and climate models series. . . . . . . . . . . . . . . . . . . . 20
3.3 Results of Trend Analysis for all three climatic variables across the four time

steps for both observed and climate models series. . . . . . . . . . . . . . . . 22
3.4 Summary of model performances for all three climatic variables across four

performance measures for both observed and climate models series. . . . . . 24
3.6 Summary result for all three climatic variables . . . . . . . . . . . . . . . . . 32
3.5 Summary rank based on seven criteria used for evaluating the three climate

model time series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.7 Mean annual areal averaged future climate Change over UASB for three time

periods and two scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.8 Seasonal areal averaged precipitation future climate Change (%∆) over UASB

for three time periods and two scenarios . . . . . . . . . . . . . . . . . . . . 35
3.9 Mean annual future climate Change at selected four meteorological stations in

the UASB for three time periods and two scenarios . . . . . . . . . . . . . . 35

4.1 Statistics of flow series for each hydrological Stations over UASB. . . . . . . 39
4.2 Result of stationarity test for four gauge stations along four time levels using

KPSS and ADF test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Result of linearity test for four gauging stations along four time levels using

BDS test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Annual level Trend test on the flow time series of those four guaging staions

over UASB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Monthly level Trend test on flow time series of those four guaging staions over

UASB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.1 Parameters of Harmonic Regression Equation (with period=2) . . . . . . . . 80
5.2 Top ten best outcomes with low AIC values for the Grid search on Hombole

Station) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 SETAR(1,7,5) model parameters and fit statistics for monthly flow series of

Hombole station) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4 LSTAR(1,7,7) model parameters and fit statistics for monthly flow series of

Hombole station) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

xviii



5.5 SETAR(6,6,1) model parameters and fit statistics for monthly flow series of
Melkakuntere station) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.6 LSTAR(1,9,1) model parameters and fit statistics for monthly flow series of
Melkakuntere station) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.7 SETAR(1,1,7) model parameters and fit statistics for monthly flow series of
Akaki station) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 LSTAR(1,1,7) model parameters and fit statistics for monthly flow series of
Akaki station) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.9 NARX input combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.10 General NARX settings used in model generation . . . . . . . . . . . . . . . 95
5.11 General ANFIS settings used in model generation . . . . . . . . . . . . . . . 104
5.12 Argument combinations used to build the ANFIS model . . . . . . . . . . . 104
5.13 Best performing models for different Cluster and Epoch number for Hombole 104
5.14 Argument combinations used to build the ANFIS model for Melkakuntere . 108
5.15 Best performing models for different Cluster and Epoch number for Melkakuntere109
5.16 Argument combinations used to build the ANFIS model for Akaki station . . 111
5.17 Best performing models for different Cluster and Epoch number for Akaki . . 111

6.1 SSI/SPI Drought Classification . . . . . . . . . . . . . . . . . . . . . . . . . 121
6.2 SWAT model parameters ranges and fits identified during model sensitivity

and calibration stage for Hombole Station . . . . . . . . . . . . . . . . . . . 122
6.3 SWAT-CUP model calibration and validation period performance summary at

Hombole station . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
6.4 Percentage changes of SWAT model simulated annual mean flow of scenarios

from control period (1980 - 2009) for three time periods. . . . . . . . . . . . 126
6.5 Percentage changes of NARX model simulated annual mean flow of scenarios

from control period (1980 - 2009) for three time periods. . . . . . . . . . . . 128
6.6 Summary table of SSI for Observed in Upper Awash Basin at Hombole guage

station. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
6.7 Severity analysis based on SSI analysis done on streamflow simualtions of

SWAT and NARX model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A.1 Mean Monthly Temperature (◦C) . . . . . . . . . . . . . . . . . . . . . . . . 152
A.2 Mean Monthly Wind Speed (m/s) . . . . . . . . . . . . . . . . . . . . . . . . 153
A.3 Mean Monthly Precipitation (mm) . . . . . . . . . . . . . . . . . . . . . . . 153
A.4 Mean Monthly Solar Radiation Mj/m2 . . . . . . . . . . . . . . . . . . . . . 153

xix



Acronyms

AIC Akaike Information Criterion

ANFIS Adaptive Network-based Fuzzy Inference System

ANN Artificial Neural Network

AOGCM Atmospheric/Ocean General Circulation Model

ARIMA Autoregressive Intergrated Moving Average

CDF Cumulative Density Function

CDO Climate Data Operator

CMIP-GCMs Climate Model Intercomparision Project Global Climate Models

CMIP6 Climate Model Intercomparision Project Six

DDM Data Driven Models

ECDF Emperical Cumulative Density Function

FAO Food and Agriculture Organization

IDW Inverse Distance Weighted

JJAS June July August September

LSTAR Logistic Smooth Threshold Auto-Regressive

MAM March April May

NSE Nash Sutcliffe Efficiency

PCA Principal Component Analysis

PDF Probability Density Function

QM Quantile Mapping

RMSE Root Mean Square Error

SSP Shared Socioeconomic Pathway

TAR Threshold Auto-Regressive

WRCP World Climate Research Program

xx



xxi



Chapter 1

Introduction

1.1 Background

Water is found in most life forms as one of the dominant components, constituting over
55–78% of human body weight [3], and approximately 70% of plant body is made up of
water [4]. Additionally, 71% of the Earth’s surface is covered by different types of water
bodies [5]. Due to this ubiquity, water is a critical factor for the existence of living things
and is also one of the crucial components in the hydrosphere that shapes the climate of our
planet.

As with most natural resources found on Earth or in its surrounding environment, water
is considered both a renewable and non-renewable resource. It is renewable since it can
be easily replenished through the action of the hydrological cycle into various forms such
as freshwater, seawater, and atmospheric water. It becomes non-renewable if the rate of
consumption is much higher than renewal, especially for freshwater, which constitutes only
2.5% of the global water budget. Of this percentage, 68.5% is stored in ice sheets and glaciers,
making it inaccessible, and only the remaining 31% is considered an available resource found
in surface water, soil moisture, and much of it as groundwater [5].

This limited resource is often widely used to satisfy different human needs, classified
under consumptive or non-consumptive water use. Consumptive uses have a tendency to
diminish the resource, making it unavailable for other uses, such as water diverted from a
stream reach for irrigation, drinking, or industrial application. Non-consumptive water use,
on the contrary, doesn’t diminish the resource since the water is used at the same location of
diversion. Therefore, hypothetically there is no loss in both quantity and quality, as seen with
water used for hydropower generation. To meet these different types of uses, it is required to
develop water infrastructures like dams, reservoirs, diversion structures, canals, etc. It has
been understood that, in addition to the actual water use, the different types of structures
built to develop the resource will alter the ecosystem of that location, which will in turn affect
the hydrological cycle. This takes place at both local and global scales, and at the global
scale, global warming is thought to continuously change the global hydrological cycle. All
these factors, in addition to natural climate variability, will have an effect on the temporal
and spatial availability of the resource in a given place.

Water security is a term used to define the capability of a society to have access to enough
water of sufficient quality to carry out different productive activities [6]. Some of the reasons
why water security is undermined are population growth, pollution, land use land cover
(LULC) changes, and extreme climate conditions due to climate change. These issues can be
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resolved through sustainable water management practices, which ensure the availability of
good-quality water and avoid its degradation. The endeavor of sustainable management of
these resources requires a detailed knowledge of what is going on in the study area, enabling
better-informed decisions about future water resource development and management.

A good grasp of water resource conditions in a given area could be achieved through
the use of different approaches that focus on different spatial (area, catchment, or basin)
or temporal (daily, seasonal, or annual) scales. The first approach is through the analysis
of long-term variations in runoff and meteorological elements either by statistical analysis
of the relation between runoff and other meteorological variables or by observing past ex-
treme events [7, 8, 9]. These meteorological variables include precipitation, temperature,
evapotranspiration, etc. The second approach is through a water balance method over a
long period [10, 11]. Lastly, it could be achieved through the study of estimates of changes
in the climatic and hydrologic characteristics for large regions using Global Climate Model
(GCM) outputs [12]. Another alternative, which is most common nowadays, is the use of
deterministic hydrologic models [13, 14].

Nowadays, the use of climate models in trying to understand the future change in water
resource potential is a common practice. In trying to observe future hydro-meteorological
changes, climate models are important tools whose capabilities can’t be underestimated.
There are a number of climate models introduced by different institutes throughout the
world, and the source of variation is mainly due to model structure, assumptions, calibration
processes, and parameterization [15]. In fact, the uncertainty in hydrologic projections is
more from GCMs rather than emission scenarios or model parameterization [16]. So, there
should be a mechanism to differentiate out models which can closely interpret area-specific
conditions.

1.2 Statement of Problem

One of the major sources of water insecurity in Ethiopia is the uneven distribution of the
resource, with approximately 70% found in the western part of the country [17]. More than
27 million people in Ethiopia are living in high or extremely high water risk areas, and a
further increase in population and economic activity in these areas exacerbates the situation
even more [18].

The Awash Basin is one of the most heavily utilized basins found in these water-stressed
parts of Ethiopia [17]. The basin encompasses some of the major towns and cities in the
country, including the capital city. Additionally, there are numerous industries, and agricul-
ture is highly practiced, whether it is rain-fed or irrigated. From the total water consumed
by industries in the country, 55% of it comes from this basin [18].

The basin is also highly affected by hydro-climatic extremes of floods and droughts. Areas
affected by flooding range from the upper to lower parts of the basin. According to a recent
flood event, around 162,921 people were affected in the lower Awash sub-basin [19]. The
most frequently flood-affected areas are Sebeta Hawas, Wolmera, and Egeria Woredas found
in the upper part, and Fentale Woreda in the lower part of the Awash basin [20]. According
to Gebreyesus et al. (2020) [21], in 2015-2016, close to 90% of the basin was affected by a
moderate to severe level of drought, marking one of the worst droughts in decades.

A comprehensive understanding of the water resource conditions in a specific basin is
crucial for making informed decisions and effectively managing the resource. While previous
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studies have delved into various aspects of water resource conditions, particularly in the
upper part of the basin, there has been a gap in employing a diverse range of approaches to
thoroughly examine the water resource conditions in the Upper Awash sub-basin.

1.3 Research Questions

This study is mainly based on two core research questions:

� What will be the outlook for water availability under future climate conditions?

� How well do deterministic and stochastic stream flow models perform in simulating
future water availability?

1.4 Research Objectives

� To comprehensively evaluate and integrate climate model outputs, hydrological models,
and data-driven approaches for a thorough analysis of the current and future water
resource conditions in the Upper Awash Sub-basin, aiming to provide insights into
potential hydrological changes and flood risks in the region.

1.4.1 Specific Objectives

� To evaluate and select a suitable climate model from CMIP6 archive for the sub-basin.

� To study the flow characteristics of some selected rivers

� To evaluate and select suitable stream flow forecasting model for the sub-basin.

� To investigate temporal variation of water availability in the sub - basin.

� To compare the result of the SWAT model with that of the stream flow model output.

1.5 Structure of the Thesis

This thesis comprises seven chapters. Chapter 1 provides a general background statement
on the scientific basis and focus of the study, along with the declaration of research objectives.

Chapter 2 presents detailed information about the Upper Awash Sub-basin, encom-
passing its location, topography, climate, hydrology, geology, soil, and land use land cover
conditions.

Chapter 3 undertakes an evaluation of twelve climate models from CMIP6, employing
various techniques. The assessment focuses on the models’ ability to simulate observed cli-
mate series, specifically for precipitation, maximum temperature, and minimum temperature.
This chapter also discusses the future climate conditions of the basin based on the selected
climate model outputs.

Chapter 4 delves into the flow characteristics of the series obtained from gauging stations
of major rivers in the Upper Awash Sub-basin. The analysis includes the study of stationarity,
linearity, trend, and seasonal characteristics of each time series.
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Chapter 5 evaluates the potential of selected time series modeling techniques, specifically
those belonging to Regime Switching and Data Driven approaches. Two Regime Switching
models, SETAR and LSTAR, are fitted to the observed flow series of each gauging station.
Additionally, Data Driven techniques involve defining and fitting appropriate NARX and
ANFIS models.

Chapter 6 analyzes future water resource conditions in the basin using flow simulations
obtained from climate model outputs. SWAT model and NARX models are employed to
generate future flow simulations based on climate model outputs. Future water availabil-
ity is observed, primarily utilizing the Standard Drought Index (SDI) and flood frequency
technique.

Chapter 7 summarizes the main results of the thesis, concludes the findings, and provides
recommendations for future research.
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Chapter 2

Description of the Study Area

2.1 Location and Topography

The study is focused on Upper Awash sub-basin which is found in central Ethiopia and is
located between a longitude of 37◦57′4′′E−39◦17′28′′E and latitude of 8◦4′52′′N−9◦19′47′′N
as shown in Figure: 2.1.

Figure 2.1: Map of Upper Awash sub-basin with major rivers and location of hydrological
gauge stations.

Utilizing the Food and Agriculture Organization (FAO) slope gradient classification [22],
96.1% of the drainage basin exhibits sloping to steep terrain, while the remaining portion
features a flat to gently sloping landscape. Figure:2.2 illustrates that the northern, western,
and south-western sectors of the basin predominantly consist of steep topography. The sub-
basin’s highest point, near ArbGebya, reaches an elevation of 3561 m, while its lowest point
at Koka Lake is situated at an altitude of 1547 m (Figure:2.1 and 2.2).
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Figure 2.2: Slope map of Upper Awash sub-basin

2.2 Climatology and Hydrology

The annual climate characteristics of the basin are primarily influenced by two air cur-
rents—an upward flow from the Atlantic and southern Pacific Ocean to the west and another
from the Indian Ocean to the southeast. The convergence of Atlantic-equatorial Pacific
westerlies and Indian south easterlies over the basin serves as the main moisture source for
precipitation [23] [24]. The basin experiences a major rainfall season lasting from June to
September and a shorter rainy season from March to April. The mean annual areal precipita-
tion in the sub-basin is 1020 mm, with station-wise variation ranging from a minimum of 861
mm at Boneya to a maximum of 1223 mm in Addis Ababa. Similarly, the mean annual areal
temperature is 17.6◦C, with station-wise variation from 16.8◦C at Addis Alem to 18.32◦C
in Debrezeit. A total of 15 rainfall and 10 temperature stations are utilized, and the list of
stations is presented in Table:2.1.

6



Figure 2.3: Map of Upper Awash sub-basin with location of metrological stations.
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Table 2.1: List of names of meteorological stations in the Upper Awash sub-basin with their
locations (Universal Transfer Mercator (Universal Transverse Mercator)) and altitude (m)
used for analysis.

No. Station Name Location
(y)

Location
(x)

Altitude

1 Addis Ababa Obs* 472248.08 996952.4 2386
2 Addis Alem** 432225.93 999552.91 2372
3 Aleltu 516771.63 1016119.33 2648
4 Ambo** 372449.79 993358.73 2068
5 Asgori* 426775.97 971700.31 2072
6 Boneya 460591.24 971046.06 2251
7 Bui** 450940.01 920899.89 2054
8 ChefeDonsa 513542.53 991537.73 2392
9 Debrezeit* 494500.33 965370.79 1900
10 Ejere 528246.66 969798.67 2254
11 Enselale 435870.79 987532.37 2000
12 Ginchi 404738.43 996808.09 2132
13 Hombole 475209.16 925006.74 1743
14 Huruta* 537697.21 900012.17 2044
15 Melkasa* 534861.76 928532.98 1540
16 Mojo 511901.68 951220.7 1763
17 Nazret 531179.91 945113.49 1622
18 Sebeta 459322.66 986027.98 2220
19 Teji 430354.91 976481.48 2091
20 Tulu Bolo* 414188.26 958456.67 2100
21 Welenchiti 547305.49 958395.38 1458
22 Woliso** 388113.76 945249.62 2058

N.B: The ones without and single star (*) are used for precipitation and the others with
one (*) and double star (**) are used to differentiate stations used for temperature analysis

With a total drainage area of 10556.45 km2, the basin significantly contributes the major-
ity of the annual flow to the larger Awash Basin, as depicted in the top-left map of Figure:2.1.
The river originates from two major areas: Ginchi on the left side and the Legedadi reservoir
on the right side of the basin. Downstream, the streams emerging from these two areas
converge to form the Awash River, which is further augmented by the Mojo River before
reaching Koka Lake. The longest stream in the sub-basin spans a length of 227.67 km.

2.3 Land Use Land Cover, Soil, and Geology

The land use land cover (LULC) of the basin primarily consists of agriculture, forest, pasture,
shrubs, and urban (settlement). Agriculture dominates the land use, occupying nearly 85%
of the total land in the sub-basin, as illustrated in Figure:2.4. Settlement and forest follow
as the second and third highest, respectively. According to a recent study, agriculture and
settlement are identified as the fastest-growing LULCs in the sub-basin [25].
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Figure 2.4: Map of major land use land cover types in the Upper Awash sub-basin
(Source:AWBA,2017 [1])

Figure 2.5: Map of major soil types in the Upper Awash sub-basin (Source:AWBA,2017 [1])

The soil map (Figure: 2.5) indicates that over 50% of the sub-basin is composed of Eutric
Vertisols (VRe), primarily in the central and western parts. The second most prevalent soil
type is Vertic Cambisols (CMv), predominantly found in the eastern and southern regions.
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The third dominant soil type, Humic Nitisols (NTu), is mainly located in the northern tip of
the sub-basin.

According to Yitbarek et al. (2012) [26], the Upper Awash sub-basin is exclusively con-
fined within the north-central plateau and the adjacent escarpment and rift. The geology
of the region transitions from lower tertiary basaltic volcanic plateau in the north to inter-
layered tertiary basaltic and acidic volcanics in the center, and finally to quaternary volcano-
sedimentary sequences to the south, near Koka Lake.

Figure 2.6: Geological and hydrogeological map of Upper Awash sub-basin (Source:Yitbarek
et al.(2012))

2.4 Socio – Economic conditions

The sub-basin holds a strategic location as it encompasses the capital city of the country,
leading to significant and dynamic economic activity fueled by population growth and migra-
tion from various parts of the country. An estimated 6 million people reside in the sub-basin,
according to a recent projection in 2017 [27]. It serves as a major industrial hub for the
country. The majority of residents are engaged in subsistence agriculture, practicing farming
during the two rainy seasons (March-April-May (March April May (MAM)) and June-July-
August-September (June July August September (JJAS))).
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Chapter 3

Climate Model Selection and Future
Climate Over the Sub-basin

3.1 Introduction

Securing water to meet all human needs remains a persistent and challenging priority for
countries worldwide. The escalating demand for water is primarily driven by socio-economic
growth, evolving consumption patterns, and population expansion [28]. The accessible global
freshwater available to humans is less than 1%, categorizing it as a limited resource [29].
Moreover, the natural uneven distribution of rainfall on a global scale adds complexity to
ensuring adequate accessibility to this resource.

In recent decades, the impact of climate change on rainfall distribution has been con-
templated, contributing to increased variability globally [30]. Anthropogenically induced
climate variability manifests as droughts and floods in various regions, as evidenced by re-
cent events like the floods in Mecca, Saudi Arabia, in April 2021 [31], and the drought event
in southeastern Alaska, USA, in July 2019 [32].

A study conducted by the National Meteorological Agency (NMA) on climate change
adaptation highlights major impacts of climate variability in Ethiopia, including food inse-
curity, water-borne disease outbreaks, land degradation, and infrastructure damage [33]. The
Awash basin, supporting a substantial population with major cities and towns, including the
capital city Addis Ababa, is extensively used for water, primarily for irrigation [25]. Most ir-
rigation activities are concentrated in the middle and lower parts of the basin, while intensive
rain-fed agriculture dominates the upper basin areas [34, 35]. This upper part of the basin,
being mostly highland, is densely populated compared to the middle and lower regions.

The Awash River, the principal drainage for the Awash basin, receives a significant pro-
portion of its average annual flow from the upper basin due to relatively high average annual
precipitation in those areas [36]. In recent years, water security issues have become more
apparent due to the occurrence of frequent flood and drought events, especially in the middle
and lower parts of the basin [37, 38].

A widely used technique for studying the impacts of climate change on water resources is
employing outputs from the Coupled Model Intercomparison Project Global Climate Mod-
els (Climate Model Intercomparision Project Global Climate Models (CMIP-GCMs)) [39].
CMIP-GCMs are mathematical equations that describe the global climate system with three-
dimensional grids, simulating the effects of greenhouse gas emissions on climate. While
CMIP-GCMs are often applied at global or regional scales, their coarse resolution requires
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careful downscaling and bias correction techniques for meaningful insights into local climate
conditions, playing a crucial role in decision-making for water resource planning and man-
agement [40, 41].

The challenge in predicting future climate conditions goes beyond climate modeling; it
extends to effectively utilizing the sheer number of climate model outputs globally. Conse-
quently, models must be evaluated for their performance in simulating the climate charac-
teristics of the intended application area, with the criteria for evaluation depending on the
goal of climate model selection [42].

Diverse versions and experiments of climate models generated worldwide make inter-
comparison between models cumbersome. This led to the establishment of the Climate
Model Intercomparison Project (CMIP), consolidating model development efforts worldwide
into one framework [43]. The release of new models in the sixth CMIP framework signifies
improvements in model setup, resolution, scenarios, and parametrization [44].

The Climate Model Intercomparision Project Six (CMIP6) archive currently houses model
output results from over 30 climate research centers worldwide [43]. Each model from these
centers differs, resulting in distinct outputs for the same experiment and scenario [45]. Con-
sequently, not all models perform well in a given location, necessitating the evaluation of
model capabilities to select those with better performance in describing the local climate
[15, 42].

In practice, climate change impact studies often involve the selection of one climate model
or a small ensemble of models based on single or multiple criteria. Climate models are
typically chosen for their ability to simulate present and near-past climates, with approaches
such as the Past–Performance Approach or the Envelop Approach, where an ensemble of
models covering a wide range of projections is selected [42, 46].

A clearly defined methodology for evaluating and selecting a single or group of climate
models is currently lacking [42]. The selection method and process depend on the study’s
goal and variables involved [42]. Previous works often employ statistical or data mining
techniques, with variations in output (single or ensemble model), analysis period (daily,
monthly, seasonal, and annual), and level (station, grid, regional, or spatial averaged).

Common statistical techniques for evaluating climate models include performance indi-
cators, descriptive statistics, and indices [47, 48, 49, 50]. Data mining methods, such as
Singular Value Decomposition (SVD), Principal Component Analysis (PCA), Hierarchical
Clustering, Symmetrical Uncertainty (SU), and Canonical Correlation Analysis (CCA), are
also applied [46, 51, 52, 53, 15, 54]. The main distinction between these techniques lies in
their purpose: data mining is used to detect patterns and relationships, while statistical
techniques quantify data [55]. Using a combination of these various techniques, instead of a
single method, not only reduces the uncertainty of incorrect selection but also improves it
by incorporating various characteristics of time series. Techniques that are often used and
aid in incorporating multiple selection methods include Skill Score (SS) and Multi-Criteria
Decision Analysis (MCDA) [42, 56].

Previous attempts to understand the climate of the Awash basin, particularly the Upper-
Awash basin, were limited. One early work on the Awash basin by Hailemariam [57] used
outputs from three randomly selected CMIP3 GCMs (CCCM, GFD3, and GFDL) with two
scenarios to predict future runoff conditions. Subsequently, after evaluating the potential
of GCMs for their annual cycle, seasonal biases, variability, and trend, three CMIP5 GCMs
were selected for studying the impact of climate change by Taye et al. [58]. The impact
of climate change on the river basin was further studied with a few selected models from
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the CMIP5 archive for different scenarios identified from previous works [59]. Similarly, an
ensemble of two GCMs [60] and three selected GCMs [61] from the CMIP5 archive was used
to characterize river flow in the first case and estimate river nutrient load in the second
one. The ensemble mean of five randomly selected GCMs from the CMIP5 archive was used
to characterize the hydro-meteorological situation for the Upper-Awash Basin by Emiru et
al. [62]. Most recently, similar research, which was published, suggests a group of four
climate models from different ensembles of the CMIP6 as an output [63]. Two approaches
that combine the envelop and past-performance approach are applied to evaluate outputs of
CMIP6 after [42].

Previous climate change projection efforts in the Awash or Upper-Awash Sub-basin fo-
cused on utilizing a few randomly selected climate models without thoroughly evaluating
their capability to simulate the climate system over the UASB. Therefore, the novelty of this
study lies in addressing this shortcoming through the execution of more robust evaluation
criteria, primarily relying on the application of statistical and data mining techniques. The
main outcome of this study will be identifying model(s) with an overall good performance
over the sub-basin. Additionally, predictions of future climate conditions with the newly
selected model will be performed later and compared with similar earlier findings in the
sub-basin.

3.2 Data Sets

For the evaluation of the climate model, a total of 15 rainfall and 10 temperature stations
have been employed. The Table 2.1 provides a detailed list of the utilized stations.

In the initial phase, 12 climate models were identified from the World Climate Research
Program (WRCP) CMIP6 archive (https://esgf-node.llnl.gov/search/cmip6/) to be incorpo-
rated into the study. The selection was based on the availability of models encompassing
all variables (Precipitation, Tmax, and Tmin) for the historical time period. The criteria
employed for filtering the models included daily data, a nominal resolution of 100 km, source
type: Atmospheric/Ocean General Circulation Model (AOGCM), and the r1i1p1f1 variant.
The models were accessed from the aforementioned site on August 17, 2021. The Table 3.1
presents the list of models employed for the analysis.
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Table 3.1: List of climate models used in the selection process

Model Institute Country

MRI-ESM2-0 Meteorological Research Institute Japan
ECEARTH3-CC EC-Earth consortium Sweden
NorESM2-MM Norwegian Climate Center Norway

TaiESM1 Academia Sinica Taiwan
ECEARTH3.Veg EC-Earth consortium Sweden
MPI-ESM1.2.HR Max Planck Institute for Meteorology Germany
ECEARTH3 EC-Earth consortium Sweden
CMCC-ESM2 Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy
GFDL-CM4 NOAA USA
GFDL-ESM4 NOAA USA
INM-CM4-8 Institute for Numerical Mathematics Russia
INM-CM5-0 Institute for Numerical Mathematics Russia

3.3 Methods

3.3.1 Climate Model Selection

The process commences by extracting GCM outputs for the specified station and time pe-
riod, facilitated by Climate Data Operator (CDO) (Climate Data Operator) [64]. The GCM
outputs are applied to each climate station through the Inverse Distance Weighting (Inverse
Distance Weighted (IDW)) interpolation technique under CDO. The comparison between
GCM outputs and observed data relies on spatially averaged values for the sub-basin. The
Thiessen polygon technique is employed for spatially averaging station point data. Addition-
ally, all historical climate series undergo bias adjustment using the corresponding observed
series at each station.

The methodology employed here aims to highlight crucial characteristics of climate time
series, crucial for climate impact studies. Drawing from an extensive literature review on
current methodologies and aligning with the paper’s objectives, a combination of method-
ologies is utilized. The selection and evaluation are based on historical/observed data and
encompass four-time scales: monthly, seasonal (JJAS and MAM), and annual. The choice of
these two seasons is driven by their significance as crucial rainy seasons, determining annual
water availability in the sub-basin. It is assumed that an analysis at these time scales will
capture all statistical characteristics of the time series.

In total, a combination of six methodologies is applied to accentuate diverse characteristics
of the time series. The first technique seeks to fit a probability distribution to all climatic
variables and assesses which climatic models exhibit a similar distribution to the observed
climate variable. This is executed using the gamlss package [65] within the R programming
software [66]. The outcome of the distribution analysis is evaluated between the observed and
climate model series using (Akaike Information Criterion (AIC)). Subsequently, the climate
model or models demonstrating a similar distribution are presumed to better describe the
observed series.

The second technique examines trends using the Mann-Kendall (MK) test [67, 68]. In
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detecting trends, the MK test calculates the statistic ’S’ by ranking the data and determining
the sign, as described in Equation (3.1) [67].

S =
n−1∑
i=1

n∑
j=i+1

sgn(xj − xi) (3.1)

Where: xi - is data ranked from i = 1, 2, 3, . . . , n-1 and xj- is the data ranked from j =
i+1, . . . , n.

The sign is the difference between the original data xi, shortened by one data point, and
the data itself without the last data point xj.

sgn(xj − xi) =


+1 if(xj − xi) > 0

0 if(xj − xi) = 0

−1 if(xj − xi) < 0

(3.2)

It is observed that when the data point (observation) is more (n ≥ 10), the statistic ‘S’
becomes normally distributed with mean (E(S)) equal to zero and variance calculated as
follows:

V ar(S) =
n(n− 1)(2n+ 5)−

∑m
t=1 t1(t1 − 1)(2t1 + 5)

18
(3.3)

Where: n - is the number of data points and ti are the ties of the sample data series. The
test statistic (Zc) is calculated as:

Zc =


S−1
σ

if S > 0

0 if S = 0
S+1
σ

if S < 0

(3.4)

Where: σ is standard deviation of the statistic ‘S’. The test statistic (Zc) is derived from this
analysis, where a positive value signifies an upward trend, while a negative value indicates
the opposite. As suggested by [68], this approach is effective for data lacking significant
correlation at lag 1. If there is significant correlation at lag 1, the modified MK test is
implemented. This modification involves calculating the significance of the trend by adjusting
the variance of the MK test statistic (’S’) with ESS (Effective Sample Size). Significance is
determined based on the p-values at a 0.05 significance level. Thus, if the p-values exceed
0.05, the null hypothesis of no significant trend in the data is accepted; conversely, if the
p-values are less than or equal, the opposite holds true.

Furthermore, the results of the MK test can be complemented by the Sen’s slope method
[69], which computes the magnitude of the trend (slope (Ti)), as illustrated in Equation (3.5)
below:

Ti =
Xj −Xi

j − i
(3.5)

The median of N values of Ti represents the Sen’s slope estimator which is calculated as
follows;

If N appears to be odd:

Qmed = T
(N + 1)

2
(3.6)
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If N is even then:

Qmed =
(TN

2
+ T (N+2)

2

)

2
(3.7)

Here, a positive Qmed value in the time series indicates an upward trend and a negative
value the reverse.

In the third approach, four performance metrics are employed to discern which climate
model(s) better simulate the observed series. The chosen metrics include the Coefficient of
Determination (R2), (Root Mean Square Error (RMSE)), Mean Absolute Error (MAE), and
BIAS. Each performance measure is applied across all time steps, and a rank is assigned
to each model based on the magnitude of the respective performance measure. Models
demonstrating overall good performance at all four time steps are identified by summing up
the ranks at the corresponding time step and subsequently re-ranking.

Another technique applies a time series clustering approach to identify which climate
model more effectively captures the stochastic process of the observed series. The Inte-
grated Periodogram algorithm, developed by [70], is implemented using the TSclust package
[71] within R. This data mining approach seeks to group time series into clusters based on
their Integrated Periodogram (dIP ) as a distance (dissimilarity) measure. The periodogram
technique facilitates a comparison in the frequency domain, enabling the characterization of
each time series in terms of its underlying stochastic behavior. The dissimilarity measure is
calculated using Equation (3.8) [70]:

dIP (XT , YT ) =

∫ π

−π

|FXT
(λ)− FYT

(λ)| dλ (3.8)

Where the normalized cumulative periodograms at each data point j are given by:

FXT
(λj) =

1

CXT

j∑
i=1

IXT
(λi) (3.9)

FYT
(λj) =

1

CYT

j∑
i=1

IYT
(λi) (3.10)

The weights used for normalizing the periodograms are as shown below where m is the
number of data points in the original data series:

CXT
=

m∑
i=1

IXT
(λi) (3.11)

CYT
=

m∑
i=1

IYT
(λi) (3.12)

The periodograms calculated at each time stamp (k) of the observed series is given by:

IXT
(λk) =

1

T
|

T∑
t=1

Xte
−iλkt|2 (3.13)
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IYT
(λk) =

1

T
|

T∑
t=1

Yte
−iλkt|2 (3.14)

Here, λk = 2πk
T

represents the frequency component corresponding to the input data
sequence k (k = 1, 2, ..., n), where n = T−1

2
depends on the total data length of the observed

series (T). Additionally, Xt and Yt correspond to each pair of time series for which the
dissimilarity measure is to be calculated. The term i in Equations (3.13) and (3.14) signifies
the imaginary term resulting from the Fourier transformation of each pair of series.

A pairwise matrix of dissimilarity measures is generated through the aforementioned pro-
cedure, and clustering is executed using the Agglomerative Hierarchical Clustering technique
under the Tsclust package in R, which utilizes the hclust() function from the stats pack-
age. The classification into a cluster group or merging between clusters follows the complete
linkage criteria [70].

The fifth technique employed is (Principal Component Analysis (PCA)), a dimensionality
reduction technique that transforms a large number of correlated variables into a much smaller
set of uncorrelated variables known as Principal Components (PCs) [72]. In this context, the
13 variables (1 observed + 12 Climate models) are represented in two-dimensional axes called
principal components (PCs). The original data points for each variable can be plotted in a
two-dimensional space, referred to as a score plot. This is achieved by projecting all data
points onto those two PCs using the loading vectors derived from the covariance matrix. The
score plot indicates that points closer to the origin are closer to the average, points near each
other are similar, and points further outward are considered outliers. The correlation between
each variable is better visualized using a loading plot. This plot is created by plotting the
eigenvectors and indicates the contribution of each loading to the PCs. The relative length of
the vector indicates its contribution to each PC, and the angle between vectors signifies the
similarity between variables. In essence, if the angle between two adjacent loading vectors
of variables is smaller, they are more correlated; if orthogonal, they are not related; and if
in the reverse direction, they are negatively correlated. A combined plot of the score and
loading plot is known as a Bi-Plot [73].

Finally, the spatial performance of the models is evaluated by conducting correlation
analysis and RMSE as model fit criteria. These two techniques are applied at the station
level and later interpreted using a rank-based methodology.

3.3.2 Downscaling, Bias adjustment and Future Scenarios

The outputs of GCMs need to undergo downscaling and bias adjustment before application
in real-world scenarios. This is primarily because climate model outputs carry biases re-
sulting from imperfect conceptualization and parametrization, limited data record lengths,
quality issues in reference datasets, and insufficient spatial resolution [74, 75]. Consequently,
downsizing of GCM outputs is often carried out using either Dynamical or Statistical down-
scaling approaches. Dynamic downscaling produces Regional Climate Models (RCMs) at a
finer scale (< 50km) by utilizing GCM boundary conditions, but it is computationally ex-
pensive [76]. More frequently, Statistical downscaling is preferred over dynamic downscaling
due to its avoidance of computational drawbacks and its capability for bias adjustment. In
this context, bias adjustment is achieved by establishing a statistical link between large-scale
predictors and a finer-scale predictand.
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Moreover, Statistical downscaling approaches can be categorized into two types: Perfect
Prognosis (PP) and Model Output Statistics (MOS) [77]. PP methods create day-to-day
statistical relationships between large-scale predictors and local-scale predictands during the
calibration phase. The calibrated statistical relationship is then employed for downsizing a
predictor variable. Examples of PP methods include Regression, Weather Generators, and the
Analog Method. In MOS, there is no day-to-day correspondence; instead, a statistical transfer
function is applied during the calibration phase and later utilized for downsizing operations
[78]. Techniques under MOS include Additive Correction/Scaling, Variance Correction, and
Quantile Mapping.

Here both the precipitation and temperature stations are first downscaled to each ground
stations shown in Table:2.1 using the IDW technique Equation:3.15 and later bias corrected
using Quantile Mapping (QM) approach.

VSt. =
(
VGP1

D1
+

VGP2

D2
+

VGP3

D3
+

VGP4

D4
)∑4

i=1
1
Di

(3.15)

Where: VSt. is the variable at station level, VGPi
is the variable at grid point level, and Di

are the distance from the grid point to the specific station.
The QM method, which utilizes empirical Cumulative Density Function (CDF) derived

from actual observations and does not necessitate assumptions about the underlying distri-
bution, has been employed in this study for bias adjustment of the climate model outputs
[79]. All bias adjustments in this study are conducted in R using the qmap package [75] on
the daily climate series. The theoretical assumption of the QM method for bias adjustment
is illustrated in Equation (3.16) as follows

xf,adj = F−1
o (Ff (xf )) (3.16)

Where: xf,adj is value of bias adjusted future climate variable, Fo(x) is Emperical Cumu-
lative Density Function (ECDF) of Observed variable, F−1

f is inverse ECDF of future GCM,
and xf is the value of the future GCM variable before bias adjustment.

Three future scenarios (Shared Socioeconomic Pathway (SSP)1-2.6, SSP2-4.5, and SSP5-
8.5) and three time periods—Near-century (2022-2039), Mid-century (2040-2069), and End
of the century (2070-2099)—are employed to comprehend the future climate of the Upper
Awash Basin. Each scenario corresponds to sustainable, middle, and worst-case future socio-
economic conditions. The worst-case scenario represents the upper boundary within the
available range of scenarios and can be considered as an update of RCP8.5 of CMIP5. The
second scenario, SSP2-4.5, signifies the medium pathway for future increases in greenhouse
gas emissions, akin to RCP4.5 of CMIP5.

3.4 Results

3.4.1 Selection of Climate Model

All the methods employed are chosen to underscore crucial characteristics of a climate time
series that could play a critical role in addressing the future climate impact in the study area.
The evaluation criteria encompass distribution fitting, trend analysis, performance measures,
DTW-based hierarchical clustering, PCA analysis, spatial correlation, and RMSE.
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Initially, a total of twelve climate models, as presented in Table 3.1, were identified based
on the common availability of climate models for the three climatic variables (Precipitation,
Maximum temperature, and Minimum temperature). These models undergo evaluation for
their statistical characteristics using seven different criteria and across different time levels
(monthly, monthly average, seasonal, and annual). Monthly series are obtained by sum-
ming/averaging precipitation/temperature daily series for each month. The monthly average
is computed by taking those monthly values and further averaging them across the total
analysis period for each month.

Identification of Distribution

The best possible distributions for the observed and climate model series have been identified
using the gamlss package in R [65]. For instance, for the precipitation data of monthly
averages, JJAS, MAM, and annual series, the observed data were found to follow Normal
(NO), Logistic (LO), Gamma (GA), and Normal (NO) distributions, respectively. Definitions
for each distribution type used in fitting the three climate variables are provided in Appendix
A. The Probability Density Function (Probability Density Function (PDF)) and Cumulative
Distribution Function (CDF) plots for only monthly average precipitation series of both
observed and climate models are presented in Figure 3.1 below.

Figure 3.1: Fitted distribution for the monthly average precipitation (black line) series of the
observed and 12 climate models (indicated with different colors).

The results of the distribution analysis for all three climatic variables and different time
steps of analysis for both observed and climate model series are summarized in Table 3.2.
For the precipitation series, it can be deduced that the MRI-ESM2-0 model exhibited similar
distributions to the observed series at all time steps. TaiESM1 showed a similar distribution
at the Monthly average and Annual time steps. Meanwhile, NorESM2-MM demonstrated a
similar distribution only at seasonal time steps, and ECEARTH3-CC only at MAM.

In the case of maximum temperature series, none of the climate models consistently
exhibited similarity across different time steps, as shown in Table 3.2. Three models had
similar distribution types at the monthly average time step. The GFDL-CM4 model had
the same distribution as the observed series twice across those four time steps, and none of
the models showed similar distributions at the annual level. For the minimum temperature
series, a few models shared a similar distribution type with the observed series. CMCC-ESM2
showed a similar distribution at the monthly average, MPI-ESM1-2-HR, and GFDL-ESM4

19



at MAM time steps, respectively. No models exhibited similar distributions at the annual
time step, as shown in Table 3.2 below.

Table 3.2: Fitted Distributions for all three climatic variables across the four time steps of
both observed and climate models series.

Monthly Average JJAS MAM Annual

Data Type AIC DT AIC DT AIC DT AIC DT
Precipitation
Observed 221.62 NO 359.84 LO 348.147 GA 370.72 NO

CMCC-ESM2 210.09 SN2 229.72 SN2 272.3 SEP1 359.19 SN2
ECEARTH3 213.9 SN2 268.16 WEI 277.63 WEI3 362.99 SN2

ECEARTH3-CC 229.69 RG 257.03 GA 285.2 GA 378.79 RG
ECEARTH3-Veg 228.64 SEP1 249.17 SEP3 274.55 RG 381.82 IGAMMA

GFDL-CM4 196.06 WEI3 254.98 WEI 266.21 NO 345.16 WEI
GFDL-ESM4 214.78 SEP3 233.74 SEP2 259.64 NO 364.56 IGAMMA

MPI-ESM1-2-HR 217.1 SEP1 263.67 WEI3 275.74 SEP1 366.19 SEP1
MRI-ESM2 232.6 NO 261.15 LO 271.72 GA 381.7 NO

NorESM2-MM 229.68 LO 277.26 LO 295.01 GA 378.77 LO
TaiESM1 209.12 NO 237.44 IGAMMA 272.38 LO 358.22 NO

INM-CM4-8 233.88 WEI 281.42 SEP2 238.5 WEI3 382.97 WEI3
INM-CM5-0 226.62 SN2 280.22 NO 261.28 WEI2 377.17 SN2

Maximum Temperature
Observed 45.97 SN2 28.93 RG 51.31 WEI 13.19 PE2

CMCC-ESM2 32.12 WEI3 52.57 SN2 37.6 LO 32.12 WEI3
ECEARTH3 30.55 NO 44.69 WEI3 53.16 GT 30.55 NO

ECEARTH3-CC 30.06 SN2 39.55 GG 42.85 SN2 30.06 SN2
ECEARTH3-Veg 26.53 NO 42.93 SN2 45.23 NO 26.53 NO

GFDL-CM4 8.59 SN2 37.81 RG 45.1 IGAMMA 8.59 SN2
GFDL-ESM4 27.57 SN2 42.36 WEI3 49.34 LO 27.57 SN2

MPI-ESM1-2-HR 14.35 NO 34.3 SN2 57.13 NO 14.35 NO
MRI-ESM2 10.66 NO 42.33 WEI 42.31 PE2 10.66 NO

NorESM2-MM 37.52 SHASH 58.02 SN2 55.42 WEI3 37.52 SHASH
TaiESM1 2.78 WEI3 31.94 WEI 25.06 NET 2.78 WEI3

INM-CM4-8 14.07 WEI3 14.57 IGAMMA 31.78 PE 14.07 WEI3
INM-CM5-0 11.02 WEI 27.42 LO 35.8 NET 11.02 WEI

Minimum Temperature
Observed 42.35 SEP1 30.9 NO 34.09 NO 16.98 IGAMMA

CMCC-ESM2 33.67 SEP1 24.05 SN2 45.87 GA 33.67 SEP1
ECEARTH3 44.68 WEI3 47.64 WEI 23.2 NET 44.68 WEI3

ECEARTH3-CC 40.14 SN2 52.83 WEI 31.7 GU 40.14 SN2
ECEARTH3-Veg 45.88 WEI3 16.64 BCPEo 28.47 PE 45.88 WEI3

GFDL-CM4 3.73 IGAMMA -6.15 RG 28.03 IGAMMA 3.73 IGAMMA
GFDL-ESM4 31 WEI 15.08 WEI3 38.77 NO 31 WEI

MPI-ESM1-2-HR 21.35 IGAMMA 10.89 SEP3 3.36 NO 21.35 IGAMMA
MRI-ESM2 29.13 RG 9.45 GT 30.08 RG 29.13 RG

NorESM2-MM 50 SHASH 37.67 SEP1 45.7 WEI 50 SHASH
TaiESM1 16.68 NET 12.72 LO 34.01 LO 16.68 NET

INM-CM4-8 16.43 WEI -6.83 WEI 33.46 SN2 16.43 WEI
INM-CM5-0 12.78 SEP3 -7.68 SN2 40 IG 12.78 SEP3

NB: Those highlighted in grey are models that have shared the same distribution as observed time series

across each time period of analysis. DT = Distribution Type.

Trend Analysis

Trend analysis has also been performed similarly at four different levels, as in the distribution
analysis. The precipitation series indicates that almost all of the models had similar trends to
the observed series across all time steps. Exceptions include ECEARTH3 and ECEARTH3-
CC at JJAS and INM-CM4-8 at monthly average and annual time levels, as shown in Table
3.3. Although not exhibiting a significant trend, Sen slope values for the TaiESM1 model
indicate a similar trend direction as the observed series but with a different magnitude.
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For the maximum temperature series, ECEARTH3-CC does not have a similar trend to
the observed series at any of the time steps. Four models (CMCC-ESM2, NorESM2-MM,
TaiESM1, and INM-CM5-0) were able to have a similar trend at three-time steps out of four.
GFDL-ESM4 is the only model that exhibited similar trend characteristics as the observed
series at all time steps, as shown in Table 3.3.

Furthermore, among the ten models, CMCC-ESM2, ECEARTH3-CC, GFDL-CM4, and
TaiESM1 exhibited similar trends to the observed minimum temperature series across all time
steps, whereas models ECEARTH3, GFDL-ESM4, MRI-ESM2-0, and INM-CM5-0 exhibited
the least similarity. Two models, MPI-ESM1-2-HR and NorESM2-MM, showed similarity at
all time steps except for the JJAS season, as shown in Table 3.3.
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Table 3.3: Results of Trend Analysis for all three climatic variables across the four time steps
for both observed and climate models series.

Data Type Annual Monthly Ave. JJAS MAM

Z-val Sen S. Z-val Sen S. Z-val Sen S. Z-val Sen S.

Precipitation

Observed -0.43 -0.91 -0.43 -0.08 -0.07 -0.06 0.07 0.05
CMCC-ESM2 0.04 0.09 0.04 0.01 -1.39 -0.32 1.82 0.89
ECEARTH3 1.39 3.62 1.39 0.30 2.64 1.06 -0.21 -0.05

ECEARTH3-CC 1.78 5.61 1.78 0.47 3.14 1.00 -0.39 -0.29
ECEARTH3-Veg 0.39 1.51 0.39 0.13 0.64 0.21 -0.36 -0.27

GFDL-CM4 1.68 3.14 1.68 0.26 1.04 0.33 -0.18 -0.05
GFDL-ESM4 -0.25 -1.02 -0.25 -0.09 -1.43 -0.25 -0.86 -0.45

MPI-ESM1-2-HR 0.21 0.55 0.21 0.05 -0.25 -0.08 0.61 0.17
MRI-ESM2 1.57 4.52 1.57 0.38 0.5 0.25 0.46 0.31

NorESM2-MM 1.21 3.29 1.21 0.27 0.14 0.1 0.14 0.08
TaiESM1 -0.86 -1.94 -0.86 -0.16 -1.61 -0.5 0.64 0.24

INM-CM4-8 2.87 4.25 2.87 0.35 1.32 1.04 1.04 0.29
INM-CM5-0 0.71 2.71 0.71 0.23 0.00 -0.01 1.14 0.52

Maximum Temperature

Observed 7.36 0.03 7.36 0.03 1.27 0.02 2.38 0.05
CMCC-ESM2 2.13 0.02 2.13 0.02 1.00 0.03 0.34 0.01
ECEARTH3 4.32 0.04 4.32 0.04 2.54 0.05 1.8 0.05

ECEARTH3-CC 1.29 0.01 1.29 0.01 3.23 0.03 1.00 0.02
ECEARTH3-Veg 3.4 0.03 3.4 0.03 2.97 0.04 0.37 0.01

GFDL-CM4 1.32 0.02 1.32 0.02 0.4 0.01 0.79 0.02
GFDL-ESM4 2.48 0.02 2.48 0.02 0.32 0.01 2.38 0.05

MPI-ESM1-2-HR 0.08 0.00 0.08 0.00 0.26 0.01 0.00 0.00
MRI-ESM2 0.00 0.00 0.00 0.00 0.69 0.02 -1.47 -0.01

NorESM2-MM 1.99 0.02 1.99 0.02 0.26 0.01 0.63 0.01
TaiESM1 6.63 0.02 6.63 0.02 1.95 0.03 1.69 0.02

INM-CM4-8 2.48 0.03 2.48 0.03 2.85 0.04 1.74 0.02
INM-CM5-0 2.99 0.02 2.99 0.02 1.56 0.02 1.48 0.02

Minimum Temperature

Observed 1.8 0.02 1.8 0.02 2.32 0.03 1.11 0.02
CMCC-ESM2 1.57 0.02 1.57 0.02 2.37 0.02 0.64 0.01
ECEARTH3 2.8 0.06 2.8 0.06 3.38 0.07 3.01 0.03

ECEARTH3-CC 1.41 0.03 1.41 0.03 4.02 0.05 1.69 0.03
ECEARTH3-Veg 4.02 0.04 4.02 0.04 2.64 0.05 1.89 0.01

GFDL-CM4 1.22 0.01 1.22 0.01 2.48 0.02 -0.79 -0.01
GFDL-ESM4 4.76 0.04 4.76 0.04 4.13 0.02 2.46 0.04

MPI-ESM1-2-HR 1.00 0.01 1.00 0.01 0.79 0.01 -0.87 -0.01
MRI-ESM2 5.9 0.04 5.9 0.04 5.58 0.04 2.09 0.03

NorESM2-MM 0.87 0.01 0.87 0.01 1.76 0.02 0.48 0.02
TaiESM1 0.79 0.01 0.79 0.01 6.24 0.02 1.69 0.02

INM-CM4-8 8.95 0.02 8.95 0.02 6.83 0.02 1.06 0.01
INM-CM5-0 2.38 0.02 2.38 0.02 3.73 0.01 2.01 0.03

NB: The ones shaded in gray show that the models having similar trend test outcome. i.e if
both observed and model are significant/insignificant then the z-values will be highlighted.
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Performance Metrics

Four different performance indicators were implemented to identify models with good predic-
tion capabilities across all time steps. Table 3.4 shows the summarized results for each model
across these four time steps against four performance measures. The ranking in the summary
table for each performance measure was obtained by ranking the sum of ranks across each
time step.

In the precipitation series, ECEARTH3-CC is the model that exhibited relatively poor
overall performance in predicting the observed series, while the other two ECEARTH3 models
are top-performing. For the case of maximum temperature series, the NorESM2-MM model
performed poorly, and TaiESM1 is the top-ranked model in terms of simulating the observed
series, as shown in the summary Table 3.4. From Table 3.4, it can also be observed that
GFDL-CM4 and ECEARTH3-CC are models that performed well and poorly, respectively,
in simulating the observed minimum temperature series.
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Table 3.4: Summary of model performances for all three climatic variables across four per-
formance measures for both observed and climate models series.

Ranks

Data Type R2 RMSE MAE BIAS Sum of Rank
Precipitation
ECEARTH3 6 2 2 4 14

ECEARTH3-Veg 2 6 1 10 19
GFDL-ESM4 3 1 8 12 24
CMCC-ESM2 10 5 9 1 25
INM-CM4-8 1 10 7 8 26

NorESM2-MM 5 11 6 5 27
MPI-ESM1-2-HR 4 8 5 11 28

MRI-ESM2 9 9 3 7 28
TaiESM1 7 3 10 9 29

GFDL-CM4 8 4 12 6 30
INM-CM5.0 12 12 4 2 30

ECEARTH3-CC 11 7 11 3 32
Maximum Temperature

TaiESM1 6 1 1 3 11
INM-CM5-0 4 2 2 6 14
ECEARTH3 1 4 9 1 15
INM-CM4-8 7 3 3 4 17

ECEARTH3-CC 2 7 4 10 23
MPI-ESM1-2-HR 8 6 5 5 24
GFDL-ESM4 3 5 6 12 26

ECEARTH3-Veg 9 8 8 2 27
GFDL-CM4 10 9 7 7 33
MRI-ESM2 5 12 11 11 39

CMCC-ESM2 12 10 10 8 40
NorESM2-MM 11 11 12 9 43

Minimum Temperature
GFDL-CM4 4 1 1 1 7

MPI-ESM1-2-HR 1 2 3 11 17
TaiESM1 3 4 4 6 17

INM-CM4-8 5 3 2 12 22
ECEARTH3-Veg 2 8 8 7 25

INM-CM5-0 10 6 7 4 27
MRI-ESM2 12 7 5 3 27
GFDL-ESM4 9 5 6 10 30
CMCC-ESM2 6 9 9 8 32
NorESM2-MM 8 12 12 2 34
ECEARTH3 7 11 10 9 37

ECEARTH3-CC 11 10 11 5 37
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Time Series Clustering

A time-series clustering technique is employed to identify which climate model better captures
the observed series in terms of seasonal variation. This technique utilizes a distance measure
calculated from the cumulative periodograms of the observed and climate models. Using the
distance matrix obtained from the integrated periodograms, a complete-link agglomerative
hierarchical clustering was performed on the monthly precipitation, maximum, and minimum
temperature series.

From Figure 3.2, it can be observed that for the precipitation series, those twelve models
were clustered into four groups. As expected, models from the same modeling institution,
such as ECEARTH3 and GFDL families, are clustered together. It can be seen that two
models, INM-CM4-8 and MPI-ESM1-2-HR, were clustered with the observed series, indi-
cating their proficiency in simulating seasonal characteristics. The next in line in terms of
having closer seasonal characteristics to the observed series are INM-CM5-0 and CMCC-
ESM2. There is a clear subgrouping with the rest of the models, indicating less potential in
simulating the seasonal behavior of the observed series.

Figure 3.2: Clusters for monthly precipitation series for both observed and climate models
series ( Left figure: shows the cluster separation with blue color contrast, Right figure:
Clustering of climate models and observed data in terms of time series similarity based on
seasonal pattern).

Similarly, for the monthly maximum temperature series, a clear clustering between models
can be observed. The same models seen in the precipitation series exhibit similar seasonal
characteristics, as shown in Figure 3.3.
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Figure 3.3: Clusters for monthly maximum temperature series for both observed and climate
models series (Left figure: shows the cluster separation with blue color contrast, Right figure:
Clustering of climate models and observed data in terms of time series similarity based on
seasonal pattern).

The clustering pattern for the monthly minimum temperature series differs from the
two previous cases, as illustrated in Figure 3.4. In this instance, MRI-ESM2-0 and MPI-
ESM1-2-HR have demonstrated proficiency in capturing seasonal variation. Furthermore, the
dissimilarity between the observed series and the ECEARTH3 family, as well as NorESM2-
MM, is relatively higher compared to the rest of the climate models.

Figure 3.4: Clusters for monthly minimum temperature series for both observed and climate
models series (Left figure: shows the cluster separation with blue color contrast, Right figure:
Clustering of climate models and observed data in terms of time series similarity based on
seasonal pattern).
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Principal Component Analysis (PCA)

In the PCA analysis of monthly precipitation data, most climate models align along PC1,
with exceptions such as TaiESM1, CMCC-ESM2, and MRI-ESM2. PC1 explains nearly all
the variance for models ECEARTH3-Veg and ECAERTH3-CC. The models MPI-ESM1-2-
HR and the ECEARTH3 family form a closely correlated group. As depicted in Figure 3.5,
the observed series is strongly correlated with MRI-ESM2.

Figure 3.5: PCA Bi-plot for monthly precipitation series of both observed and climate model
series.

All the ECEARTH3 families and GFDL-CM4 exhibit a strong correlation with the ob-
served maximum temperature series, as illustrated in Figure 3.6. Conversely, MRI-ESM2-0
and CMCC-ESM2 are the least correlated models in this regard.
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Figure 3.6: PCA Bi-plot for monthly maximum temperature series of both observed and
climate model series.

Contrary to the monthly maximum series, the ECEARTH3 families exhibit poor corre-
lation in the monthly minimum series. The most highly correlated model is GFDL-ESM4,
and the second-best are groups of models that include GFDL-CM4, NorESM2-MM, and
MRI-ESM2-0, as shown in Figure 3.7.
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Figure 3.7: PCA Bi-plot for monthly minimum temperature series of both observed and
climate model series.

Spatial Performance of Models

The spatial performance of the models was initially evaluated by correlating observed values
with climate model outputs at each station for all three climatic variables. For instance,
Figure 3.8 presents a box plot of the monthly precipitation correlation coefficient values
for each climate model at all stations. From this figure, it can be inferred that models
MPI-ESM1-2-HR, ECEARTH3, and MRI-ESM2 exhibit relatively better correlation with
observed monthly precipitation across the basin. On the other hand, models CMCC-ESM2
and TaiESM1 are among the poorly performing ones.
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Figure 3.8: Box-plots of monthly precipitation correlation coefficients for each climate modes
obtained across all climate stations in UASB.

Similarly, the correlation box plots for the maximum temperature series (Figure 3.9)
demonstrate that two models, MPI-ESM1-2-HR and ECEARTH3, exhibit better correlation,
while MRI-ESM2 is again the least performing.

Figure 3.9: Box-plots of monthly Tmax correlation coefficients for each climate modes ob-
tained across all climate stations in UASB.

The correlation coefficient values for the minimum temperature (Figure 3.10) do not align
consistently with the precipitation and maximum temperature series. In this case, models
belonging to the GFDL family exhibit relatively good performance compared to others, while
the ECEARTH families show the lowest correlations.
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Figure 3.10: Box-plots of monthly Tmin correlation coefficients for each climate modes ob-
tained across all climate stations.

Figure 3.11: Maps of IDW interpolated monthly precipitation RMSE values of those 12
climate models.

In addition to the analysis of the spatial distribution of correlation coefficients, RMSE
was used similarly to observe which climate model provides a better fit to the observed series.
As shown in Figure 3.11, models GFDL-CM4, MRI-ESM2, and GFDL-ESM4 exhibit lower
spatial RMSE values for monthly precipitation compared to the rest. Meanwhile, INM-CM4-
8 and TaiESM1 show the least spatial performance. In all models, there appears to be less
error in simulating rainfall at stations located at higher elevations.
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3.4.2 Model Ranking and Interpretation

In the interpretation and summary of all results, a simple rank-based system is employed. A
higher rank (lower in magnitude) is assigned to a specific climate model for the desired effect.
For instance, in the interpretation of the result of distribution fitting, if a specific model has
been fitted with the same distribution as the observed series, a value of one (unit) is assigned;
otherwise, zero is assigned. These values are then summed across the four analysis periods
for each model and given a rank. The ranking ranges from one to twelve, corresponding to
the total number of climate models used in the study. In this context, a model would receive
a higher rank if the sum of ranks is higher.

A similar approach is also used in the interpretation of trend analysis. If a similar trend
is obtained for a specific model, a value of one is assigned, and zero otherwise. The ranking
procedure is the same as that used in the interpretation of distribution analysis. For the
case of performance measures, a higher rank is given to a specific model that has scored well
according to the criteria of each measure. Since four performance measures are used for each
model, the final ranking is based on the sum of ranks.

To interpret cluster analysis, the result of the distance (dissimilarity) matrix is used. A
model with a minimum distance from the observed series is ranked higher than one with a
larger distance. In the summary of PCA analysis, the angle between loading vectors of the
observed and climate models is used as a ranking criterion. Among those twelve models, a
model with a smaller angle is considered much closer to the observed series, so a higher rank
is assigned to it. Finally, the areal averaged values of two spatial measures (correlation and
RMSE) are given a rank.

From the result of precipitation time-series analysis across each method, model TaiESM1
has performed poorly, as shown in Table 3.5. The top three models that have shown an
overall good performance are MRI-ESM2, GFDL-ESM4, and MPI-ESM1-2-HR.

There is no common model that exhibits good performance across all three climate vari-
ables, as seen in Table 3.5. The least performance for the maximum temperature series was
observed in MRI-ESM2. In the case of the minimum temperature series, the ECEARTH3
family performed poorly, while, on the contrary, the GFDL family is among the top perform-
ers, as shown in Table 3.5.

Finally, the same ranking methodology was applied to identify possible models with an
overall good performance for all three climatic variables of concern, as shown in Table 3.6.
It can be observed that the MPI-ESM1-2-HR model is one of the models with the highest
overall ranking when compared across those three climatic variables.

Table 3.6: Summary result for all three climatic variables

Data Type Precip Rank Tmax Rank Tmin Rank Sum of Rank Final Rank

MPI-ESM1-2-HR 3 3 2 8 1
GFDL-CM4 4 9 1 14 2
GFDL-ESM4 2 9 4 15 3
INM-CM5-0 8 2 7 17 4
MRI-ESM2 1 12 4 17 4
ECEARTH3 5 1 12 18 6
TaiESM1 12 5 3 20 7

INM-CN4-8 11 3 8 22 8
CMCC-ESM2 9 8 6 23 9

ECEARTH3-Veg 7 6 10 23 9
NorESM2-MM 6 11 8 25 11
ECEARTH3-CC 9 6 11 26 12
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Table 3.5: Summary rank based on seven criteria used for evaluating the three climate model
time series
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Sum of Rank Final Rank

Precipitation
MRI-ESM2 1 1 8 6 1 1 3 21 1
GFDL-ESM4 5 1 3 4 3 5 2 23 2

MPI-ESM1-2-HR 5 1 7 1 5 4 4 27 3
GFDL-CM4 5 1 10 8 2 3 1 30 4
ECEARTH3 5 10 1 9 4 2 5 36 5

NorESM2-MM 2 1 6 5 8 8 8 38 6
ECEARTH3-Veg 5 1 2 12 7 7 7 41 7

INM-CM5-0 5 1 11 3 10 10 10 50 8
CMCC-ESM2 5 1 4 10 11 11 9 51 9

ECEARTH3-CC 4 10 12 7 6 6 6 51 9
INM-CM4-8 5 12 5 2 9 9 12 54 11
TaiESM1 2 1 9 11 12 12 11 58 12

Maximum Temperature
ECEARTH3 4 6 3 3 4 3 1 24 1
INM-CM5-0 4 2 2 5 8 4 3 28 2
INM-CM4-8 4 6 4 4 5 2 4 29 3

MPI-ESM1-2-HR 4 9 6 1 6 1 2 29 3
TaiESM1 4 2 1 2 9 7 8 33 5

ECEARTH3-CC 2 12 5 8 1 5 5 38 6
ECEARTH3-Veg 4 6 8 6 2 6 6 38 6
CMCC-ESM2 4 2 11 7 10 8 7 49 8
GFDL-CM4 1 9 9 11 3 9 9 51 9
GFDL-ESM4 2 1 7 10 11 10 10 51 9
NorESM2-MM 4 2 12 9 7 11 12 57 11
MRI-ESM2 4 9 10 12 12 12 11 70 12

Minimum Temperature
GFDL-CM4 2 1 1 4 2 1 1 12 1

MPI-ESM1-2-HR 1 5 2 1 6 6 7 28 2
TaiESM1 5 1 3 7 7 4 3 30 3

GFDL-ESM4 2 9 8 3 1 3 5 31 4
MRI-ESM2 5 9 7 2 4 2 2 31 4

CMCC-ESM2 2 1 9 5 5 8 8 38 6
INM-CM5-0 5 9 6 6 8 5 4 43 7
INM-CM4-8 5 7 4 8 9 7 9 49 8

NorESM2-MM 5 5 10 11 3 9 6 49 8
ECEARTH3-Veg 5 7 5 9 10 10 10 56 10
ECEARTH3-CC 5 1 12 10 11 11 11 61 11
ECEARTH3 5 9 11 12 12 12 12 73 12

NB: PDFR (PDF Rank), TrendR (Trend Rank), PMR (Performance Measure Rank), ClusterR
(Custer Rank), PCAR (PCA Rank), SpatCorr (spatial Correlation), SpaRMSE (Spatial RMSE),
SRank (Sum of Rank), FRank (Final Rank).
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3.4.3 Future Climate Projections

To evaluate future climate conditions in the study area, the QM technique was applied to
bias-adjust the predictions of the top five climate models: MPI-ESM1-2-HR, GFDL-ESM4,
INM-CM5-0, MRI-ESM2, and ECEARTH3. Conducting future climate projections involved
using an ensemble average of these five models, excluding GFDL-CM4 due to a lack of
required scenarios.

Examining the precipitation variable, there is an overall increase in precipitation across
three time periods (near, mid, and end of the century) compared to the base period (1980-
2009), as detailed in Table 3.7. The mean annual areal precipitation increment for the near,
mid, and end of the century is 1.3%, 10.6%, and 19.7%, respectively, under the worst-case
socio-economic scenario. In the middle socio-economic scenario, increments of 2.7%, 6.4%,
and 7.9% are observed for the same periods. With the exception of the sustainable scenario,
a higher magnitude of increment is anticipated by the end of this century. Analyzing the
seasonal pattern of change reveals a slightly higher magnitude of increment for spring rainfall
compared to summer, with a predicted decrement in summer rainfall, especially for the near
time period.

Concerning the mean annual areal maximum temperature in the middle scenario, pro-
jections indicate an increment of 1.1◦C, 1.6◦C, and 2.0◦C for the near, mid, and end of the
century, respectively (see Table 3.7). Similarly, the worst-case scenario shows a rise of 1.2◦C,
2.0◦C, and 3.0◦C for the same periods. For the minimum temperature series in the middle
scenario, an increase of 1.3◦C, 2.0◦C, and 2.4◦C is observed for the near, mid, and end of
the century, respectively. The worst-case scenario indicates increments of 1.4◦C, 2.5◦C, and
4.0◦C for the same periods. In conclusion, akin to the precipitation variable, a higher mag-
nitude of temperature increment is projected by the end of this century, with the increment
being relatively higher for minimum temperature than for maximum temperature.

Table 3.7: Mean annual areal averaged future climate Change over UASB for three time
periods and two scenarios

Scenarios Near Mid End

Precipitation(%∆) SSP5-8.5 (-2.1 - 5.3) 1.3 (6.1 - 16.1) 10.6 (11.8 - 29.4) 19.7
SSP2-4.5 (-0.7 - 6.8) 2.7 (2.0 - 11.9) 6.4 (2.2 - 15.0) 7.9
SSP1-2.6 (-1.2 - 9.0) 3.4 (1.4 - 16.6) 8.2 (-0.3 - 14.2) 6.2

Tmax(◦C) SSP5-8.5 (0.8 - 1.5) 1.2 (1.7 - 2.3) 2.0 (2.8 - 3.2) 3.0
SSP2-4.5 (0.7 - 1.5) 1.1 (1.3 - 2.0) 1.6 (1.7 - 2.3) 2.0
SSP1-2.6 (0.7 - 1.4) 1.1 (0.9 - 1.7) 1.3 (0.9 - 1.8) 1.3

Tmin(◦C) SSP5-8.5 (1.0 - 1.9) 1.4 (2.2 - 2.9) 2.5 (3.7 - 4.2) 4.0
SSP2-4.5 (1.0 - 1.7) 1.3 (1.6 - 2.3) 2.0 (2.1 - 2.7) 2.4
SSP1-2.6 (0.9 - 1.7) 1.3 (1.2 - 2.0) 1.6 (1.1 - 2.0) 1.6

NB: Numbers in the brackets indicate uncertainty limits of mean changes ( for Pre-
cipitation (x̄predicted − x̄observed)/(x̄observed) and for Temp (x̄predicted − x̄observed)
) of mean annuals calculated by using the standard deviation of each series (pre-
dicted and observed). For example, for predicted series the limits are = x̄predicted ±
xstandarddeviation,predicted. The same technique was applied in calculating limits of ob-
served.
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Table 3.8: Seasonal areal averaged precipitation future climate Change (%∆) over UASB for
three time periods and two scenarios

MAM JJAS

Near Mid End Near Mid End

SSP5-8.5 (-0.15 - 0.46)0.03 (-0.10 - 0.47)0.08 (-0.04 - 0.58)0.15 (-0.12 - 0.02)-0.06 (-0.06 - 0.11)0.01 (0.02 - 0.16)0.08
SSP2-4.5 (-0.13 -0.6)0.08 (-0.08 - 0.45)0.09 (-0.11 - 0.48)0.08 (-0.11 - 0.04)-0.04 (-0.10 - 0.07)-0.02 (-0.06 - 0.08)0.00
SSP1-2.6 (-0.14 - 0.6)0.07 (-0.06 - 0.56)0.14 (-0.07 - 0.43)0.09 (-0.11 - 0.06)-0.04 (-0.09 - 0.09)-0.01 (-0.08 - 0.07)-0.02

The results of the future climate analysis discussed in the preceding paragraphs focus
on areal averaged outputs. To gain insights into the spatial patterns of these changes, four
representative stations were strategically selected across the basin. Their relative geographic
positions (north, east, south, west) within the sub-basin were the main criteria for selection.
The aim is to discern any spatial patterns in future climate changes across the sub-basin.

An examination of future precipitation (see Table 3.9) reveals a relatively higher mean
change in precipitation and larger uncertainty in mean change predictions for stations Ejere
and Hombole. Regarding future temperature changes, stations Deberzeit and Bui exhibit
higher changes compared to the other two stations. Additionally, stations Bui and Tulubolo
display larger uncertainties in predicting mean changes for both maximum and minimum
temperature series. There is no clear spatial pattern observed in the changes in future pre-
cipitation across the sub-basin. However, the future changes in temperature values indicate
that stations located at lower elevations experience higher relative changes.

Table 3.9: Mean annual future climate Change at selected four meteorological stations in the
UASB for three time periods and two scenarios

Stations Scenarios Near Mid End

Precip(%∆)

AA SSP5-8.5 (4.3 - 9.7)7.4 (6.0 - 25.9)17.5 (28.6 - 33.2)31.3
SSP2-4.5 (24.6 - 26.3)25.3 (10.5 - 13.3)11.7 (10.0 - 10.0)10.0

Ejere SSP5-8.5 (-1.6 - 13.2)3.8 (21.1 - 23.9)22.8 (29.7 - 46.9)36.2
SSP2-4.5 (11.1 - 37.9)20.9 (5.2 - 28.7)14.0 (6.9 - 24.1)13.4

Hombole SSP5-8.5 (-23.4 - 63.7)-2.6 (3.4 - 77.7)22.0 (7.5 - 123.3)36.6
SSP2-4.5 (-14.5 - 93.9)11.4 (-12.5 - 93.7)14.1 (-12.0 - 86.1)12.6

Ginchi SSP5-8.5 (-3.3 - 5.1)-0.1 (14.2 - 15.1)14.6 (18.0 - 34.6)24.5
SSP2-4.5 (6.3 - 26.5)14.1 (2.3 - 17.8)8.4 (0.2 - 21.3)8.5

Tmax(◦C)

AA SSP5-8.5 (1.0 - 1.3)1.2 (2.4 - 2.4)2.4 (3.3 - 3.6)3.5
SSP2-4.5 (0.8 - 0.9)0.8 (2.1 - 2.3)2.2 (2.6 - 2.8)2.7

Bui SSP5-8.5 (0.6 - 2.1)1.3 (2.4 - 3.4)2.9 (3.8 - 4.6)4.2
SSP2-4.5 (0.5 - 1.6)1.1 (2.1 - 3.3)2.7 (2.7 - 4.0)3.3

Debrezeit SSP5-8.5 (1.3 - 1.5)1.4 (2.9 - 3.2)3.0 (4.0 - 4.6)4.3
SSP2-4.5 (1.0 -1.1)1.1 (2.7 - 2.8)2.7 (3.5 - 3.5)3.5

Tulubolo SSP5-8.5 (-0.1 - 2.8)1.4 (1.3 - 3.8)2.6 (2.5 - 4.9)3.7
SSP2-4.5 (-0.3 - 2.5)1.1 (1.0 - 3.8)2.4 (1.5 - 4.4)3.0

Tmin(◦C)

AA SSP5-8.5 (1.5 -1.7)1.6 (2.6 - 2.7)2.7 (3.8 - 4.4)4.1
SSP2-4.5 (1.1 -1.2)1.2 (2.2 - 2.3)2.2 (2.6 - 3.0)2.8

Bui SSP5-8.5 (1.3 - 3.8)2.5 (3.5 - 5.4)4.5 (5.4 - 7.0)6.2
SSP2-4.5 (1.0 - 3.0)2.0 (2.9 - 5.1)4.0 (3.3 - 5.8)4.6

Debrezeit SSP5-8.5 (1.5 - 1.9)1.7 (3.2 - 3.3)3.2 (4.4 - 4.9)4.7
SSP2-4.5 (1.2 -1.3)1.2 (2.7 - 2.8)2.8 (3.1 - 3.6)3.3

Tulubolo SSP5-8.5 (0.9 - 1.8)1.4 (1.9 - 4.1)3.0 (3.2 - 5.2)4.2
SSP2-4.5 (0.8 - 1.4)1.1 (1.4 - 3.9)2.7 (1.8 - 4.5)3.1
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3.5 Discussion

The models incorporated in the new CMIP6 archive demonstrate comparable or improved
capabilities in simulating global climate compared to CMIP5 [80]. This improvement is at-
tributed to enhanced model resolution, setup, scenarios, and parameterization in the CMIP6
archive [44]. This study primarily focuses on applying statistical and data mining techniques
to identify climate models from the CMIP6 archive that can effectively simulate the climate
system of the UASB. The evaluation of these models against observed historical climate se-
ries, using the specified evaluation criteria, enables the identification of potential models. All
comparisons were based on spatial averaged data for the 1980-2009 period of analysis.

No specific model consistently outperformed others across each evaluation criterion and
climatic variable, as detailed in Table 3.5. For instance, Model MRI-ESM2-0 demonstrated
proficiency in representing the distributional properties of the precipitation series, while
GFDL-CM4 and MPI-ESM1-2-HR excelled in simulating minimum and maximum tempera-
ture series, respectively. Model GFDL-ESM4 displayed consistent good performance for both
precipitation and maximum temperature series, and models GFDL-CM4, TaiESM1, CMCC-
ESM2, and ECEARTH3-CC showed equal potential for minimum temperature series.

The performance measures for model fit indicated that no specific model consistently
exhibited superior performance across all three climate variables. MPI-ESM1-HR excelled
in capturing the seasonal patterns for all three climate variables. However, in PCA analysis,
not all three climate variables were correlated with the same climate model; MRI-ESM2,
EC-EARTH3-CC, and GFDL-ESM4 showed better correlations for precipitation, maximum
temperature, and minimum temperature series, respectively.

Spatial evaluation criteria revealed that MRI-ESM2 exhibited better spatial correlation,
while GFDL-CM4 showed a good model fit for the precipitation series. For maximum tem-
perature series, MPI-ESM1-2-HR and ECEARTH3 ranked highest based on these criteria.
Additionally, GFDL-CM4 claimed the top rank for minimum temperature series in both
spatial evaluation criteria.

According to recent studies, summer rainfall over Ethiopia is influenced by sea surface
temperature conditions over the Gulf of Guinea and the southern Pacific Ocean, while spring
rainfall is influenced by sea surface temperature over the North Atlantic Ocean. Equatorial
Pacific Ocean temperature, ENSO, and ITCZ are identified as significant factors shaping the
climate over the UASB [23, 24].

Many climate models evaluated in this study exhibit varying performances in simu-
lating global climate processes. Notably, EC-EARTH3, MPI-ESM1-2-HR, and TaiESM1
have shown good capabilities in capturing ENSO teleconnections [80]. MPI-ESM1-2-HR has
demonstrated proficiency in producing teleconnections over the Indian and North Atlantic
Oceans [81]. These models align with the top-ranked models identified in this study.

The top-ranked model, MPI-ESM1-2-HR, likely performed well due to its higher atmo-
spheric and ocean model resolution relative to other models. With a 0.94◦ atmospheric
resolution, 95 verticals, and model top at 0.01 hPa, coupled with a 0.4◦ horizontal resolution
and 40 levels for the ocean model, MPI-ESM1-2-HR outperformed models like CMCC-ESM2,
which has a lower atmospheric resolution of 0.9◦× 1.25◦ with 30 verticals and model top at 2
hPa, coupled with a 0.33◦ ocean resolution [82, 81, 83]. Considering the complex topography
of the study area, model resolution is crucial in capturing all significant climate characteris-
tics.

Previous climate change studies in the basin using CMIP5 outputs predicted an increase in
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temperature for all time periods and scenarios [60, 58, 59]. However, there was no consensus
on future precipitation changes. Discrepancies may be attributed to the poor performance of
previous climate models in simulating East Africa’s climate or inadequate model selection. In
contrast, this study predicts an increase in both precipitation and temperature (Table 3.7),
aligning with the AR6 IPCC report, which forecasts an increase in annual mean precipitation
and maximum temperature values over East Africa for the mid and end of the century [84].
The study’s findings on future climate projections, including a slight higher increment in
spring rainfall than summer, also align with the AR6 IPCC report, providing a more consis-
tent outlook compared to previous CMIP5 outputs. Notably, the study’s results, showing an
increase in precipitation and temperature, and the associated uncertainty bands, corroborate
with the AR6 IPCC report, indicating a higher uncertainty in future precipitation predictions
toward the end of the century and higher uncertainty in temperature predictions for the mid
and end of the century. The study concludes that the findings are more consistent with the
AR6 IPCC report on future climate conditions over North-East Africa [84].

3.6 Conclusions

The outcomes of the model selection process emphasize the challenge of drawing conclusions
about the performance of a single model, as each model exhibits varying performance across
different evaluation criteria. Nevertheless, model MPI-ESM1-2-HR demonstrates an overall
strong performance when assessed for all time steps and evaluation criteria.

Analyzing the outputs of each evaluation criterion for the three climatic variables, the
GFDL-CM4 model emerges as the most robust across three measures (PDF, PCA, and Spa-
tial). In terms of capturing trend behavior, CMCC-ESM2 excels. Model fit performance
measures (R2, RMSE, MAE, and BIAS) highlight that INM-CM4-8 outperforms other mod-
els. Notably, MPI-ESM1-2-HR stands out as the best model for capturing the stochastic
behavior, including underlying periodic patterns, of the observed series.

The subsequent downscaling and bias adjustment, applied to scenarios from the top five
high-ranking models (ECEARTH3, GFDL-ESM4, MPI-ESM1-2-HR, MRI-ESM2, and INM-
CM5-0) using IDW and QM approaches for all three climate variables (Precipitation, Max-
imum temperature, and Minimum temperature), resulted in future climate predictions for
three socio-economic scenarios (sustainable, middle, and worst) across three time periods
(near, mid, and end of the century). The predictions indicate a relative increment compared
to the base period (1980-2009) for all three climate variables, with a higher magnitude of in-
crement expected by the end of this century. Seasonal projections reveal a higher magnitude
of increment for spring rainfall than for summer. The study’s findings align with the new
AR6 IPCC report on expected future climate changes in North East Africa.

Considering the intensification of agricultural activity and urbanization in the study area
[25], coupled with the projected increase in precipitation, there is an elevated risk of flooding
in the UASB in the future.

The results of this study could be further validated by incorporating other ensemble
variants in addition to r1i1p1f1.
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Chapter 4

Flow Characteristics of Rivers in the
Sub-basin

4.1 Introduction

Water is considered a non-renewable resource, necessitating careful management at the basin
level through a meticulously planned water resource strategy. The success of any water
resource planning and management initiative hinges on a thorough examination of the water
resource potential within a given basin. Such studies often probe into both past and future
water resource conditions, considering temporal (time series)/spatial scales or a combination
of both. To accomplish these objectives, high-quality climatic and hydrological data of
sufficient length are imperative.

Studies investigating past and future water resource conditions commonly employ diverse
methodologies using hydrological time series. These methodologies may involve the use of
raw flow time series or the application of different time series or hydrological models. Before
embarking on any modeling effort, it is essential to process raw flow data and ensure it aligns
with the assumptions required by these models. Understanding the characteristics of a flow
time series significantly aids in selecting a more proficient time series model with superior
performance in capturing the underlying stochastic nature [85] [86].

Critical characteristics of a time series encompass its trend, stationarity, linearity, pe-
riodicity, and seasonality. Trend refers to a consistent increment or decrement in the flow
magnitude over a specified analysis period. Recent studies have employed techniques such as
linear regression [87], Mann Kendall [88][89][90], Sen’s slope, and ITA [91][92] to discern the
trend characteristics of river flow time series. Stationarity, another crucial concept, indicates
whether statistical attributes (mean, variance, and autocorrelation) of the time series remain
unchanged over a specified time period. Tests like KPSS and ADF [89] are commonly used
to identify stationarity. Linearity is equally significant, determining whether observations in
a time series exhibit time dependency—a pivotal consideration when fitting time series mod-
els. Linearity can be assessed using various methods, including Portmanteau or BDS tests
[85][93][94]. Seasonality, indicating the repetition of patterns in a time series, such as peaks or
troughs, can be identified through Autocorrelation Function (ACF) (Partial Autocorrelation
Function - PACF) plots, periodograms, or by observing different statistical characteristics
(mean, standard deviation (SD), coefficient of variation (CV)) [90].

This chapter aims to provide a detailed examination of the flow characteristics derived
from major rivers in UASB, offering insights into the hydrology of the sub-basins.
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4.2 Data Sets

The investigation into flow characteristics over the UASB centered on four key stations:
Akaki, Hombole, Melka Kuntere, and Mojo, as detailed in Table 4.1. Station selection
was based on the availability of relatively extensive data records. Akaki, situated in the
northeastern part of the UASB, is predominantly a metropolitan area with a total drainage
area of 956.75 km2, featuring the longest stream in the sub-basin stretching to 87.4 km.
The second sub-basin, Melka Kuntere, spans most of the northwestern area of the basin and
encompasses a total drainage area of 4517.8 km2, with the longest stream in this sub-basin
extending to 120.1 km. The third sub-basin, Mojo, located in the southeastern part of the
basin, significantly contributes to the larger Awash basin, covering 1461.707 km2, and hosting
the longest stream with a span of 87.21 km. The fourth station serves as a collection point
for the flow from all these stations, featuring a total drainage area of 7693 km2 and the
longest stream measuring 190 km. The table below provides a presentation of the statistical
characteristics of the flow series at different time levels for each station.

Table 4.1: Statistics of flow series for each hydrological Stations over UASB.

Station Periods Time level Mean(m3/s) Standard Deviation (m3/s) Skewness Kurtosos ACF(1)

Akaki@Akaki 1981-2008 Daily 7.51 13.74 5.02 32.33 0.69
1/3 Month 7.51 10.84 3.23 13.67 0.77
Monthly 7.46 9.74 2.63 8.35 0.53
Annual 7.46 2.62 0.17 0.00 0.36

Awash@Hombole 1975-2015 Daily 41.00 72.06 2.63 7.91 0.94
1/3 Month 40.99 68.24 2.22 4.50 0.89
Monthly 40.70 63.52 1.98 3.34 0.59
Annual 40.70 10.19 0.27 0.00 -0.16

Awash@Melka 1966-2012 Daily 18.47 28.12 1.94 3.83 0.99
1/3 Month 18.47 27.69 1.96 4.04 0.93
Monthly 18.37 26.58 1.90 3.94 0.65
Annual 18.47 4.82 1.25 2.15 -0.24

Mojo@Mojo Village 1968-1991 Daily 4.98 12.97 6.11 51.02 0.48
1/3 Month 4.98 8.80 3.21 13.12 0.67
Monthly 4.95 7.62 2.57 7.77 0.47
Annual 4.99 1.76 0.67 0.44 0.02

4.3 Methods

The characterization of the flow series in the sub-basin involves the application of various tech-
niques. Before undertaking any calculations or analyses using the flow data from any of the
gauge stations, a thorough check for data quality is conducted. Every time series comprises
trend, seasonal, and stochastic components, which collectively contribute to understanding
its nature [95] [96]. Additionally, stationarity and linearity are two crucial concepts essen-
tial for comprehending any time series and subsequently fitting an appropriate model to it.
The subsequent subsections delve into a detailed theoretical background of these concepts,
accompanied by corresponding statistical tests used to identify their presence in the time
series.

4.3.1 Filling Missing Data and Outlier Detection

This data processing stage is crucial before conducting any tests or analysis on the flow series.
Raw data often contains missing or erroneous values that may have occurred during various
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stages of the data retrieval process. In this study, the flow time series underwent an initial
visual analysis to identify any missing or outlier data points using graphical techniques on
the daily flow series.

For missing data points, the approach involved filling them by taking the average of
backward and forward data points relative to the location of the missing data point. If the
number of days exceeds three, the daily mean is substituted for that day using available
data from other years. Outliers were detected and filled using the ’fill outliers’ function in
MATLAB [97].

4.3.2 Stationarity Test

Stationarity is a crucial assumption in time series analysis, often signifying that certain
statistical properties remain constant over time. The primary metrics used to define station-
arity are the first moment (µx(t)) and the second moment (γx(t)). There are two general
classifications of time series stationarity: Weak and Strict stationarity. Weak stationarity
is characterized by both the first and second moments being independent of time. On the
other hand, Strict stationarity is a more stringent requirement, demanding that the joint
distribution remains the same, in addition to the conditions specified by weak stationarity.
Specifically, for a time series (xt), the distribution of (x1, . . .,xn) and (x1+h, . . .,xn+h)
should be identical, where h and n are integers, and n > 0. In practice, when a time series
is referred to as stationary, it generally implies Weak stationarity, as Strict stationarity is a
more demanding assumption.

In this study, a stationarity test is conducted on the flow series from each gauging station
after the removal of potential outliers. Two well-known stationarity tests, the Augmented
Dickey-Fuller (ADF) test [98] and the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test [99],
are applied.

The ADF test aims to determine the stationarity of the series by identifying the presence
of a unit root (i.e., ρ = 1) through fitting the data with Equation 4.1.

∆Yt = α + βt+ (ρ− 1)Yt−1 +
K∑
i=1

θi∆Yt−i + ut (4.1)

Where: α is constant term, βt is the trend term, the third term is AR(1) process, fourth
term is AR(K) process and ut is a purely random process.

These techniques primarily involve testing for stationarity, particularly to detect suspected
trends and autoregressive (AR) processes. Depending on the nature of the time series, the
first null hypothesis of no-trend stationarity (H0 : (α, β, ρ) = (α, 0, 1)) is examined. If the
hypothesis of no-trend stationarity cannot be rejected, the second hypothesis, indicating no
stationary AR process (H0 : (α, ρ) = (α, 1)), is then tested. Additionally, the presence of
drift (H0 : (α, ρ) = (0, 1)) in the time series can also be identified. The estimated Augmented
Dickey-Fuller (ADF) test statistic (Equation 4.2) is compared against the standard Dickey-
Fuller t statistic value corresponding to the sample size (T) and the chosen confidence interval.

ADFt = ρ̂− 1/SE(ρ) (4.2)

Where: ρ̂ represents the estimated coefficient of the lagged differenced variable, and SE(ρ)
is the standard error of this coefficient.
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Another commonly applied stationary test is the Kwiatkowski-Phillips-Schmidt-Shin (KPSS)
test [99]. Unlike the ADF test, the KPSS test directly examines stationary behavior in the
fitted AutoRegressive Integrated Moving Average (ARIMA) process. In this case, the null
hypothesis is stationarity. The model used to fit the data includes a time-dependent constant
term, trend term, and stationary random walk.

yt = αt + βt+ ut (4.3)

αt = αt−1 + ϵt (4.4)

Using KPSS, a test for both trend and level stationarity can be conducted. The null and
alternative hypotheses for the trend stationarity case are shown in Equation 4.5, while for
the level stationary case, they are presented in Equation 4.6.

HO : σϵ
2 = 0;H1 : σϵ

2 ̸= 0 (4.5)

HO : β = 0 (4.6)

The test statistic for the two cases are given by;

η̂j =
1

T 2

∑T
t=1(St,j)

2

STm
2 , j = µ, Tr (4.7)

St,j =
t∑
1

ûi,j (4.8)

S2
Tm =

T∑
1

û2t +
2

T

m∑
1

(Wim

∑
ûtût−i) (4.9)

In Equation 4.7, if j = µ, Tr means the least square residuals (ut) are estimated by
regressing y both on the constant and trend term. Otherwise, if j = µ means the residuals
are estimated only using the constant term. The m term stands for the truncation parameter
and denotes the maximal order up to which the autocovariances are included, and T is the
sample size. In Equation 4.9, S2

Tm is the adjusted variance of the residuals with consideration
of autocorrelation. Also, Wim is the weight used to ensure the consistency of the variance
estimator. According to [100], the weight suggested by [101] is often used, as shown in
Equation 4.10.

Wim = 1− i

m+ 1
(4.10)

Where: i = 1, 2, . . .,m.

4.3.3 Linearity Test

Most natural systems exhibit linear relationships, with nonlinearity arising from the complex
interactions inherent in these systems. Streamflow, as a component of the Earth’s surface
processes, is part of the intricate hydrologic cycle, specifically the rainfall-runoff process. This
hydrological cycle comprises numerous subsystems, making the estimation of streamflow
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a challenging task [85]. Linearity is a characteristic that indicates whether a time series
originates from random events, often referred to as an independent and identically distributed
(iid) process.

A one sided linear process xt can be expressed with the following equation:

xt = µ+
∞∑
i=0

ψiat−i (4.11)

where µ and ψi are real numbers and at is a sequence of iid random variables with mean zero
and a well defined density function. Here, ψ0 = 1 and

∑∞
i=0 |ψi| <∞.

The linearity of a time series can be assessed using Equation 4.11, which describes a linear
autoregressive (AR) process. The observed flow series is fitted to this equation after removing
any trend and seasonal patterns present. The residuals of the AR model are then examined
to determine if they exhibit iid behavior. If the residuals prove to be iid, no further modeling
is necessary, and only the estimation of their mean and variance is required. However, if
the residuals do not exhibit iid behavior, it suggests the presence of deterministic chaos
in the time series xt, indicating patterns that cannot be described by simple mathematical
functions.

This study employs a well-known technique, known as the BDS (Brock, Dechert, and
Scheinkman) test [102], to identify possible non-linear behavior in the observed flow series
from the four gauging stations. The BDS test is conducted using the tseries package [104] in
R.

In the BDS test, the theory of the correlation integral (C) applied to determine whether
the linear model fitted to the data series (Xt for t=1,2,. . .,T) is linearly dependent or
independent. The correlation integral assesses the degree (probability) to which the data
points in a time series are interconnected. The test involves calculating the absolute difference
(distance) of each data point to every other data point, creating a distance matrix. A
threshold (ϵ)is then set, defining the percentage of data points considered related. Using
this threshold, each cell of the distance matrix within the threshold is assigned a value of
unity, while those outside receive a value of zero. The correlation integral is subsequently
calculated as the sum of values within each cell divided by the total number of possible pairs
used in the distance matrix calculation. Equation 4.12 summarizes these steps, describing
the correlation integral (Cm,ϵ)for an embedding dimension (m) and threshold value (ϵ).

Cm,ϵ =
2

Tm(Tm − 1)

∑∑
m≤s<t≤T

I(xmt , x
m
s ; ϵ) (4.12)

Where, Tm(Tm − 1) is the number of constructed m- histories (xt = (Xt, xt−1, ..., xt−m+1)).
The term in double summation (I(xmt , x

m
s ; ϵ)) expresses the assigned values based on the set

threshold for every cell in the distance matrix.
The correlation integral represents the probability of dependence between pairs of data

points. If similar probabilities can be estimated for pairs of pairs, and these probabilities are
independent of each other, the correlation integral for m number of pairs can be expressed
as follows:

Cm
1,ϵ = Pr(|Xt −Xs| < ϵ)m (4.13)

The BDS test statistic is calculated based on the expression in Equations:4.12 and 4.13
as follows;
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Vm,ϵ =
√
T
Cm,ϵ − Cm

1,ϵ

Sm,ϵ

(4.14)

Where Sm,ϵ is the standard deviation of
√
T (Cm,ϵ − Cm

1,ϵ). The BDS test statistic converges
to normal distribution N(0,1) under fairly moderate regular conditions.

Vm,ϵ
d−→ N(0, 1) (4.15)

So, the null hypothesis of iid can be rejected at 5% significance level when ever Vm,ϵ > 1.96.
In this study, BDS test is applied to residuals obtained from fitting an AR(p) linear model
to the data. Also, a distance threshold (ϵ) equal to standard deviation and an embedding
dimension (m) up to 5 can be applied.

4.3.4 Trend Test

The trend test is performed with the help of Mann-Kendall [67] or modified Mann-Kendall
trend [68] depending on the result of test for presence of auto-correlation. This methodology
is already discussed in detail in subsubsection - 3.3.1 of this Thesis.

4.3.5 Periodicity

The seasonal characteristics of the flow series will be studied with the help of spectral density
plots (periodograms). The periodogram expresses the relative strength of various frequencies
(periods) for explaining the variation in the time series, thereby helping to identify the
dominant frequency in the data. A time series can be represented as the superposition of
uncorrelated sinusoids, as shown in Equation:4.16 below.

Xt =
k∑

j=1

Ajcos(ωjt) +Bjsin(ωjt), o < ω1 < ... < ωk < π (4.16)

Where: A1, B1, ..., Ak, Bk are uncorrelated variables with E(Aj) = E(Bj) = 0 and var(Aj) =
var(Bj) = σ2

j . And k = n− 1, n is the data length.
Here, Xt is a zero mean stationary time series with autocovariance function γ(.) satisfying∑∞

h=−∞|γ(h)| <∞. So, spectral density of Xt can be expressed with the function f(.).

f(λ) =
1

2π

∞∑
h=−∞

e−ihλγ(h), −∞ < λ <∞, for all λϵ(−π, π) (4.17)

Where; eiλ = cos(λ) + i sin(λ), h is lag, and i =
√
−1.

In practice the actual data (Xt) is transformed into frequency domain (Periodogram)
using Discrete Fourier Transform (DFT) technique as shown in Figure:4.1 using the following
expression;

In(λ) =
1

n

( n∑
t=1

Xte
−itλ

)2

(4.18)

Where: λ is one of Fourier frequencies ωk.
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Figure 4.1: Transformation of time series from time into frequency domain.

In this study the periodograms are developed using the parametric method which first
fits AR model to the flow series. This procedure is undertaken by the help of astsa package
in R [108].

4.3.6 Seasonal Character

Seasonality refers to the variations in time series that can be described by regular short time
intervals, such as weekly, monthly, bi-yearly, or quarterly periods. The seasonal nature of
time series is understood by observing changes in different flow series statistics. The statistics,
including mean, Standard Deviation (SD), Coefficient of Variation (CV), and Autocorrelation
Function (ACF), have been applied at both the daily and monthly time levels. The analysis
can also be performed on the 1/3 monthly flow series.

To calculate these statistics, the daily and monthly flow series are structured in matrix
form, where the rows (i) represent years of analysis, and columns (j) indicate specific days
for daily or months for monthly flow series, as shown in the matrix Equation:4.19.

x(1,1) x(1,2) . . . x(1,j)
x(2,1) x(2,2) . . . x(2,j)
. . .
. . .
. . .

x(i,1) x(i,2) . . . x(i,j)

 (4.19)

The mean (x̄j), SD (Si) and CVj are calculated as follows;

x̄j =
1

n

n∑
i=1

xi,j (4.20)

Sj =

√√√√ 1

n

n∑
i=1

(xi,j − x̄j)
2 (4.21)

CVj =
Sj

x̄j
(4.22)

In the same manner ACF (xj, xj+k) for different lags (k) was calculated using the following
expression;
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ACFj(k) =
1
n

∑n
i=1 (xi,j − x̄j) (xi,j+k − x̄i,j+k)

SjSj+k

(4.23)

The daily or monthly statistics, calculated using the mentioned techniques, have been
summarized and presented primarily through graphical representation in the results section.

In addition to these statistics, data processing techniques have been applied to observe the
seasonal autocorrelation of the time series. These data processing steps include trend removal,
normalization, and deseasonalization techniques. The trend removal step involves fitting a
linear regression model and subsequently removing the linear trend from each time level of
the data. The second step is normalizing the time series by either taking the logarithm or
applying the Box-Cox transformation [109], as shown in Equation:4.24. Deseasonalization is
achieved through standardization techniques, which remove the seasonal mean and standard
deviation from each data point in the time series, as shown in Equation:4.25.

g(x) =

{
xλ−1
λ

for λ ̸= 0

log(x) for λ = 0
(4.24)

xj,i − x̄j
Sj

(4.25)

4.4 Results

4.4.1 Test for Stationarity and Linearity

The results of the stationarity analysis on the flow series of the aforementioned hydrological
stations are summarized in Table 4.2. The test were undertaken using the urca package [110]
in R. The test results conclude that almost all of the flow series at different time levels exhibit
stationary characteristics, except for the annual series of the Mojo gauging station. In the
annual series of Mojo, the KPSS trend test indicates non-stationarity, while the ADF trend
test shows the opposite. This suggests that differencing the series is necessary to make it
stationary.
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Table 4.2: Result of stationarity test for four gauge stations along four time levels using
KPSS and ADF test

KPSS test ADF test

Level Stationarity Trend Stationarity

Station Time level lag Max. Test Statistic P-value Test Statistic P-value Test Statistic P-value

Akaki Daily 38 0.11 > 0.1 0.10 > 0.1 -26.24 < 0.01
1/3 Month 21 0.09 > 0.1 0.09 > 0.1 -10.94 < 0.01
Monthly 16 0.10 > 0.1 0.09 > 0.1 -12.67 < 0.01
Annual 9 0.13 > 0.1 0.12 > 0.1 -3.14 0.04

Hombole Daily 42 0.04 > 0.1 0.01 > 0.1 -12.14 < 0.01
1/3 Month 24 0.07 > 0.1 0.02 > 0.1 -14.87 < 0.01
Monthly 18 0.12 > 0.1 0.03 > 0.1 -17.22 < 0.01
Annual 10 0.25 > 0.1 0.13 > 0.1 -7.07 < 0.01

Melkakuntere Daily 43 0.06 > 0.1 0.02 > 0.1 -8.45 < 0.01
1/3 Month 24 0.07 > 0.1 0.03 > 0.1 -14.76 < 0.01
Monthly 18 0.11 > 0.1 0.04 > 0.1 -17.41 < 0.01
Annual 10 0.29 > 0.1 0.13 > 0.1 -8.78 < 0.01

Mojo Daily 37 0.29 > 0.1 0.04 > 0.1 -28.56 < 0.01
1/3 Month 21 0.26 > 0.1 0.04 > 0.1 -10.59 < 0.01
Monthly 16 0.34 > 0.1 0.06 > 0.1 -11.04 < 0.01
Annual 8 0.31 > 0.1 0.15 0.04 -4.46 < 0.01

1 Critical Values: ADFDaily=-2.8618,ADF1/3Month=-2.8648,ADFMonthly=-2.8674,ADFAnnual=-
2.9351,KPSSlevel=0.463, KPSStrend=0.146.

2 Significance level(α) is 5%.

Another critical characteristic of time series, essential for identifying a suitable forecasting
model, is the linearity assumption. The requirement for linearity is that the residuals (noise)
of a model should be independent random variables or iid (independent and identically dis-
tributed). If the residuals are independent, there is no need for further modeling other than
estimating their mean and variance. However, if there is dependency in the residuals, it indi-
cates that past and recent values are correlated. This information is valuable for identifying
a potentially complex stationary time series model.

In this study, the linearity test is performed on the flow time series using the non-
parametric BDSL test [102] through the tseries package [104] in R at four time levels, as
shown in Table 4.3.
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Table 4.3: Result of linearity test for four gauging stations along four time levels using BDS
test

BDS Test

Station Time level m=2 m=3 m=4 m=5

T.Stat P-val T.Stat P-val T.Stat P-val T.Stat P-val

Akaki Daily 57.39 0.0 62.75 0.0 66.31 0.0 69.11 0.0
1/3 Month 16.99 0.0 19.91 0.0 21.08 0.0 21.81 0.0
Monthly 6.03 0.0 5.67 0.0 4.86 0.0 3.83 0.0
Annual -3.79 0.0 -1.15 0.25 -0.93 0.35 -1.25 0.21

Hombole Daily 64.49 0.0 76.07 0.0 83.21 0.0 89.06 0.0
1/3 Month 18.39 0.0 22.89 0.0 25.90 0.0 28.60 0.0
Monthly 9.04 0.0 9.65 0.0 8.94 0.0 7.82 0.0
Annual -0.71 0.48 -1.24 0.21 -1.07 0.28 -1.23 0.22

Melkakuntere Daily 86.00 0.0 93.37 0.0 97.02 0.0 100.36 0.0
1/3 Month 22.85 0.0 27.23 0.0 30.85 0.0 34.79 0.0
Monthly 8.33 0.0 9.50 0.0 9.48 0.0 8.67 0.0
Annual -0.09 0.92 -1.34 0.18 -1.96 0.05 -1.82 0.07

Mojo Daily 52.17 0.0 57.92 0.0 60.34 0.0 62.11 0.0
1/3 Month 12.62 0.0 15.62 0.0 17.14 0.0 18.17 0.0
Monthly 6.35 0.0 6.60 0.0 5.92 0.0 5.02 0.0
Annual 0.07 0.94 -0.09 0.92 -1.30 0.19 -1.85 0.06

1 critical values for rejection of null hypothesis is when |BDSTestStatistics| > 2.0 [111] and for ϵ =
standard deviation(σ).

2 Significance level(α) is 5%.

The results of the BDS test conducted on residuals from the fitted AR(p) linear model
of the flow series at various time intervals for each gauging station in the UASB confirm
the existence of ruminant nonlinear dependencies, indicating non-random patterns in the
daily, 1/3 month, and monthly series. However, the residuals from the fitted linear model
for the annual flow series show a contrasting result, suggesting a more linear behavior with
the presence of independent and identically distributed (iid) characteristics.

4.4.2 Trend Characteristics

The trend tests were conducted using the modifiedmk package in R [112] at two time levels.
Before applying these trend tests, the data were examined for the presence of any significant
autocorrelation characteristics. Depending on this, either the original Mann-Kendall trend
test [67] or the modified Mann-Kendall trend test [68] was applied. Tables 4.4 and 4.5 below
illustrate the results of the trend tests.

The trend analysis for the annual flow series (Table 4.4) shows that there is no significant
trend observed for all stations, with the exception of the Mojo station. In this station, the
annual flow seems to decrease at a rate of 0.131m3/s. The monthly analysis of trends at
the Hombole station (Table 4.5) reveals a significant increasing trend only for four months:
June, October, November, and December. Among these, the last three months immediately
follow the main rainy season (June-July-August-September(JJAS)). In the Akaki station,
there is a significant increasing trend for almost all months, with the exception of the rainy
months (July-August-September (JAS)), where there is an insignificant decrement in flow.
However, in the Melkakuntere station, it was difficult to observe any clear seasonal trend
behavior, as most months showed insignificant test results. In this station, February and
August flows exhibited a decreasing trend, while June showed an increase. Although the
tests are statistically insignificant, there appears to be a decreasing pattern in flow for most
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months during the rainy seasons (March-April and JAS). Additionally, the trend test outputs
for the Mojo station also indicate similar results to the Melkakuntere station, with only three
months (February, April, and August) showing a significant decreasing trend.

Table 4.4: Annual level Trend test on the flow time series of those four guaging staions over
UASB.

Station Z-Value P-Value Sen’s Slope

Akaki@Akaki 0.849 0.396 0.048
Awash@Hombole 0.752 0.452 0.110
Awash@Melka -1.32 0.187 -0.071
Mojo@MojoV. -2.406 0.016 -0.131

1 critical values for rejection of null hypothesis is when
|Z − value| > 1.96 and P- value is ≤ 0.05.

2 Significance level(α) is 5%.

Table 4.5: Monthly level Trend test on flow time series of those four guaging staions over
UASB.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Akaki@Akaki

Z-value 5.642 4.486 4.978 4.330 5.479 4.705 -0.336 -1.600 -1.561 4.592 6.382 6.247
P-value 1.7e−8 7.2e−6 6.4e−7 1.4e−5 4.3e−8 2.5e−6 0.737 0.109 0.118 4.3e−6 1.8e−10 4.2e−10
Sen’s S. 0.139 0.139 0.119 0.134 0.139 0.150 -0.042 -0.413 -0.404 0.176 0.196 0.204

Awash@Hombole

Z-value 1.916 -0.595 0.460 1.112 1.853 2.572 0.236 0.258 0.460 6.968 3.426 2.664
P-value 0.055 0.551 0.645 0.266 0.064 0.010 0.814 0.796 0.645 3.21e−13 0.006 0.008
Sen’s S. 0.020 -0.013 0.017 0.056 0.084 0.299 0.139 0.175 0.316 0.244 0.139 0.037

Awash@Melka

Z-value 0.953 -2.109 -0.128 -0.385 1.540 2.623 -0.092 -2.402 -0.624 -1.540 0.146 0.825
P-value 0.340 0.035 0.898 0.700 0.123 0.009 0.927 0.016 0.533 0.123 0.883 0.409
Sen’s S. 0.006 -0.019 -0.0018 -0.008 0.031 0.172 -0.012 -0.472 -0.101 -0.110 0.003 0.005

Mojo@MojoV.

Z-value -1.017 -2.108 -1.860 -2.158 -0.273 0.124 -1.265 -2.257 -0.818 1.116 1.067 0.372
P-value 0.309 0.035 0.063 0.031 0.785 0.901 0.206 0.024 0.413 0.264 0.286 0.709
Sen’s Sl. -0.016 -0.032 -0.054 -0.040 -0.009 0.016 -0.199 -0.637 -0.107 0.018 0.014 0.008

1 critical values for rejection of null hypothesis is when |Z − value| > 1.96 and P- value is ≤ 0.05.
2 Significance level(α) is 5%.

4.4.3 Periodic Patterns

Here, the monthly series was utilized to discern the types of seasonal patterns present in
the flow series. The raw periodogram developed from the original data tends to be rough,
producing discrete harmonic frequencies. However, a spectral density should be defined
over continuous frequencies. Therefore, smoothing techniques or an alternative approach,
which involves fitting a higher-order AR model before developing the periodogram, is often
recommended. In this study, the latter approach is applied, and the results are shown in
Figure 4.2.
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Figure 4.2: Periodograms of the four gauging stations showing the dominant frequency.

As observed in Figure 4.2, the dominant frequency of the flow series obtained at all four
gauging stations is 12 months.

4.4.4 Seasonal character

Seasonality in Mean, Standard Deviation and Coefficient of Variation

The seasonal characteristics of stream flow series can be comprehended by examining the
annual variations in mean, standard deviation, coefficient of variation, and autocorrelation
function (ACF) plots at daily, 1/3 monthly, and monthly levels.

In this study, daily series were utilized to explore the seasonal changes in mean, standard
deviation, and coefficient of variation for the four gauging stations across UASB. A common
time frame of 365 days was employed for the daily analysis, assuming that the inclusion of an
extra day in leap years (366 days) would not significantly impact the interpretation of results.
The daily data was organized in matrix form as depicted in Equation 4.19. Subsequently,
Equations 4.20, 4.21, and 4.22 were applied to present the data, as illustrated in Figure 4.3.

From Figure 4.3, it is evident that both the mean and standard deviation exhibit similar
patterns across all four gauging stations. Specifically, they are higher in magnitude during
the main wet season (JJAS) and lower in the dry seasons. The observed pattern in the
flow from major rivers in the sub-basin is unimodal, corresponding directly to the unimodal
characteristics of rainfall in the sub-basin. Additionally, higher variance in flow is noticeable
at Akaki and Mojo rivers compared to the other two stations.

The coefficient of variation plots (Figures: 4.4 and 4.5) derived from the daily flow series
of Hombole and Melkakuntere stations reveal higher variability in flow during the dry seasons.
Conversely, Akaki and Mojo stations exhibit higher variability in flow during the wet seasons.
This contrasting behavior in Akaki and Mojo stations during the wet season may be attributed
to their smaller catchment sizes compared to the other stations. In basins with smaller sizes,
the contribution of base flow relative to direct flow is often considered smaller. Additionally,
a steeper elevation drop from the farthest point in the sub-basin to the gauge could contribute
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(a) Akaki Station (b) Hombole station

(c) Melkakuntere station (d) Mojo station

Figure 4.3: Seasonal variation of daily mean and SD over years for the four gauging stations
over UASB.

to this variation. For instance, at Akaki, there is approximately a 1171 m drop in elevation
over a distance of 87.4 km, while for Hombole, the drop is 1195 m over a distance of 190 km.

Seasonality in Autocorrelation Structure

The matrix mechanism presented in Equation:4.19 is also employed here to manipulate the
data and examine the seasonal variation of autocorrelation across the four gauge points.
Two data processing steps, aimed at achieving normality assumption and stationarity, have
been implemented. The initial operation involves transforming the data by either taking loga-
rithms or applying Box-Cox transformation to conform to a normal distribution, as described
by Equation:4.24. Subsequently, detrending and deseasonalizing the data are performed to
attain stationarity. Detrending is executed by fitting a linear regression equation and sub-
tracting the trend from each data point. The final step involves simple deseasonalization
using standardization techniques. Two time frames, daily and monthly, are utilized, and
autocorrelation coefficients are computed using Equation:4.23.

The autocorrelation plots in Figures:4.6 & 4.7 (a) and (b) depict autocorrelation for
the log-transformed and deseasonalized daily time series. On the other hand, Figures:4.8
& 4.9 (a) and (b) illustrate autocorrelation plots for monthly series after detrending, log
transformation, and deseasonalization.

Key observations from the daily and monthly autocorrelation function (ACF) plots in-
clude:

� Generally, the autocorrelation plots for the daily series (day-to-day autocorrelation)
reveal that the dry season flow exhibits higher autocorrelation compared to the wet
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Figure 4.4: Seasonal variation of daily CV over years for Akaki and Mojo gauges.
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Figure 4.5: Seasonal variation of daily CV over years for Hombole and Melkakuntere.
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(a) Akaki Station

(b) Mojo Station

Figure 4.6: Seasonal variation of daily ACF over years for 1-day, 5-day, and 20-day lag for
Akaki and Mojo Village.
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(a) Hombole Station

(b) Melkakuntere Station

Figure 4.7: Seasonal variation of daily ACF over years for 1-day, 5-day, and 20-day lag for
Hombole and Melkakuntere.
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(a) Akaki Station

(b) Hombole Station

Figure 4.8: Seasonal variation of monthly ACF over years for 1,2, and 3 - month for Akaki
and Hombole.
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(a) Melkakuntere Station

(b) Mojo Station

Figure 4.9: Seasonal variation of monthly ACF over years for 1,2, and 3 - month for Melka-
kuntere and Mojo Village.
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seasons. This pattern is particularly noticeable for Akaki@Akaki and Mojo@Mojo
stations.

� The monthly series of Akaki@Akaki station mirrors the seasonal autocorrelation struc-
ture of the daily series. However, for Awash@Hombole and Awash@Melka stations,
the autocorrelation structure differs notably from Akaki@Akaki station. In these two
locations along the Awash river, higher autocorrelation is observed for the main rainy
months (July and August) and the subsequent months especially for ACF plots of 1 and
2 month lags. Conversely, the short rainy months (April and May) exhibit relatively
lower autocorrelation magnitude. For Mojo station higher positive autocorrelation was
observed for Jan-Feb-Mar period and low autocorrelation values for subsequent months.

4.5 Discussion

In this chapter, we conducted various statistical analysis on the flow data obtained from
each of the four gauge stations in the Upper Awash Sub-basin (UASB). The objective was
to comprehend the characteristics of flow time series, gaining insights into the hydrologi-
cal nature of the sub-basin and aiding any future time series modeling efforts. The types
of analyses performed encompassed stationarity, linearity, trend, periodicity, and seasonal
characteristics.

The outcomes of the KPSS and ADF stationarity tests conducted on flow data at various
time intervals (daily, 1/3 monthly, monthly, and annual) all validate stationary characteris-
tics. However, the same inference cannot be drawn from the linearity test performed using
the BDS test. The results indicate that, except for the annual series, all other series exhibit
non-linear dependence characteristics. This aligns with similar findings on the linearity char-
acteristics of annual flow series confirmed by Wang et al. (2006) [85] in their studies of four
major rivers worldwide.

The trend analysis was conducted using both monthly and annual flow series, revealing
no clear correlation between the trend characteristics of each gauging station. Specifically,
the analysis on the Hombole River indicates a significant increasing trend for the months
of June and the dry months (October, November, and December). This finding aligns with
the results reported for Hombole station by Daba et al. (2020) [60]. Similarly, significant
increasing trends were observed for all months in the Akaki River except for July, August,
and September (JAS). In contrast, no significant trend was observed in the Melkakuntere
station across all time periods of analysis. The trend analysis for the Mojo station suggests
an increasing trend in flows for the months of February, April, and August. However, it’s
important to note that the data series for Akaki and Mojo stations are relatively short,
making it challenging to draw confident conclusions.

The results of periodic analysis conducted on the monthly flow series affirm the exis-
tence of an annual cycle. The dominant frequency observed at all gauging stations is a
12-month duration, with the subsequent dominant frequency being six months, as illustrated
in Figure:4.2. This information serves as a crucial input for understanding the seasonal
characteristics of the flow series.

The examination of seasonal characteristics in the rivers of the Upper Awash sub-basin
involved two primary techniques. Firstly, an analysis of mean, standard deviation (SD), and
coefficient of variation (CV) was conducted using daily flow data. Secondly, autocorrelation
characteristics were explored using both daily and monthly data. All four plots (Figure:4.3)
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indicate that both mean and SD exhibit higher magnitudes during the same time periods,
signifying their seasonal nature. Moreover, an analysis of the seasonal characteristics of daily
flows using SD and CV confirms higher variability during the rainy season in rivers from
smaller catchments like Akaki and Mojo. However, the CV plots of Hombole and Melka-
kuntere rivers demonstrate higher variability in flow during the dry and short rainy seasons.
This could be attributed to the hydrological characteristics of these catchments. For instance,
Akaki drains a relatively smaller catchment (956.74 km2) with higher topographic variability,
favoring a quick hydrologic response to recorded rainfall events at the outlet. In contrast,
Melkakuntere and Hombole have catchment sizes of 1461.7 km2 and 7693 km2, respectively,
with an elevation drop of 1171 and 1195 m. This, in turn, imparts a smoothing effect on
the corresponding outflow recorded at the gauging site of these two rivers. Additionally, the
higher flow variability in the short rainy season flow of these stations may be attributed to a
smaller proportion of groundwater contribution, given the larger catchment size of Hombole
and Melkakuntere compared to Akaki and Mojo.

Seasonality characteristics were also investigated through ACF plots at various daily
and monthly intervals. In the daily analysis, calculations were performed for 1, 5, and
20 days, while for the monthly analysis, 1, 2, and 3 months were considered. Analysis at
daily time steps revealed that dry season flow exhibited higher autocorrelation than wet
seasons, especially for small river basins. Similar findings were observed at the monthly time
step, with the exception of a one-month lag. This variation could be attributed to different
factors within the basin influencing the runoff generation mechanism. During dry seasons
characterized by less rainfall and increased groundwater contribution, river flows tend to
be steadier, displaying a more continuous flow pattern, thus being more correlated through
years.

4.6 Conclusion

Various statistical analyses were conducted on flow data extracted from major rivers in the
Upper Awash Sub-basin (UASB). The results of the stationarity test, performed at different
time intervals for all rivers, suggest that the flow series exhibit stationary characteristics.
However, the linearity test is not straightforward, revealing linear dependency only in the
annual flow series. The remaining time steps (daily, 10-day, and monthly) display nonlinear
dependency in the data.

Seasonality analysis, employing the coefficient of variation (CV), revealed higher variabil-
ity in the wet season for flows from smaller catchments like Akaki and Mojo. Conversely, for
larger catchments such as Hombole and Melkakuntere, higher variability was observed during
the dry season. Additionally, it was noted that dry season flows across all rivers exhibited
higher correlation than wet season flows, with this characteristic being more pronounced in
the flow series from smaller catchments like Akaki and Mojo.
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Chapter 5

Time Series Modeling and Flow
Forecasting

5.1 Introduction

The term ”forecasting” refers to the process of estimating future values of time-dependent
data based on available current and past information. Forecasting can be categorized into
different types depending on the application or technique employed. In terms of application,
it is classified into three categories: short term (1 hour to 2 days), medium term (2-10 days),
and long term (more than 10 days). Short-term forecasts are crucial for real-time flood
forecasting, medium-term forecasts play a key role in hydro power generation, and long-term
forecasts are essential for domestic water supply [113].

In terms of the technique applied, forecasting can be categorized as one-step or multi-step
forecasting [114]. One-step (iterated) forecasting involves regressing past information of the
independent and/or exogenous variable until the required forecast horizon is reached. A single
trained model is used throughout the entire forecasting process. On the other hand, multi-
step (direct) forecasting entails regressing a multi-period ahead value of the independent
and/or exogenous variable on current and past values of the variable. The regressive model
is updated at each iteration step, equivalent to a forecast horizon, with model parameters
being updated for every forecast horizon due to varying training data in each iterative step.
Additionally, the input data needs to be structured in a specific way depending on the
required forecast horizon.

Future predictions regarding water availability in a given basin are crucial for effectively
managing existing resources and planning for any future water resource development. Conse-
quently, hydrological forecasting has attracted significant attention from both water resources
planners and researchers. Models employed for hydrological forecasting can be broadly clas-
sified into univariate and multivariate types based on the number of variables or factors
utilized in the forecasting process [115]. Univariate models involve a single variable, such as
using precipitation to forecast streamflow, whereas multivariate models incorporate multiple
variables or factors. Depending on the assumptions and techniques applied, hydrological fore-
casting can also be categorized into conventional and data-driven techniques. Conventional
forecasting often adheres to the traditional Box and Jenkins (1970) approach for forecasting
future values [116], while data-driven approaches heavily rely on various assumptions in the
fields of statistics and machine learning (AI).

Conventional forecasting techniques, such as those applying the regression concept, neces-
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sitate the fulfillment of specific statistical assumptions in the raw data, such as stationarity,
linearity, and normality [115]. One prominent example in this category is different versions
of an Autoregressive Integrated Moving Average (Autoregressive Intergrated Moving Aver-
age (ARIMA)) model. Often, time series obtained from natural processes face challenges
in meeting these assumptions. Consequently, data must undergo various manipulations to
satisfy these conditions. Some of the data manipulations performed include transformations
(e.g., taking logarithms to ensure data follows a normal distribution), standardization (to
remove scale effects and enhance data stationarity), differencing (to induce stationarity in
the data), and decomposition (to model each component of a time series separately) [117]
[95] [118].

Data-driven approaches are particularly attractive due to their lower complexity, reduced
processing time, a smaller number of inputs, and higher accuracy in streamflow forecasting
compared to physically-based models [119] [120] [121]. However, it’s important to note that
there is no single data-driven model (Data Driven Models (DDM)) capable of working in
all circumstances [122]. Instead, an effective DDM should strike a balance between system
physics and data availability [123]. Various AI techniques widely recognized in this context
include Artificial Neural Networks (ANN), Support Vector Machine (SVM), Fuzzy Logic
approach, Evolutionary algorithms (Genetic Programming (GP), Genetic Algorithm (GA)),
swarm intelligence algorithms (Particle Swarm Optimization (PSO), Ant Colony Optimiza-
tion (ACO)), and Wavelet Artificial Intelligence (W-AI) [122].

Several authors have demonstrated the effectiveness of these DDMs in simulating stream-
flow and generating future forecasts. These models can be employed independently or in
combination with other methods based on the characteristics of the streamflow data and
the desired level of accuracy. A recent study by Wang et al. (2009) [124] applied four AI
techniques along with ARMA for long-term monthly streamflow forecasting in two rivers in
China. The study concluded that, although each model exhibited different performance lev-
els during training and validation, the top-performing models were Adaptive Network-based
Fuzzy Inference System (ANFIS), SVM, and GP. However, there hasn’t been a similar sig-
nificant effort in the Upper Awash Basin, except for one by Edossa and Babel (2011) [125].
In their study, a three-layer neural network model with a backpropagation algorithm was
utilized to forecast weekly streamflow in the Melka-Sedi River, Awash Basin, Ethiopia. A
major limitation of this study is the absence of information regarding the appropriate ANN
network design and selection.

The aim of this study is to assess the efficacy of various DDMs in forecasting the monthly
flow series of selected rivers in the UASB. The flow characterization conducted in the previous
chapter revealed that all four monthly flow series obtained from each river exhibit stationary
and non-linear characteristics. Unfortunately, modeling such non-linear processes is not as
straightforward as the Box-Jenkins approach (Box-Jenkins, 1970 [116]). In this study, two
primary approaches have been proposed for forecasting the monthly flow series from three
gauge stations in the sub-basin: Regime Switching Models and Data-Driven approaches
(Artificial Neural Network (ANN) and ANFIS). As discussed earlier, there has been limited
research evaluating the potential of different time series or data-driven techniques in the
sub-basin.
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5.2 Data Sets

The model fitting and time series simulation were primarily conducted using monthly flow
time series data from three major rivers in the UASB: Akaki, Melkakuntere, and Hombole
river. Additionally, areal climatic data, formed by a Thiessen polygon technique for each
river catchment, was incorporated. Detailed information about the climate data and gauging
stations is discussed in chapters 2, 3, and 4.

5.3 Methods

5.3.1 Regime Switching Models

Since traditional ARMA models or their different versions cannot be applied straightfor-
wardly, and in order to capture the non-linear dependency of a monthly flow series, Regime
Switching Models are suggested. Regime switching models divide the data series into a num-
ber of partitions called states (regimes) and attempt to fit an AR(p) model to each state.
The data partitioning can be done by different techniques, and here, two of the most widely
applied techniques, Threshold method and Markov chain technique, are discussed.

Threshold Auto-Regressive Models

This class of time series models has been popular since it was initially proposed by Tong
[126]. Unlike the classical linear ARMA model, these models assume that a given time series
consists of multiple regimes (states), and each of these individual regimes within a given time
series can be fitted to an AR model. The regimes (states) are parts (components) of a time
series, each having a different mean, variance, and auto-correlation character. A regime that
occurs at a given time (t) is identified with the help of a threshold variable (r) as shown in
Equation:5.1.

xt =


ϕ0,1 +

∑p
i=1 ϕi,1xt−i + σ1ϵt, if xt−d ≤ r1

ϕ0,2 +
∑p

i=1 ϕi,2xt−i + σ2ϵt, if r1 < xt−d ≤ r2

. . .

ϕ0,m +
∑p

i=1 ϕi,mxt−i + σmϵt, if rm−1 < xt−d

(5.1)

Where:

xt is m-regime TAR model in which m indicates the number of regimes (states).

xt−d is the threshold variable which is set to make xt shift from one state to another.

ϵt is iid (0,σ2)

ϕ0,i are real valued parameters for some i.

d is a positive integer denoting the delay (d > 0).

rk is the threshold value at kth state.

p is the order of the AR series.
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The above equation can also be written as:

xt = ϕ0,j + ϕ1,jxt−1 + . . . + ϕp,jxt−p + σjϵt, if rj−1 < xt−d ≤ rj (5.2)

where: j = 1, . . .,m
In practice, if the type of threshold variable used is exogenous (i.e., a variable other

than the time series to be modeled), then the model is known as TAR; otherwise, if it is
endogenous, then it’s called SETAR (Self-Exciting TAR). For example, in a TAR model,
other variables (e.g., snowfall, soil moisture, reservoir release, etc.) might be used to express
the point at which the mean fluctuates in the time series. But in the SETAR model, the
threshold variable is defined from the time series to be modeled itself.

In addition to the type of threshold variable used, the way a time series is set to be
switched from one regime to another can be controlled by using transition functions. The
most commonly used transition functions, for example, are Logistic (Equation:5.3) and Expo-
nential (Equation:5.4) functions. Variations of the TAR model that apply transition functions
to define a threshold variable are known as Smooth TAR (STAR) models. This is because the
transition from one regime isn’t abrupt but rather smooth due to the nature of the applied
transition functions.

G(St|γ, c) =
1

1 + exp(−γ(St − c))
(5.3)

G(St|γ, c) = 1− exp(−γ(St − c)2), γ > 0 (5.4)

Where: St is the threshold variable and γ and c are scale and location (mean) parameters.
Therefore, depending on the type of threshold variable and transition functions, we may

have different variations of TAR models. For example, LSETAR and ESETAR are sets
of models that use endogenous threshold variables with logistic and exponential transition
functions, respectively. A two-regime type equation that applies smooth transitions between
regimes on a given time series can be represented by Equation:5.5.

xt = (ϕ0,1 + ϕ1,1xt−1 + . . . + ϕp,1xt−P + σ1ϵt)[1−G(St|γ, c)]+
(ϕ0,2 + ϕ1,2xt−1 + . . . + ϕp,2xt−P + σ2ϵt)G(St|γ, c)

(5.5)

Where: 0 ≤ G(St|γ, c) ≤ 1
Estimation of the AR parameters in each of the regimes is performed through a non-linear

least squares method [127]. As a demonstration, parameter estimation for a two-regime
TAR model is achieved through the minimization of the conditional least squares estimation
objective function (Equation:5.6).

LT (Θ) =
T∑

t=p+1

[xt − EΘ(xt|Ft−1)]
2 (5.6)

Where: xt is the time series to be modeled, Θ = (ϕ′
i,1, ϕi,2, r, d) are coefficient vector

of equations describing the two regimes. In which ϕi,1 = (ϕ0,1, ϕ1,1, . . ., ϕp,1)
′ and

ϕi,2 = (ϕ0,2, ϕ1,2, . . ., ϕp,2)
′, also Ft−1 = (xt−1, xt−2, . . . , x1).
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The minimization of this objective function is achieved through a minimization of S(r, d),
which is the minimum residual sum of squares of the model with a given fixed threshold r
and delay d. To minimize S(r, d), the sum of squares of residuals of the linear equation used
in each regime is minimized. Furthermore, for a given r and d values, let S1 = {t|xt−d ≤ r}
and S2 = {t|xt−d > r} for the two regimes. Then, the parameters ϕi,1 and ϕi,2 are estimated
by ordinary least squares linear regression of the following two equations.

xt = ϕ0,1 +

p∑
i=1

ϕi,1xt−i + et, t ∈ S1 (5.7)

xt = ϕ0,2 +

p∑
i=1

ϕi,2xt−i + et, t ∈ S2 (5.8)

In this study, the appropriate order and delay term have been identified with help of PACF
plots and threshold nonlinearity test [128]. The threshold non-linearity helps to determine
whether or not a given time series with certain order (p) and delay (d) has a non-linear
character. After identifying the order and possible delay, a grid search algorithm under
tsDyn package [129] in R is employed to identify the number of regimes and threshold value.
Moreover, model parameters in each regime can also be estimated under this package.

Markov Switching Models

Markov Switching Models (MSMs) were introduced in the 1980s by James Hamilton [130]
in his paper ”A New Approach to the Economic Analysis of Nonstationary Time Series
and the Business Cycle” published in the Journal of Economic Dynamics and Control in
1989. Hamilton proposed the idea of allowing the parameters of a time series model to
switch between different regimes or states over time, rather than assuming that they remain
constant. This allows MSMs to capture the non-stationarity and regime-specific behavior of
time series data, making them useful for modeling economic and financial time series, among
other applications. Since their introduction, MSMs have become widely used in economics,
finance, and other fields.

For a given time series xt a two state Markov Switching Model can be written by the
following equation;

xt =

{
ϕ0,1 +

∑p
i=1 ϕi,1xt−i + σ1ϵt, if St = 1

ϕ0,2 +
∑p

i=1 ϕi,2xt−i + σ2ϵt, if St = 2
(5.9)

Where: St represents the state of the process at a time t, ϕi,j are real numbers, σi > 0
and ϵt is iid ∼ (0, σ2).

It can be observed that the two-state MSM (Equation:5.9) is very similar to a TAR model,
with the only exception being how the state transition is defined. In MSMs, the state tran-
sition occurs through transition probabilities (Equation:5.10) defined based on probabilities
calculated from the data, i.e., from past information.

P (St = 1|St−1 = 1) = p11, P (St = 2|St−1 = 2) = p22 (5.10)

Where: 0 < ηj < 1.
The above probability terms can also be written as a probability (transition) matrix as

follows:
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[
p11 1− p11

1− p22 p22

]
(5.11)

In general a k-state Markov switching autoregressive model can be written as:

xt = ϕ0,St +

p∑
i=1

ϕi,Stxt−i + σStet,Where : Stϵ(1, . . . , k) (5.12)

The probability of switching to a given state (St) at time t (ξjt) is calculated by application
of Baye’s rule as follows:

ξjt =
ξ1t−1p1jf(Rt|St = j,ℑt−1;Θ) + ξ2t−1p2jf(Rt|St = j,ℑt−1;Θ)

f(Rt|ℑt−1;Θ)
(5.13)

Where: The ξjt−1 term is the unconditional probability term, pij are the components of
transition probability matrix in Equation:5.11, and f(Rt|St = j,ℑt−1;Θ) is the conditional
probability density of an observation at time t(Rt) as shown in Equation:5.14 below. And
the ℑt−1 expresses all the past information available up to t− 1 and Θ is the vector holding
the parameters of the model to be estimated.

f(Rt|ℑt−1;Θ) = Pr(Rt|Θ) = ξ1t−1p11f(Rt|St = 1,ℑt−1;Θ)+

ξ1t−1p12f(Rt|St = 2,ℑt−1;Θ)+

(1− ξ1t−1)p21f(Rt|St = 1,ℑt−1;Θ)+

(1− ξ1t−1)p22f(Rt|St = 2,ℑt−1;Θ)

(5.14)

f(Rt|St = j,ℑt−1;Θ) =
1√
2πσ

exp

[
−(Rt − µj − ϕ1jRt−1 − ϕ2jRt−2−, ... ,−ϕpjRt−p)

2

2σj2

]
(5.15)

The parameters of the MSM model (Θ = [ϕij, σj]) are estimated using the past infor-
mation obtained from the available data using the MLE (Maximum Likelihood Estimation)
technique. For this the initial estimate of ξ1t−1 = ξ10 is required to initialize the maximization
algorithm.

ln f(R1, R2, ..., RT |R0; θ) =
T∑
t=1

ln f(Rt|ℑt−1;Θ) =

T∑
t=1

2∑
i=1

2∑
j=1

ξit−1pij
1√
2πσ

exp

[
−(Rt − µj − ϕ1jRt−1 − ϕ2jRt−2−, ... ,−ϕpjRt−p)

2

2σj2

]
(5.16)

5.3.2 Data Driven Techniques

In this study, two widely known data-driven techniques, namely the ANN and ANFIS models,
are employed to simulate the flow series of three rivers in UASB. The main reason for propos-
ing the application of these methods is their high performance and simplicity in modeling
the non-linear characteristics present in monthly flow series.
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Artificial Neural Network (ANN)
The concept of artificial neural networks (ANN) originated approximately 80 years ago

with McCulloch and Pitts (1943), drawing inspiration from their efforts to understand the
functioning of the human brain. Neural networks are comprised of individual building blocks
called nodes (neurons), featuring links that transfer signals between nodes, adjustable pa-
rameters (weights) assigned to each link, and an activation (transfer) function determining
the output from each node. These models adhere to specific rules governing computation
progression and adaptation (learning) [131].

Each ANN can be custom-tailored to the specific problem at hand, characterized by its
architecture, including the connection between nodes, weight determination, and type of
activation function applied. The architecture may be defined based on the number of layers,
nodes in each layer, and the direction of information flow. For example, Figure:5.1 illustrates
a three-layer ANN architecture. In terms of information flow and structure, ANNs can be
categorized as feedforward or recurrent network types. In a feedforward network, information
flows from the input layer to each node through the hidden layer and finally to the output
layer. Conversely, in a recurrent network, information can also travel backward by taking
the output of the previous forward run as the new input. Nodes within a given layer can be
linked based on requirements. The number of layers and nodes is typically adjusted through
a trial-and-error approach.

Figure 5.1: Three layer Feed-forward ANN architecture with X indicating input and Y as
output from the system (Source: ASCE paper on ANN [2]).

The way at which an input vector to each node is converted to an output can be seen
in the Figure:5.2. Let X = x1,x2, ...,xn be the input vector to a certain node (j) and the
weights of each link be as Wj = w1j,w2j, ...,wnj then the output yj can be obtained by the
following equation:

65



Figure 5.2: ANN at node level (Source: ASCE paper on ANN [2]).

yj = f(X ·Wj − bj) (5.17)

Where: f is the transfer (activation) function and bj is the bias term assigned to each
node.

The output from each node is influenced by the type of transfer (squashing) function
used, typically reflecting the response of a node to an input signal. This function ensures
that node values fall within the range of 0 and 1. The Sigmoid function is the most common
type of transfer function and is defined as follows:

f(t) =
1

1 + e−t
(5.18)

The primary reason why this equation is the preferred choice lies in certain mathematical
properties that make it highly suitable for modeling non-linear relationships. This function
possesses bounded, monotonic, and non-decreasing properties, and its derivatives can be eas-
ily defined. Other applied transfer functions include bipolar sigmoid and hyperbolic tangent
functions.

The term ”Model Training” refers to the process through which weights and biases in
an ANN model are adjusted. Typically, the model training process involves Feed-Forward
and Back-Propagation steps. In the Feed-Forward step, assumed initial weights and biases,
along with the input series, are introduced to the network system. Initial output series is
generated with these assumed weights and biases. Subsequently, in the Back-Propagation
step, an optimization algorithm is employed to refine these assumed weights and biases. This
process, operating backward from the output layer to the hidden layer, aims to optimize the
model coefficients. The steps involved in setting these model coefficients are briefly explained
using a simple three-layer ANN depicted in Figure:5.3.
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Figure 5.3: Three layer ANN composed of two inputs variables (X1 and X2), one hidden
layer node, two outputs (Y1 and Y2), weights (w11,w12,v11,v21),biases (b,c1,c2), and targets
(ti).

Let’s assume its the weight term (vij) to be set, here i indicates the node of output layer
and j is for hidden layer, then

1. Using the initial weights and bias the simulation is performed and the Yi are estimated.

2. The simulations Yi are compared with targets ti using a cost function (C0) such as Sum
of Squared Residuals (SSR) as shown in Eq.5.19.

C0 =
2∑

i=1

(ti − Yi)
2 (5.19)

3. Using the cost function as an objective function and vij a minimization optimization is
defined as follows:

∂C0

∂vij
=
∂C0

∂Yi

∂Yi
∂Zi

∂Zi

∂vij
(5.20)

where: Zi = Pvij + ci and Yi = f(Zi). Here, the f(.) term indicates the activation
function used. Therefore, the partial differential equation above when evaluated comes
down to as;

∂C0

∂vij
=

2∑
i=1

2(ti − Yi)f
′(Zi)P (5.21)

4. Using the Equation:5.21 which indicates the sensitivity of cost function to the variation
of vij, the previous value of vij can be updated by the following relationship,

vijnew = vijold − SS (5.22)
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SS =

(
∂C0

∂vij

)
LR (5.23)

Where: SS - is to mean step size and LR is Learning Rate to be defined so that to
accelerate the search in parameter space as shown in Figure:5.4.

5. Using the updated vijnew , a new value for Yi is predicted there by updating equation
5.19.

6. Steps 4 and 5 are repeated until local minima in the search surface is obtained.

The described steps outline how the weight of links to one of the output nodes is adjusted.
Similar steps are executed for other weights and bias terms in the network. As mentioned ear-
lier, the technique discussed in the above steps is known as Backpropagation. Additionally,
there are several algorithms that perform similar tasks, employing the concept of backpropa-
gation or similar assumptions. Some of these techniques include Conjugate Gradient, Radial
Basis Function, Recurrent Neural Networks, etc.

Figure 5.4: Hypothetical search surface for the optimal (minimum) point by decreasing the
search gradient ( ∂C0

∂vij
).

In this study, a special type of ANN model called Non-linear Auto-Regressive with eXoge-
nous inputs (NARX) has been applied due to its good performance in simulating long-term
dependencies present in a time series [132]. This model has shown promising results in sim-
ulating univariate time series with the help of a delay term together with a feedback loop
mechanism in the network [133] [134].

Forecasting of future flow series is performed with the help of exogenous variables like
rainfall, temperature, evapotranspiration, etc. So, the equation with rainfall as an exogenous
variable can be given as:

F̄ (t+k) = Φo(F (t), F (t−1), . . ., F (t−dF ), R(t), R(t−1), . . ., R(t−dR)) (5.24)
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Where: F̄ (t + k) is forecast for k time step ahead, Φo is a transfer function, F (t), F (t−
1), . . ., F (t − dF ) are lagged flow series, and R(t − 1), . . ., R(t − dR) are lagged
rainfall series.

The network architecture for the NARXmodel is shown in the figure below with a feedback
loop.

Figure 5.5: NARX model with two inputs and delay =2 and an output of one-time step
ahead forecast

The forecasted flow for a one-time step ahead (t+1) and for j = 1 to 3, which is equal to
number of hidden nodes.

F̄ (t+ 1) = Φo(bo +
3∑

j=1

cjOhj) (5.25)

Where; bo is the bias of the output node, cj is the weight of connection between hidden
and output node, and Ohj is output of the hidden node j.

The output from any hidden node j is calculated as shown below;

Ohj = Φhj(bhj +
2∑

i=0

wRiR(t− i) +
2∑

i=0

wFiF (t− i)) (5.26)

Where: ϕhj is the transfer function at hidden node, bhj is the bias term at hidden nodes, wRi

is weights for rainfall delay terms, wFi is weights for flow delay terms, R(t − i) is rainfall
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value for a previous time steps based on the delay, and F (t− i) is flow value for a previous
time steps based on the delay.
Adaptive Neuro-Fuzzy Inference System (ANFIS) Model

Another class of data-driven models with greater potential for simulation is known as the
ANFIS model, first introduced by Shing and Jang in 1993 [135]. This technique merges the
network adaptation mechanisms of the neural network concept with fuzzy inference to create
an efficient predictive model. Unlike the neural network discussed above, here the links used
to connect each node don’t hold weights. In ANFIS, nodes are of two types: adaptive and
fixed nodes. The difference between them is that adaptive nodes hold parameters, whereas
fixed nodes don’t. For easy distinction, square-shaped nodes are often used for adaptive
nodes, while circles are used for the fixed nodes (Figure:5.6). The training inputs to the
model are fuzzified by assigning an appropriate fuzzy membership function.

Figure 5.6: Adaptive Network with two inputs (X and Y) and outputs (Z) .

Fuzziness, used to express something that is not clear or vague, is a concept in mathemat-
ics used to define sets that don’t follow the classical bivalent logic in set theory. In classical
bivalent set theory (Crisp Set Theory), the membership of a given number in a set is assigned
as true or false, with nothing in between. However, in Fuzzy Set Theory, the membership
of a given value in a set is determined based on the degree of closeness. The definition of
closeness relies on an appropriate distance measure, such as Euclidean distance, etc. Both
cases can be further illustrated with the help of Figure:5.7.

Figure 5.7: Universal set (X) which is a real number holding value x, Crisp Set A (Left), and
Fuzzy Set (Ā) (right) .

As shown in Figure:5.7, in Crisp Set Theory, the membership of x in set A (µA(x)) could
be expressed as follows:

µA(x) =

{
1, if xϵA
0, otherwise

(5.27)
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However, in Fuzzy Set Theory, the membership of x in set A is defined by values in
between, including 0 and 1 (hence the hidden lines in the boundary of the fuzzy set Ā) in
Figure:5.7) as shown by the mathematical expression in Equation:5.28.

Ā =

{
(x, µĀ(x)) : xϵX;µĀ(x)ϵ[0, 1]

}
(5.28)

Here, the µĀ(x) which shows the membership of value x and lying between 0 and 1,
is termed as membership function. This membership function is a function that expresses
the degree of membership of a given set of values to a given set A. This function is often
represented with a convex-shaped function, as shown in Figure:5.8.

Figure 5.8: Function of a Convex fuzzy set.

Where; µĀ(xt) ≥ min(µĀ(x1), µĀ(x2))
Properties of Membership Function

The membership function for the fuzzy set Ā depicted in Figure:5.9 consists of three
components: Core (x|µĀ(x) = 1), Boundary (x|0 < µĀ(x) < 1), and Support (x|µĀ(x) > 0).
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Figure 5.9: Components of membership function for a given normal fuzzy set Ā.

Standard Operations of fuzzy sets

i. Complement: µc
Ā
(x) = 1− µĀ

ii. Union: for two fuzzy sets Ā and B̄, their union can be expressed as,

C̄ = ĀUB̄

µC̄(x) = max(µĀ(x), µB̄(x))

iii. Intersection: and the for the same fuzzy sets as in ii.

C̄ = ĀnB̄

µC̄(x) = min(µĀ(x), µB̄(x))

Fuzzy Numbers
Depending on the application or condition, there may be a need for different types of

fuzzy numbers. The most common ones are triangular, trapezoidal, and bell-shaped fuzzy
numbers (Figure:5.10).
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Figure 5.10: Different types of fuzzy numbers and their mathematical notations.

Defuzzification
Once the fuzzy operations have been carried out, it may be necessary to transform them

into the actual variable values that the fuzzy membership values entail. This process of
converting the fuzzy membership values into their corresponding crisp values is known as
defuzzification. The most common types of defuzzification techniques are explained below.

1. Maximum Membership Principle

Let’s assume C̄ is a fuzzy set obtained after fuzzy operations are done on two fuzzy
sets. Then Z∗ is a value obtained by taking the corresponding z value at a point of
maximum membership value (Figure:5.11).

Figure 5.11: Defuzzification of fuzzy membership function for a given fuzzy set c̄ using
Maximum Membership Principle
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2. Centroid Method

This technique works by finding the centroid of the fuzzy membership function curve.
Therefore, for the same figure in Figure:5.11, the equation can be written as:

z∗ =

∫
µc̄(z)zdz∫
µc̄(z)dz

(5.29)

3. Weighted Average Method

This one works for those which has symmetrical membership function (Figure:5.12)
and is given as follows:

z∗ =

∑
µc̄(z̄i)z̄i∑
µc̄(z̄i)

(5.30)

Where: z̄i is the centroid of each symmetric membership function.

Figure 5.12: Defuzzification of fuzzy membership function for a given fuzzy set c̄ using
Weighted Average Method

4. Mean-Max Method

This is also known as the middle of maximum and the defuzzified value of variable Z∗

is given by:

Z∗ =
a+ b

2
(5.31)
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Figure 5.13: Defuzzification of fuzzy membership function for a given fuzzy set c̄ using Mean-
Max Method

Fuzzy Rule Based System
This is where the application of fuzzy sets comes into solving real-world problems where

there is a cause-and-effect phenomenon present between two or more variables. For example,
the relationship between temperature and pressure, rainfall and runoff, etc. Such kinds of
relationships can be expressed with the following conditional expression:

If Antecedent Then Consequent (5.32)

Here, the antecedent part expresses the cause variable, and the consequent part takes
the effect. Depending on the condition of variables, both the antecedent and consequent can
be expressed with fuzzy membership functions, and such kinds of expressions are known as
fuzzy rule-based systems. Using the above notation, a conditional statement for a scenario
consisting of two input variables (X and Y) and k rules can be written as follows:

If X is Ā1
1

and Y is B̄1
1

Then Z is C̄1

If X is Ā2
2

and Y is B̄2
2

Then Z is C̄2

.

.

.

If X is Ān
k

and Y is B̄n
k

Then Z is C̄k

(5.33)

Where: X and Y are inputs and whereas Z is an output variable. In addition, Ān
k
and

B̄n
k
are the antecedent side nth linguistic label for the kth rule of input variables. Similarly,

C̄k is the consequent side kth linguistic label of the output variable. Here, the linguistic label
identifies which category of data range is used. For example, the entire data range may be
categorized into low, medium, and high. Therefore, the data will have three linguistic labels.

In the above conditional statement (Equation:5.33), the consequent statements are con-
nected by ”AND,” which is a conjunction condition. However, depending on the type of
problem, ”OR” (disjunctive) could also be used. For these two types of logical connectives,
the value of membership functions for the consequent side is evaluated, as shown by Equa-
tions:5.34 and 5.35.
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C̄k = Ān
k

and B̄n
k

and . . .

µC̄k(X) = min

[
µ
Ān

k(X), µ
B̄n

k(X), . . .

]
(5.34)

C̄k = Ān
k

or Ān
k

or . . .

µC̄k(X) = max

[
µ
Ān

k(X), µ
Ān

k(X), . . .

]
(5.35)

Graphical Techniques of Fuzzy Inference
There are three common types of fuzzy rule inference systems that have been widely used

to solve various kinds of practical problems. The major differences between these inference
techniques are mainly in the definition of rules on the consequent side and the type of
defuzzification method.

Mamdani Inference System (Type - II)
Let’s consider two input variables, X and Y , with corresponding linguistic labels ĀK and

B̄K , two rules, and an output (Z) also with linguistic labels C̄K as follows:

Rule− 1 : If X1 is Ā1
1

and Y1 is B̄1
1

Then Z1 is C̄1

Rule− 2 : If X2 is Ā2
2

and Y2 is B̄2
2

Then Z1 is C̄2
(5.36)

The steps followed by these techniques are summarized and illustrated in Figure:5.14. It
can be observed that the minimum membership function value is used on the consequent
side to indicate at which membership function value the output should be evaluated since
the type of logical connectives used in the consequent side is conjunctive. Here, the final
membership function value is obtained by summing the two output membership functions on
the consequent side. Finally, to come up with a defuzzified (crisp) value, either the Centroid
Method, Maximum Membership Value Method, etc., could be used.

Figure 5.14: Mamdani Inference System for two inputs, one output, one membership function
for each, and two rules.
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Takagi-Sugeno Inference System (Type- III)
Here, unlike the previous system, on the consequent side, a linear function is used. This

is better demonstrated in Figure:5.15 for the same problem specified in the type-I case. The
crisp output in this case is a weighted sum of those two linear functions on the consequent
side.

Figure 5.15: Takagi-Sugeno Inference System for two inputs, one output, one membership
function for each, and two rules.

Tsykamoto Inference System (Type-I)
Similarly, in this system, the transformation takes place in the same manner as in the

Type-III case, with the only exception of a monotonic function being used to define the
membership function on the consequent side (Figure:5.16).

Figure 5.16: Tsykamoto Inference System for two inputs, one output, one membership func-
tion for each, and two rules.
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ANFIS Steps (using Takagi-Sugeno System)
Unlike in ANN, in the ANFIS network, the number of layers is fixed at five, as shown

in Figure:5.17. At each layer, various transformations on the input data are performed to
generate the output.

Figure 5.17: ANFIS layers

The operations performed at each layer is discussed as follows:

1. Layer-1

This layer contains nodes with membership functions and is where the fuzzification
occurs. The output from each node in this layer can be expressed as follows:

O1
Āi

= µĀi
(X) or O1

B̄i
= µB̄i

(Y ) (5.37)

Various types of membership functions can be used here, with the most commonly
applied one being a bell-shaped function (Equation:5.38) that spans values from 0 to
1.

µĀi
(X) = exp

{
−
(X − ci

ai

)2}
µB̄i

(Y ) = exp
{
−
(Y − ci

ai

)2} (5.38)

Where:
{
ai, ci

}
are antecedent side parameter sets.

2. Layer-2

At this step, a minimization fuzzy operation is performed on the incoming signals
from nodes in the first layer. Therefore, the procedure here can be described with the
following equation:

αi = min

[
µĀi

(X), µB̄i
(Y )

]
(5.39)
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3. Layer-3

This layer is a normalizing layer where weighting factor is calculated for each αi as
follows:

ᾱi =
αi

α1 + α2

(5.40)

4. Layer-4

The outputs of nodes in this layer are corresponding node function multiplied by the
weighing factor obtained from layer-3:

O4
i = ᾱiZi (5.41)

Where: Zi = piX + qiY + ri, and pi, qi, ri are consequent parameter sets.

5. Layer-5

This is the final layer in the network where the weighted outputs from every node of
layer-4 are summed up together to give a final defuzzified output as shown below:

O5
1 =

∑
i

ᾱiZi (5.42)

Where: O5
1 is the final output at layer-5 and 1 indicates the first output.

ANFIS Training (Learning)
The same as the ANN network discussed above, the ANFIS network is also trained with

a training data set using a gradient-based learning procedure. Since every node’s output de-
pends on the input signal from the previous output node and its parameters, this relationship
could be described as:

Ok
i = Ok

i (O
k−1
i , . . . , Ok−1

(#k−1), a, c, . . . ) (5.43)

Where; Ok
i is the output from kth layer and ith node, and #k is the number of nodes in

previous layer. In addition, a and c are the node function parameters.
Let’s assume that the training data consists of P number of inputs, the error at layer L

for the pth(1 ≤ p ≤ P ) input and output could be written as:

Ep =

#(L)∑
m=1

(
Tm,p −OL

m,p

)2
(5.44)

Where: Tm,p and OL
m,p are Target and outputs for the pth training input and mth compo-

nent of the output vector. Here,#L stands for the number of layers.
Therefore, if α is a parameter for given ANFIS network, error at a certain node is given

by:

∂Ep

∂α
=

∑
O∗ϵS

∂Ep

∂O∗
∂O∗

∂α
(5.45)

Where: S is a set of output nodes in the network whose outputs depends on α.
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The overall error for whole training set (P) is therefore will be given as:

∂E

∂α
=

P∑
p=1

∂Ep

∂α
(5.46)

Update of the past value of the parameter will be calculated as follows:

SSα = −κ∂E
∂α

(5.47)

Where: SSα is the step size and κ is the learning rate.
However, since the gradient method is slow and can be trapped in local minima, Jang

(1993) [135] suggested a Hybrid learning rule. This approach suggests combining the gradient
descent method with least square estimation (LSE) to speed up and increase the efficiency of
parameter searching. Here, the learning process starts by running the network until layer-4
with initial parameters and training data in the forward pass. At layer five, the LSE is applied
to fit parameter sets of the consequent side. Then, in the backward pass, gradient descent
would be used to optimize the antecedent parameter sets. The advantage of the Hybrid
learning rule is that other optimization techniques could be put into use in the antecedent
part, such as conjugate-gradient descent, non-linear optimization, etc.

5.4 Results

In this section, the methodologies discussed above have been applied to fit different types
of models to monthly flow data obtained from three major rivers over UASB. The primary
objective of this section is to evaluate the potential of two time series modeling techniques
in terms of their ability to simulate the observed flow data. The techniques applied are
categorized into regime switching and data-driven techniques.

5.4.1 Regime Switching Models

In this section, the potential of Threshold Autoregressive (Threshold Auto-Regressive (TAR))
models, which apply a threshold method, will be evaluated. Two major types of TAR models,
called SETAR and Logistic Smooth Threshold Auto-Regressive (LSTAR), have been fitted
to the monthly flow data. The modeling procedure started by first transforming the monthly
time series into a normal distribution with the help of the Box-Cox technique and then
removing the seasonal effect by fitting a Fourier Harmonic regression. These steps have been
shown graphically for the Hombole station in Figure:5.18, and the fitted parameters of the
two-period harmonic regression equation for all three gauging stations are given in Table:5.1.

Table 5.1: Parameters of Harmonic Regression Equation (with period=2)

Station Constant Cos(1) Sin(1) Cos(2) Sin(2)

Hombole 1.764 -0.682 -0.340 0.070 0.240
Melka 1.428 -1.162 -0.626 0.090 0.350
Akaki 0.511 -0.682 -0.271 0.091 0.295
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Figure 5.18: De-seasonlizing of monthly series of Hombole station.

The actual models were fitted to the residuals, which are obtained by removing the
seasonal part from the transformed series. After model fitting, its performance was measured
by reversing the whole procedures used to obtain the residual series, i.e., adding the seasonal
term and back-transforming. In all cases, modeling was performed after dividing the total
data length into a training and test set. Since the total data length at each gauging station
is different, the proportion of data used for model fitting and testing varies.

Procedures followed for Fitting a TAR Model;
Two types of TAR models have been fitted to the time series: SETAR and LSTAR. In

both cases, the general modeling procedure followed is:

1. The model order (p) was first identified with the help of PACF plots.

2. Delay term (d) is specified with the help of threshold non-linearity test [128].

3. The grid search algorithm under the tsDyn package ([129]) helps to identify threshold
value (Thr) with low pooled AIC.

4. Model parameters of the AR terms in each regime where again estimated with the help
of tsDyn package.

5. Model adequacy is proven with help of pacf plots and Ljung-Box test.

6. At end, forecasts where done and compared with original series to measure model
performance.
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Hombole Station
The monthly flow data at this station was identified to have an order (p) of 7 with the

help of pacf plots, as shown in Figure:5.19. After running a threshold test for different
combinations of (p, d), a delay value of d=2 was selected for the threshold model.

Figure 5.19: PACF of Monthly Box-Cox transformed and deseasonalized Hombole flow series
to identify order(p).

Next, a grid search algorithm was employed to determine which combinations of (p, d)
would yield low pooled AIC values, utilizing the tsDyn package (Figure:5.20). The grid search
identified a model with (d, mL, mH) = (1, 7, 4) (Table:5.2) that provided the lowest pooled
AIC value for various combinations of delay and order among the values defined previously.
Here, mL and mH represent the orders of the two regimes (Low and High) in the model.
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Figure 5.20: Grid search for Hombole flow series to identify which combination of (mL,mH,d)
will yield low pooled AIC for SETAR model Fitting.

Table 5.2: Top ten best outcomes with low AIC values for the Grid search on Hombole
Station)

Trials thDelay mL mH th pooled-AIC

1 1 7 4 0.06477938 -98.60532
2 1 7 4 0.0639956 -98.40885
3 1 7 4 0.06500946 -98.31959
4 1 7 4 0.06710211 -98.17887
5 1 7 4 0.07111458 -97.32338
6 1 7 5 0.06477938 -96.88736
7 1 7 5 0.0639956 -96.72643
8 1 7 5 0.06500946 -96.57525
9 1 7 4 0.07605536 -96.52041
10 1 7 5 0.06710211 -96.43385

However, when the model was later tested for adequacy using pacf and the Ljung-Box
test, it was found to be a poor fit. Therefore, the next option, (1, 7, 5) as shown in Table:5.2,
was considered, and this model proved to be appropriate. The pacf plots demonstrated that
almost all partial autocorrelation values fell within the 95% confidence band (Figure:5.21).
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Figure 5.21: PACF plot with confidence band (95%) for the residual of SETAR (1,7,5) model
fitted to deseasonalized series of monthly Hombole station.

From Figure:5.22, it can be observed that the threshold values suggested by the grid
search algorithm show a clear shift in the mean of the flow series starting from April 2003,
where most of the data points are lying above the threshold line. The parameters of the
fitted two-regime SETAR model are shown in Table:5.3.

Figure 5.22: Transformed and deseasonalized monthly Hombole station flow series with
threshold lines (SETAR threshold (Red line) = 0.065m3/s and LSTAR threshold ( dot-
ted blue line)= 0.068m3/s) overlaid.
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Table 5.3: SETAR(1,7,5) model parameters and fit statistics for monthly flow series of Hom-
bole station)

Sub-models Estimate Standard Error TStatistic P-Value

const.L 0.009 0.017 0.522 0.602
phiL.1 0.412 0.054 7.605 0.000
phiL.2 0.011 0.082 0.129 0.897
phiL.3 0.065 0.064 1.029 0.304
phiL.4 0.059 0.065 0.908 0.364
phiL.5 0.013 0.064 0.204 0.838
phiL.6 -0.207 0.062 -3.315 0.001
phiL.7 0.204 0.058 3.505 0.000
const.H 0.004 0.028 0.137 0.891
phiH.1 0.541 0.08 6.772 0.000
phiH.2 0.009 0.108 0.086 0.931
phiH.3 -0.2 0.076 -2.65 0.008
phiH.4 0.118 0.073 1.618 0.106
phiH.5 0.032 0.067 0.478 0.633

Threshold = 0.0648
Residual variance= 0.044
AIC = -1500
MAPE = 265.3%

Similar procedures were followed to identify the best LSTAR model, and a two-regime
model with a threshold value of 0.068m3/s and smoothing parameter (γ) = 2000 was found to
have the lowest AIC. Figure:5.23 shows the plot of the transition function with the threshold
variable (St), and the red dotted line indicates the threshold value = 0.068 m3/s.

Figure 5.23: Transition function (G(St)) of transformed and deseasonalized monthly Hombole
flow series (St) with the red dotted line indicating the threshold value = 0.068 m3/s used in
the fitted model.
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Again, LSTAR model parameters were identified using the tsDyn package in R and are
shown in Table:5.4. The model adequacy was evaluated using the pacf plot of model residuals
shown in Figure:5.24, and it can be concluded that the selected model is appropriate.

Table 5.4: LSTAR(1,7,7) model parameters and fit statistics for monthly flow series of Hom-
bole station)

Sub-models Estimate Standard Error TStatistic P-Value

const.L 0.01 0.016 0.582 0.561
phiL.1 0.412 0.053 7.729 0.000
phiL.2 0.013 0.08 0.166 0.868
phiL.3 0.066 0.063 1.052 0.293
phiL.4 0.057 0.064 0.897 0.37
phiL.5 0.011 0.063 0.18 0.857
phiL.6 -0.205 0.061 -3.341 0.001
phiL.7 0.204 0.057 3.564 0.000
const.H -0.006 0.033 -0.176 0.86
phiH.1 0.13 0.095 1.368 0.171
phiH.2 -0.007 0.135 -0.053 0.957
phiH.3 -0.264 0.098 -2.7 0.007
phiH.4 0.059 0.098 0.6 0.549
phiH.5 0.004 0.098 0.045 0.964
phiH.6 0.239 0.099 2.4 0.016
phiH.7 -0.203 0.089 -2.28 0.023
gamma 2000 10504 0.19 0.849

th 0.068 0.008 8.522 < 2.2e− 16

2 Significance level(α) is 5%.
residual variance = 0.045
AIC = -1493, MAPE = 264.2%
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Figure 5.24: PACF plot with confidence band (95%) for the residual of LSTAR (1,7,7) model
fitted to deseasonalized series of monthly Hombole station.

After fitting model parameters, one-step ahead forecasts were performed using both SE-
TAR and LSTAR models with a few years of data used to initialize the models. Both models
seem to have reasonable performance when compared against the original flow series, as
shown in Figures:5.25 and 5.26. However, it can be observed that both models face severe
difficulty in estimating the peak values.
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Figure 5.25: Monthly plot of original and forecasted SETAR (Left) and LSTAR (right) model
outputs for the period (01/01/2003-12/01/2009) in Hombole station.
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Figure 5.26: Scatter plot of original and forecasted SETAR (Left) and LSTAR (right) model
outputs fo the test period for the monthly flow series in Hombole station.

Melka Kuntere Station
In the Melka Kuntere station, an order (p) of 9 from the PACF plot and a delay of 9 from

the threshold test were obtained and later used to identify appropriate SETAR and LSTAR
threshold values using the same grid search algorithm. Therefore, the threshold values for
SETAR and LSTAR were obtained as −0.288m3/s and −0.356m3/s, respectively. These
threshold values were later overlaid over the residual series, as shown in Figure:5.27. It can
be observed from this plot that, unlike the Hombole station, here there is no clear observable
shift in mean, with the exception of a few months at the start of the series. The plot shows
that the threshold values separate the entire data series into two, with data points having
higher variance located above the threshold line and lower variance below the line.

89



Figure 5.27: Transformed and deseasonalized monthly MelkaKuntere station flow series with
threshold lines (SETAR threshold (Red line) = −0.288m3/s and LSTAR threshold ( dotted
blue line)= −0.356m3/s) overlaid.

In the Melka Kuntere station, the fitted model parameters for each model are shown in
Tables:5.5 and 5.6. These model parameters were later used to generate a forecast in the
same manner as for the Hombole station as shown in Figures: 5.28 and 5.29 . The resulting
forecasts are not very promising and have performed poorly compared to the Hombole station.
The models completely miss the peaks, with only seasonal patterns being captured.

Table 5.5: SETAR(6,6,1) model parameters and fit statistics for monthly flow series of Melka-
kuntere station)

Sub-models Estimate Standard Error TStatistic P-Value

const.L 0.005 0.044 0.11 0.913
phiL.1 0.347 0.089 3.876 0.000
phiL.2 0.163 0.103 1.591 0.112
phiL.3 0.067 0.105 0.638 0.524
phiL.4 -0.238 0.099 -2.42 0.016
phiL.5 0.082 0.094 0.872 0.384
phiL.6 0.099 0.088 1.123 0.262
const.H 0.002 0.02 0.101 0.919
phiH.1 0.431 0.043 10.005 < 0.000

2 Significance level(α) is 5%.
Threshold =-0.2885
residual Variance= 0.178
AIC = -956
MAPE = 213.7%
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Table 5.6: LSTAR(1,9,1) model parameters and fit statistics for monthly flow series of Melka-
kuntere station)

Sub-models Estimate Standard Error TStatistic P-Value

const.L 0.019 0.06 0.309 0.757
phiL.1 0.578 0.079 7.352 0.000
phiL.2 0.021 0.059 0.362 0.718
phiL.3 0.059 0.045 1.307 0.191
phiL.4 -0.086 0.045 -1.899 0.058
phiL.5 0.031 0.045 0.7 0.484
phiL.6 0.038 0.044 0.857 0.392
phiL.7 -0.006 0.044 -0.139 0.890
phiL.8 -0.07 0.044 -1.599 0.110
phiL.9 0.093 0.041 2.273 0.023
const.H -0.009 0.069 -0.129 0.898
phiH.1 -0.235 0.091 -2.571 0.010
gamma 2000 9934.3 0.201 0.840

th -0.356 0.059 -6.069 0.000

2 Significance level(α) is 5%.
residual variance = 0.175
AIC = -954, MAPE = 298.6%

Figure 5.28: Original and Forecasted SETAR and LSTAR model output for Melka station.
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Figure 5.29: Original and Forecasted SETAR (left) and LSTAR (right) model trend fit line
for Melka station.

Akaki Station
In this station, the monthly flow data was identified to have p=7 and d=3. These were

later used to identify possible threshold values for both SETAR and LSTAR models using
the grid search algorithm. The identified threshold values with low pooled AIC values are
shown in Figure:5.30. From the plot, it can be seen that the threshold value obtained from
the SETAR model shows the separation of data much better than the LSTAR model.

Figure 5.30: Transformed and deseasonalized monthly Akaki station flow series with threshold
lines (SETAR threshold (Red line) = −0.26m3/s and LSTAR threshold ( dotted blue line)=
−0.57m3/s) overlaid.

Later, both models were fitted using model parameters obtained with the help of the grid
search algorithm. The corresponding parameters used in forecasting are shown in Tables:5.7
and 5.8.
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Table 5.7: SETAR(1,1,7) model parameters and fit statistics for monthly flow series of Akaki
station)

Sub-models Estimate Standard Error TStatistic P-Value

const.L 0.003 0.098 0.032 0.974
phiL.1 0.439 0.177 2.482 0.015
const.H 0.01 0.042 0.236 0.814
phiH.1 0.579 0.134 4.322 0.000
phiH.2 -0.052 0.169 -0.306 0.761
phiH.3 0.012 0.137 0.09 0.928
phiH.4 -0.04 0.131 -0.306 0.760
phiH.5 0.067 0.124 0.544 0.588
phiH.6 -0.224 0.117 -1.913 0.059
phiH.7 0.266 0.102 2.606 0.011

1 critical values for rejection of null hypothesis is when |Z−value| >
1.96 and P- value is ≤ 0.05.

2 Significance level(α) is 5%.
Threshold =-0.26
residual Variance= 0.082
AIC = -220, MAPE = 132.5%

Table 5.8: LSTAR(1,1,7) model parameters and fit statistics for monthly flow series of Akaki
station)

Sub-models Estimate Standard Error TStatistic P-Value

const.L 0.095 0.128 0.741 0.458
phiL.1 -0.057 0.229 -0.249 0.803
const.H -0.11 0.132 -0.837 0.403
phiH.1 0.724 0.249 2.906 0.004
phiH.2 0.003 0.133 0.019 0.984
phiH.3 0.04 0.112 0.353 0.724
phiH.4 -0.026 0.108 -0.241 0.809
phiH.5 0.113 0.105 1.07 0.285
phiH.6 -0.237 0.101 -2.349 0.019
phiH.7 0.273 0.088 3.1 0.002
gamma 36.539 3238.5 0.011 0.991

th -0.572 0.029 -19.447 < 0.000

1 critical values for rejection of null hypothesis is when |Z−value| >
1.96 and P- value is ≤ 0.05.

2 Significance level(α) is 5%.
residual variance = -0.572
AIC = -229, MAPE = 155.5%

Even though the data series at this station is very short, both models have satisfactorily
simulated the original time series as shown in Figures:5.31 and 5.32. As it can be seen, the
LSTAR model has a lower performance than its SETAR counterpart. This is due to the
threshold value estimated for the LSTAR model poorly partitioning the data series into two
regimes as compared to its SETAR counterpart.
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Figure 5.31: Original and Forecasted SETAR and LSTAR model output for Akaki station.

Figure 5.32: Original and Forecasted SETAR (left) and LSTAR (right) model trend fit line
for Akaki station.
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5.4.2 Data Driven Approaches

NARX Model Training, Validation, and Uncertainty
The model building started with the identification of model inputs at each gauging station,

including monthly rainfall, mean monthly temperature, monthly potential evapotranspiration
(Eto), mean monthly 30-day Antecedent Precipitation Index (API), and monthly flow data.
All climate inputs are areal weighted values obtained through the use of a Thiesson polygon
developed for a catchment corresponding to each gauging station. After identifying possible
model inputs, the next task was to analyze which input combination gives the best-performing
model. In this study, nine possible input combinations were identified based mainly on
intuition and a trial-and-error approach, as shown in Table:5.9. Each of these nine input
combinations corresponds to a single model.

Table 5.9: NARX input combinations

Model Rf mTemp Eto API Flow

1 x x x x x
2 x x x x
3 x x x
4 x x x
5 x x
6 x x x x
7 x x x
8 x x x
9 x x

Both model inputs and outputs are normalized (standardized) before being given as input
to the NARX model in the training and testing phases. Additionally, Table:5.10 shows the
general NARX model settings used while training and testing the model at all three gauges.

Table 5.10: General NARX settings used in model generation

Input transfer function: Sigmoid
Output transfer function: ReLu

Training Algorithm: Levenberg Marquardt with Bayesian regularization
Delay: 1

Number of Hidden layers: 1
Number of Hidden nodes: Varying

epoch 1000

Hombole Station
The primary approach employed for selecting an appropriate model began with defining

the network architecture. In this context, a two-layer NARX model comprising a hidden layer
and an output layer was chosen. This decision stemmed from the observation that increasing
the number of layers did not enhance model accuracy; instead, it heightened computational
time. Consequently, each stage of model development concentrated on determining an op-
timal number of nodes in the hidden layer. The input data underwent partitioning into
training and validation sets, with 75% of the data series allocated for model training and the
remaining 25% for testing.

The initial step in model construction involved identifying the best architecture for each
of the nine models. This was achieved iteratively by varying the number of hidden nodes and
subsequently assessing performance. The chosen performance metric at this stage was RMSE.
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For each model, a specific number of nodes was selected, yielding a relatively lower RMSE
value in both the training and testing phases. Ultimately, the model with the lowest RMSE
value among the nine was considered the most suitable for forecasting the monthly flow series
at this station. The results of this analysis for each of the nine models, corresponding to
different input combinations, are depicted in Figure:5.33. Notably, Model 5 emerges as the
preferred alternative, demonstrating a lower RMSE value in the testing phase. Subsequent
input combinations displayed signs of overfitting. Further analysis revealed that the optimal
number of nodes for the hidden layer of Model 5 was nine.

Figure 5.33: Hombole station NARX model performance using different input combinations
for Train and Test period

The results of model training and validation (testing) are visually presented in Fig-
ures:5.34 and 5.35. Based on the Nash Sutcliffe Efficiency (NSE) values, it can be inferred
that the model excelled in capturing seasonal variations and low flows (base flow). However,
conversely, the model did not exhibit a comparable level of performance in predicting peak
flows. This discrepancy is further evident in the uncertainty plot depicted in Figure:5.36.

96



Figure 5.34: Hombole station NARX simulation for Train and Test period and its perfor-
mance.

Figure 5.35: Hombole station Observed versus NARX output scatter plot for train (left) and
test (right) period.

The analysis of uncertainty in the NARX model involves generating 300 sample datasets
with the same time span as the model’s input variables. These samples are created using a
bootstrapping technique implemented with the datasample() function in MATLAB [97]. The
bootstrapping method involves creating a resampled dataset from the original dataset with
replacement.
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The results of the uncertainty analysis are illustrated in Figure 5.36. It is noticeable
that the model predictions closely align with the bootstrapped mean and fall within the 95%
confidence interval. Notably, as the prediction horizon increases, predictability diminishes,
particularly evident from August 2006 onward. Additionally, the uncertainty band widens
as the prediction horizon extends.

Figure 5.36: Hombole station NARX bootstrapped (Mean and 95% Lower Limit(LL) - Upper
Limit (UL) versus Prediction for test period.

MelkaKuntere Station
At this station, the same set of input combinations, detailed in Table 5.9, was employed

using the methodology previously described to evaluate candidate models across different
numbers of hidden nodes. The analysis of model performance reveals that Model No. 5
demonstrates superior performance, boasting the best results with a set of 7 hidden nodes,
as illustrated in Figure:5.37.
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Figure 5.37: Melka Kuntere station NARX model performance using different input combi-
nations for Train and Test period

Following the selection process, the model was executed with the fitted parameters de-
rived from the training phase, and the results are illustrated in Figure:5.38 and 5.39. This
depiction reveals that, similarly, the model performed well in capturing low flows and sea-
sonal characteristics overall. However, there is a noticeable pattern of missing some peak
values, as highlighted in the figures.

Figure 5.38: Melka station NARX simulation for Train and Test period and its performance.
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Figure 5.39: Melka station Observed versus NARX output scatter plot for train (left) and
test (right) period.

The result of the uncertainty analysis is presented in the plot shown in Figure:5.40. This
plot indicates that the trained model consistently produces results when exposed to different
datasets, as evidenced by the minimal difference observed between the current and mean of
the bootstrapping simulation.

Figure 5.40: Melkakuntere station NARX bootstrapped (Mean and 95% Lower Limit(LL) -
Upper Limit (UL) versus Prediction for test period.

100



Akaki Station
The same approach was applied here as well, and it was determined that model no. 7,

encompassing mean monthly temperature, API, and flow, emerged as the best-performing
model among the various suggested combinations as shown in Figure: 5.41. Despite the
limited data length used for model training and validation, it is evident from Figures:5.42
and 5.43 that this model yielded satisfactory results.

Figure 5.41: Akaki station NARX model performance using different input combinations for
Train and Test period.
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Figure 5.42: Akaki station NARX simulation for Train and Test period and its performance.

Figure 5.43: Akaki station Observed versus NARX output scatter plot for train (left) and
test (right) period.

The model bootstrapping performed for the short validation period yielded satisfactory
results for the mean prediction. However, it is noteworthy that the uncertainty band is
notably higher when compared to the previous two stations. This outcome is predictable,
given that the data used for this station has a shorter duration.
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Figure 5.44: Akaki station NARX bootstrapped (Mean and 95% Lower Limit(LL) - Upper
Limit (UL) versus Prediction for test period.

ANFIS Model Training, Validation, and Uncertainty
The development of the ANFIS model commenced with the identification of critical en-

vironmental factors influencing runoff production in the sub-basin. These factors encompass
catchment morphology, climate, soil and geology, and land use land cover. However, obtain-
ing these inputs as continuous time-dependent data (time series) can be challenging. There-
fore, this study primarily utilized climatic factors and runoff data for forecasting. Monthly
rainfall, mean monthly 30-day Antecedent Precipitation Index (API), monthly mean tem-
perature, monthly potential evapotranspiration (ETo), and flow were selected as inputs for
the study. A cross-correlation matrix was then created between these variables at different
lags and a 12-month ahead flow to generate candidate model inputs.

Following this step, potential models were developed using various combinations of these
candidate model inputs. The Fuzzy C-Mean (FCM) clustering technique was employed to
generate linguistic labels for each variable. The sensitivity of the ANFIS structure to each
model was analyzed by varying the number of clusters and epochs. The cluster numbers
ranged from a minimum of 2 to a maximum of 13, corresponding to the total number of
inputs. The number of epochs during both the training and testing phases varied from 100
to 300. The objective of the sensitivity analysis was to identify the optimal model structure
for each scenario. Consequently, the final model selected was the one exhibiting the highest
performance among the models considered. Other settings used in the ANFIS modeling are
detailed in Table:5.11.
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Table 5.11: General ANFIS settings used in model generation

Method for MF ANFIS Parameters

Cluster method FCM Max. Number of epochs varying
no. of clusters varying Error Goal 0

Partition matrix exponent 2 Initial step size 0.01
Maximum number of iterations 100 Step size decrease rate 0.9

minimum Improvement 0.00001 Step size increase rate 1.1
Type of membership function Gaussian Optimization Algorithm Hybrid (backpropagation+least Square)

The selected model was trained by partitioning the total time series into training and
testing phases. Similar to the approach employed in previous NARX model, 75% of the data
was utilized for training, with the remaining 25% reserved for testing.
Hombole Station

For this station, the methodologies discussed previously were rigorously adhered to, and
the model candidates featuring various combinations of environmental factors are presented
in Table:5.12. Additionally, Table:5.13 provides a comprehensive list of models along with
their respective performance metrics obtained during the sensitivity analysis.

Table 5.12: Argument combinations used to build the ANFIS model

Inputs Different Input Combinations (models)

1 2 3 4 5 6 7 8 9
Flow(t-12) X X X X X X X X X
Flow(t-24) X X X X X X X X X
Flow(t) X X X X X X X X X

API(t+12) X X X X X
API(t-24) X X X X X
API(t-12) X X X X X
API(t) X X X X X

Rf(t+12) X X X X X
Rf(t-24) X X X X X
Rf(t-12) X X X X X
Rf(t) X X X X X

Eto(t+12) X X X X X
TMP(t+6) X X X X X

Observing Table:5.13 and the accompanying Figure 5.45, it is evident that model num-
ber 4 stands out as the optimal choice, boasting the lowest RMSE during the test period.
The input combination used to construct this model comprises [Flow(t − 12) Flow(t −
24) Flow(t) API(t+ 12) API(t− 24) API(t− 12) API(t) TMP (t+ 6)].

Table 5.13: Best performing models for different Cluster and Epoch number for Hombole

Models Train R Test R Train RMSE Test RMSE no. of clusters Max. Number of epochs

1 0.955 0.93 0.282 0.372 3 200
2 0.975 0.935 0.214 0.351 4 200
3 0.974 0.934 0.221 0.395 5 100
4 0.972 0.949 0.229 0.313 5 200
5 0.967 0.94 0.247 0.343 4 100
6 0.971 0.931 0.232 0.344 4 300
7 0.968 0.944 0.242 0.334 5 100
8 0.966 0.935 0.248 0.329 6 100
9 0.96 0.918 0.268 0.391 4 200

104



Figure 5.45: Performance of ANFIS model for different input combinations of variables to
predict 12 month ahead flow.

After identifying the appropriate model, a simulation was executed using the trained
model, and the results are visually represented in Figures: 5.46 and 5.47. Despite some ex-
ceptions in the peaks for certain years, the model, on the whole, demonstrated the capability
to adequately capture seasonal variations and low flows.
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Figure 5.46: Hombole station ANFIS simulation for Train and Test period and its perfor-
mance.
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Figure 5.47: Hombole station Observed versus ANFIS output scatter plot for train (left) and
test (right) period.

The uncertainty of the ANFIS model predictions was similarly assessed through a boot-
strapping technique. In this analysis, 300 different input sets of the selected model were
generated by bootstrapping the input series. The input series were bootstrapped with re-
placement using the datasample() function in MATLAB. Subsequently, a 95% confidence
limit was constructed using the mean and standard deviation calculated from these 300 sim-
ulations. The plot of the result of bootstrapping in Figure:5.48 indicates a high similarity
between the mean of the bootstrapped results and the model predictions. This consistency
underscores the model’s reliability in predicting future values for inputs with similar statis-
tical characteristics (stationarity and distribution).
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Figure 5.48: Hombole station ANFIS bootstrapped (Mean, Lower Limit (LL), and Upper
Limit(UL)) versus Prediction for test period.

MelkaKuntere Station
From the correlation analysis between multiple lagged series, preliminary input combina-

tions were identified for this station as well, and these are outlined in Table:5.14.

Table 5.14: Argument combinations used to build the ANFIS model for Melkakuntere

Inputs Different Input Combinations

1 2 3 4 5 6 7 8 9 10
Flow(t-12) X X X X X X X X X X
Flow(t-24) X X X X X X X X X X
Flow(t) X X X X X X X X X X

API(t+12) X X X X X
API(t-24) X X X X X
API(t-12) X X X X X
API(t) X X X X X

Rf(t+12) X X X X X X
Rf(t-24) X X X X X
Rf(t-12) X X X X X
Rf(t) X X X X X X

Eto(t+12) X X X X X
TMP(t+6) X X X X X

Similar procedures were followed, mirroring the methodology employed at the Hombole
station, by varying cluster and epoch numbers to identify a model that yields the lowest
RMSE among the candidates listed in Table:5.14. The results of this analysis are summarized
in Table:5.15.
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Table 5.15: Best performing models for different Cluster and Epoch number for Melkakuntere

Models Train R Test R Train RMSE Test RMSE no. of clusters Max. Number of epochs

1 0.972 0.899 0.204 0.488 2 100
2 0.972 0.896 0.204 0.496 3 100
3 0.971 0.896 0.207 0.498 2 100
4 0.97 0.894 0.21 0.493 2 100
5 0.998 0.906 0.055 0.489 9 100
6 0.968 0.894 0.216 0.497 2 100
7 0.968 0.896 0.216 0.496 2 100
8 0.966 0.894 0.222 0.493 2 100
9 0.966 0.896 0.223 0.493 2 100
10 0.953 0.915 0.263 0.429 2 100

The results summarized in Table:5.15 indicate that Model 10 yields a lower Test RMSE
result and is consequently selected. The input combinations used for this model are as follows:
[Flow(t − 12)Flow(t − 24)Flow(t)Rf(t − 12)Rf(t)]. Employing these input combinations,
the model was trained with 75% of the total series, and the remaining 25% was used to test
the model. The results of the final simulations are presented in Figures:5.49 and 5.50.

Figure 5.49: Melkakuntere station ANFIS simulation for Train and Test period and its per-
formance.

The model successfully captured the seasonal behavior and low flows, but in contrast to
the Hombole station, it struggled to accurately represent high flows.
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Figure 5.50: Melkakuntere station Observed versus ANFIS output scatter plot for train (left)
and test (right) period.

The results of bootstrapping indicate that the ANFIS simulation consistently falls well
within the 95% confidence limit for almost the entire time series length. However, as the
years progress, particularly in the later years (2008-2009), it becomes apparent that the model
predictions start to deviate more from the upper confidence limit.

Figure 5.51: Melkakuntere station ANFIS bootstrapped (Mean, Lower Limit (LL), and Upper
Limit(UL)) versus Prediction for test period.
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Akaki Station
Despite the station having a very limited dataset, similar procedures were employed to

identify an appropriate model. Consistent with the approaches discussed for the other two
stations, input combinations were defined, as illustrated in Table:5.16.

Table 5.16: Argument combinations used to build the ANFIS model for Akaki station

Inputs Different Input Combinations

1 2 3 4 5 6 7 8 9 10 11
API(t+12) x x x x x x x x x
Flow(t-12) x x x x x x x x x x x
Rf(t+12) x x x x x x x x
API(t) x x x x x x x x x

API(t-12) x x x x x x x x x
Flow(t) x x x x x x x x x x
Rf(t) x x x x x x

Rf(t-12) x x x x x
Eto(t+12) x x x x x
TMP(t+12) x x x

The performance of the 11 models outlined in Table:5.16 was assessed using various
combinations of cluster and epoch numbers. The results of this analysis are presented in
Table:5.17, revealing that Model number 7 exhibits the lowest RMSE.

Table 5.17: Best performing models for different Cluster and Epoch number for Akaki

Models Train R Test R Train RMSE Test RMSE no. of clusters Max. Number of epochs

1 1 0.88 0 0.467 15 100
2 1 0.85 0 0.505 12 100
3 0.997 0.874 0.086 0.486 2 300
4 0.999 0.875 0.036 0.536 5 200
5 0.976 0.832 0.235 0.622 2 100
6 0.994 0.854 0.121 0.631 3 100
7 1 0.918 0 0.348 15 300
8 1 0.805 0.005 0.6 13 100
9 1 0.869 0 0.483 15 200
10 0.986 0.831 0.178 0.592 2 100
11 1 0.88 0 0.468 12 300

The corresponding input combinations for the selected Model number 7 are [API(t +
12) Flow(t − 12) API(t) API(t − 12) Flow(t) Eto(t + 12) TMP (t + 12)]. The
resulting simulations for both the training and testing phases are depicted in Figures:5.52
and 5.53. It is evident that the selected model exhibits excellent performance in the training
phase and relatively very good performance in the test phase.
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Figure 5.52: Akaki station ANFIS simulation for Train and Test period and its performance.

Figure 5.53: Akaki station Observed versus ANFIS output scatter plot for train (left) and
test (right) period.
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In this station as well, the mean of the bootstrapped 300 simulations closely aligns with
the simulation conducted using actual data, signifying model consistency. However, the
95% uncertainty bands in Figure:5.54 indicate higher uncertainty in predictions compared
to similar analyses conducted on the Hombole and Melkakuntere stations. As previously
mentioned, this heightened uncertainty can be attributed to the relatively shorter data length
used in the simulation process.

Figure 5.54: Akaki station ANFIS bootstrapped (Mean, Lower Limit (LL), and Upper
Limit(UL)) versus Prediction for test period.

5.5 Discussion

The primary motivation behind this section of the study arises from the curiosity to measure
the performance of different time series models in forecasting flow series from selected rivers
over the Upper Awash Sub-Basin (UASB). One of the major challenges encountered during
this analysis was related to data quality, including factors such as having sufficient data
length, fewer missing data, and handling outliers. Consequently, the initial step involved
addressing this issue using appropriate tools and methods.

In the UASB, four major rivers were identified: Akaki, Melkakuntere, Hombole, and
Mojo. While Hombole and Melkakuntere exhibited relatively good data length and quality,
Akaki and Mojo faced challenges. Particularly, the flow data quality in the Mojo river was
one of the poorest, making time series analysis difficult. Therefore, this study focused solely
on Akaki, Melkakuntere, and Hombole rivers.

The type of time series forecasting techniques applied in this study mainly fall into two
broad categories: regime-switching and data-driven techniques. From the regime-switching
techniques, the potential of two threshold autoregressive methods known as SETAR and
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LSTAR models were investigated. In order to apply these techniques, a box-cox transfor-
mation was performed on the original flow series, followed by the removal of the seasonal
term through fitting a Fourier Harmonic regression equation with a period of two. Finally,
the actual TAR model was fitted to the remaining residual series. The biggest challenges in
fitting such kind of models is the estimation of the threshold value. In this study, the grid
search algorithm available under tsDyn package [129] was used. By overlaying the threshold
values over the flow series, it can be understood that for the Hombole station, regime change
has occurred due to a shift in mean. However, for both Akaki and Melkakuntere station,
there is no observable mean shift in the flow series. It can be concluded that the estimated
threshold values are due to the high variability of the residual flow series. Therefore, it can
be observed that the residual flow data at these stations was divided into low and high vari-
ance series. The forecast performance was done after combining the outputs of TAR models
with a seasonal term. Both the SETAR and LSTAR forecasts have shown that the forecast
performance at Hombole and Akaki were relatively higher than Melkakuntere river. This is
due to the high variability of the residual flow series of Melkakuntere, which makes the deter-
mination of regime difficult. It was also observed that the forecasts made using the LSTAR
model were of lower performance than the SETAR model. This is due to the challenging
task of obtaining a transition function in the LSTAR model which fits well to the residual
flow series, especially for Akaki and Melkakuntere.

The second type of time series forecasting technique implemented was the NARX model,
which is one of the different versions of the ANN model. As it’s known, ANN models have
good characteristics that make them perform well when simulating non-linear dependencies
present in time series. The NARX model, in addition, has high potential in describing
long-term dependency that is present in monthly flow series [132]. Model definition using
NARX can be performed using a number of variables thought to have an impact on flow. In
this study, monthly rainfall, mean monthly temperature, monthly evapotranspiration, and
mean monthly 30-day antecedent precipitation index have been selected as input variables
for generating candidate models. An optimal model architecture is defined for each candidate
model using different combinations of those input variables and flow as an output. In the
configuration of the NARX model, the most important parameters are delay, the number
of hidden layers, and the number of nodes in each layer. In each model, delay (d) and the
number of hidden layers were kept to a value of one. And the optimal model was found by
varying the number of nodes in the hidden layer and measuring its performance using RMSE.
For both Hombole and Melkakuntere station, the NARX model developed with rainfall as an
input and flow as an output variable gave the best result among other input combinations.
Whereas, for Akaki mean temperature and API were used as an input and flow as output.
The number of nodes used in the hidden layer varies for each station and are found to be
14, 7, and 9 for Akaki, Melkakuntere, and Hombole, respectively. All the models trained for
each gauging station have produced a satisfactory forecast with NSE value greater than 0.75,
with the forecast at Hombole being better than the others. In model setup of the NARX
model, Levenberg Marquardt with Bayesian regularization (trainbr) gave the best forecast
performance than other training algorithms such as gradient descent. The potential of this
training algorithm has been proved through the consistent model prediction shown in the
uncertainty plots developed for each gauging station.

In the same manner as the methodology used for the NARX model, ANFIS candidate
models were also built using different combinations of input variables. The input variables
used to build a model came from a correlation matrix. The input variables lagged at different

114



numbers of months ranging from 3 - 24 were correlated with a 12-month ahead flow series
to form a correlation matrix. Candidate models were developed using different combinations
of these lagged input variables. The definition of the linguistic labels in the antecedent
side was done with the help of FCM algorithm and Gaussian membership functions. From
preliminary analysis, this algorithm has shown better performance than grid partitioning
technique. The model architecture of each candidate model was assessed using RMSE as a
performance measure. The important parameters used to build ANFIS model are the number
of clusters and epochs. By varying these values and through a trial and error approach, an
appropriate model has been identified for each candidate model. Here also, RMSE has been
used to evaluate model performance. The final models selected at each gauge station hold
a different number and type of input variable combinations. In Hombole station flow, API,
and mean temperature have been used in the final model. And, in Melkakuntere only two
variables mean temperature and flow were used. In Akaki station, flow, API, Eto, and mean
temperature were applied.

5.6 Conclusion

The results clearly indicate that data-driven techniques exhibit superior forecast capabilities
compared to TAR models for each gauging station. The simplicity and ease of model setup
and training, facilitated by the functionalities in the Deep Learning Toolbox in MATLAB
[97], make these techniques practical and straightforward. However, a significant challenge
lies in identifying the optimal set of model inputs that yield satisfactory performance. Future
efforts to enhance forecast accuracy should explore models that can effectively distinguish
between deterministic and stochastic components.

In the analysis of these data-driven techniques, it becomes evident that the ANFIS model
outperforms the NARX model, showcasing a relatively superior performance.
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Chapter 6

Future Water Availability in the
Sub-Basin

6.1 Introduction

Water is an indispensable resource, serving myriad purposes from sustaining all forms of life
on Earth to driving cutting-edge industrial applications. The absence of water in our world
is unimaginable. Over 71% of the Earth’s surface is composed of water, and within this
vast expanse, 96.5% resides in oceans [136]. Ethiopia boasts an estimated water potential of
around 122 BCM, with the Awash basin alone holding 4.9 BCM, accounting for approximately
0.04% of the country’s total potential [17]. The Upper-Awash Sub-Basin (UASB) emerges
as a key player, contributing significantly to the main Awash River due to its comparatively
higher magnitude of rainfall within the broader Awash Basin [137] [60].

The UASB holds significant strategic importance for the country due to its geographic
location and vibrant socio-economic activity. The basin, housing the capital city and serving
as a hub for most large industries, witnesses intense socio-economic activity. The basin is
home to over 6 million people, with the majority residing in the capital city and nearby towns
[27]. In these areas, people are predominantly engaged in industries, both public and private
sectors, while farming remains the dominant economic activity outside the cities and towns.
The economic disparity results in high growth and a related population increase in cities
and towns. Despite various water resource developments and future plans in the sub-basin,
mainly focused on domestic water consumption, any development in these areas is expected
to create water stress downstream, emphasizing the importance of studying past, present,
and future water resources in the sub-basin.

Several approaches exist for studying water resources in a given area. The first involves
analyzing long-term variations in runoff and meteorological elements, either through statis-
tical analysis of the relationship between runoff and other meteorological variables or by
observing past extreme events [7] [8] [9]. These meteorological variables include precipita-
tion, temperature, and evapotranspiration. The second approach employs a water balance
method over an extended period [10] [11]. The third approach involves studying estimates
of changes in climatic and hydrologic characteristics for large regions using Global Climate
Model (GCM) outputs [12]. Another common alternative nowadays is the use of deterministic
hydrologic models [13] [14].

Historically, numerous efforts have been made to study water resource conditions in the
basin. The earliest, by Hailemariam K. (1999) [57], used a water balance model to explore
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the impact of climate change on runoff estimation in the Awash basin using climate models
under the CMIP3 archive. The study concluded a decrease in future water resource poten-
tial for all scenarios and time periods. Subsequently, Taye et al. (2018) [58] investigated
water availability using climate models under CMIP5 until the end of the 21st century. This
study estimated changes in water resource availability using a change factor (CF) developed
by subtracting evaporation from precipitation at the monthly level. An increase in water
availability was predicted for recent and mid-time periods for all scenarios, while a decrease
was predicted for the far-time period. Heyi et al. (2020) [138] applied the HBV model to-
gether with the HadCM3 climate model, an output of earlier works under CMIP3, indicating
a decrease in rainfall during JJAS and an increase in MAM for two scenarios and all time
periods. A recent study by Chelkeba et al. (2023) [139] applied the SWAT model with four
CORDEX RCMs from the CMIP3 archive on the Akaki Catchment, aligning with the results
obtained by Taye et al. (2018) [58].

In this study, similar efforts have been undertaken to study future availability conditions
in UASB by using SWAT and NARX models together with an ensemble of climate model
outputs obtained from the new CMIP6 archive. It has been discussed in Chapter Two that
models incorporated under CMIP6 are thought to show comparable or improved capabilities
in terms of simulating global climate compared to the older CMIP5. Therefore, the outputs
of this study will further shed light on the future water resource condition over the sub-basin
with the help of these new climate model outputs.

6.2 Data Sets

As mentioned previously, two rainfall-runoff models will be employed for simulating stream-
flow. The first model, the Soil and Water Assessment Tool (SWAT), will utilize a 30m
Digital Elevation Model (DEM) obtained from https://earthexplorer.usgs.gov/, along with
grid-based Land Use Land Cover (LULC) data (year 2013) and soil data. These LULC and
soil data are derived from the Ministry of Water and Energy (MoWE) report (AWBA, 2017)
[1]. On the other hand, the NARX (Nonlinear AutoRegressive with eXogenous inputs) model
will exclusively use flow, rainfall, and mean temperature data at a monthly time step. The
climate dataset employed in the SWAT model comprises daily records of precipitation, maxi-
mum temperature, minimum temperature, relative humidity, solar radiation, and wind speed.
A total of 15 rainfall and 10 temperature stations obtained from the National Meteorological
Agency (NMA) of Ethiopia are utilized, and the list of stations, along with additional infor-
mation, is presented in Table 2.1. Similarly, daily river flow data for the gauging station at
Hombole, considered as the outlet of the sub-basin, was gathered from the Ministry of Water
and Energy (MoWE). All of the time series datasets were collected within a common time
frame of 1980 – 2009.

6.3 Methods

6.3.1 Surface Runoff Simulation in SWAT Model

The Soil and Water Assessment Tool (SWAT) is a hydrological model initially introduced
by Dr. Jeff Arnold at the United States Department of Agriculture (USDA) for Agricultural
Research Services (ARS) in the early 1990s [140]. Widely acknowledged, SWAT is designed to
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simulate the movement of water, sediment, and nutrients at the scale of a river, watershed, or
basin. It has become a cornerstone in various environmental and water resource management
applications.

SWAT operates as a semi-distributed, process-based model that partitions a watershed
into multiple sub-basins, further breaking them down into smaller hydrological response units
(HRUs). Executing simulations on a daily time step, the model replicates a spectrum of
hydrological processes, encompassing precipitation, runoff, evapotranspiration, infiltration,
soil erosion, and nutrient transport.

Figure 6.1: General steps followed by SWAT Hydrological Model

The initial phase of SWAT modeling involves watershed delineation utilizing a Digital
Elevation Model (DEM). This delineation is followed by subdividing the watershed into sub-
basins, which are further partitioned into Hydrological Response Units (HRUs) based on
topography, land use, and soil types (Figure: 6.1). In the third step, daily weather data,
such as precipitation, temperature, wind speed, relative humidity, and solar radiation, are
incorporated into the hydrological process. The fourth step sees SWAT simulating the move-
ment of rainfall through various pathways, encompassing surface runoff and infiltration into
the soil. This stage also considers water loss through evaporation from the soil surface and
transpiration by plants. The model captures the movement of water into the soil, accounting
for factors like soil type and land cover at the HRU level. Following the estimation of various
processes in this step, a water balance is executed at the sub-basin level, as expressed by
Equation 6.1. The surface runoff generated from each HRU is aggregated to form streamflow
within sub-basins, ultimately routed downstream through the main channel.

SWt = SWo +
t∑

i=1

(
Rt −Qsurf − Ea −Wsweep −QGW

)
(6.1)

Where: SWt - is soil water content at end of time period t, SWo - is initial soil water
content, Rt - rainfall at time period t, Qsurf - Surface runoff, Ea - actual Evapotranspiration,
Wsweep - amount of water entering vadose zone, and QGW - amount of Return Flow.
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SWAT also possesses the capability to model the transport of nutrients (such as nitrogen
and phosphorus) and sediment throughout the watershed, taking into account factors like
land use, erosion, and nutrient application.

In this study, the Hargreaves method has been employed for evapotranspiration esti-
mation, while default settings have been utilized for other hydrological variables. Post-
simulation, SWAT necessitates calibration and validation using observed data to ensure that
simulated results align with real-world conditions. Once calibrated and validated, SWAT
becomes a powerful tool for scenario analysis, enabling the assessment of the impacts of land
use changes, climate change, or management practices on both water quality and quantity.

SWAT generates a variety of outputs, including daily and monthly streamflow, sediment
yield, nutrient concentrations, and more. These outputs are invaluable for making informed
decisions regarding watershed management and environmental protection.

6.3.2 SWAT Model Sensitivity, Uncertainty, Calibration and Val-
idation

Once the SWAT model is set up, the subsequent task is to evaluate its accuracy. This is
achieved by first identifying model parameters that have a significant effect on the required
output. This crucial step is performed before initiating any calibration process. In the context
of SWAT, this identification is often carried out using a tool known as SWAT-CUP [141].
SWAT-CUP employs various algorithms for model uncertainty, sensitivity, and calibration,
and in this study, one of the most widely applied algorithms, SUFI-2, has been utilized.

When employing the SUFI-2 algorithm in SWAT-CUP, two types of model sensitivity
analysis can be conducted: One At a Time (OAT) for local sensitivity or All At a Time
(AAT) for global sensitivity [142]. In the former, all parameters are held constant except
one, and the impact on the objective function (model output) is observed through 3 to 5
model runs. In the latter, all parameters are varied, and 500 to 1000 or more runs may
be required. This algorithm establishes a regression equation (Equation: 6.2) between an
objective function and parameters to identify less sensitive parameters that can be excluded
from the subsequent calibration process.

g = α +
m∑
i=1

βibi (6.2)

Where: g - is an objective function, α - is a regression constant, β - is a coefficient of
parameter, b - is the parameter, m -is the number of parameters.

The identification of less sensitive parameters in the regression equation above is facili-
tated by a t-test. The t-test is computed by dividing the coefficient of a parameter by its
standard error. Consequently, a parameter with a >> |t| and << p value is considered
relatively more sensitive compared to others.

Once the model parameters that are more sensitive to the objective function are identified,
the subsequent step involves the calibration of these parameters. Calibration is a technique
employed to minimize the difference between model simulation and observed values using
an optimization function that satisfies a specific objective function. In SWAT-CUP, under
the SUFI-2 algorithm, 10 different objective functions are available for use. In this study,
the Nash-Sutcliffe efficiency (NS) (Equation: 6.3) has been chosen as the objective function
[141].
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Maximize : NS = 1−
∑

i(Qo −Qs)
2
i∑

i(Qo,i − Q̄o)2
(6.3)

Where; Q - is a variable (e.g discharge) and the bar over it means average. Whereas the
o and s indicate measured and simulated variable respectively. In addition, if there are more
than one variable used, then the objective function would be a weighted sum of j variables
(g =

∑
j wjNSj).

In SWAT-CUP, all three procedures occur sequentially, beginning with sensitivity analysis
followed by calibration and then uncertainty analysis. The calibration procedure employs a
Latin Hypercube Sampling technique to sample a set of parameter values from initial absolute
ranges at each iteration step.

Upon completion of the calibration procedure, it is often necessary to conduct uncertainty
analysis. Model uncertainty, in theory, arises from various sources, including assumptions
in model building, parameterization, definition of the objective function in calibration, the
optimization algorithm used, and potential non-uniqueness (equi-finality). Therefore, in
SWAT-CUP, uncertainty analysis is performed at the end of the calibration procedure by
utilizing a 95% prediction uncertainty (95PPU). SWAT-CUP establishes the 95PPU band
and employs two statistics—p-factor and r-factor—to assess model output (Equation: 6.4).
The p-factor indicates the percentage of measured data within the 95PPU band, while the
r-factor illustrates the thickness of the 95PPU band.

r − factorj =

1
nj

∑nj

ti=1

(
x
ti,97.5%
s − x

ti,2.5%
s

)
σoj

(6.4)

Where: x
ti,97.5%
s and x

ti,2.5%
s are the upper and lower boundary of the 95PPU at time step

t and simulation i, nj is number of data points, σoj is standard deviation of the jth observed
variable.

The final stage of model verification is the validation stage, and in SWAT, this is accom-
plished using a new set of parameters obtained at the final stage of the calibration procedure,
along with an independent observed dataset. It is essential that the observed dataset used
for validation differs from the one employed in the calibration procedure. Additionally, the
model setup used during this stage should be consistent with the setup applied during the
calibration period. However, caution must be exercised when selecting the observed dataset,
ensuring that it possesses statistical similarity to the one used during the calibration period.

6.3.3 Defining Water Availability in the Sub-Basin

One of the techniques employed to study past, present, or future water resource conditions
involves understanding the characteristics of drought in a given locality. Drought can be
characterized by its duration, intensity, accumulated deficit water volume (severity), or spatial
extent. Two widely used approaches for characterizing drought are the application of drought
indices and the threshold method [143].

Drought indices are typically classified as either single-value or time series indices, sampled
at regular or irregular intervals. Examples of single-value indices include the 95th percentile,
while the mean annual n-day minimum flow (MAM(n-day)) is an example of a time series
index.
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The second technique for characterizing a drought event is the Threshold Level Method.
In this approach, resultant indices that define an event above or below a given threshold are
applied. These thresholds can be either constant or variable over a specified time period of
analysis.

In this study, the Standardized Streamflow Index (SSI), a time series drought index,
along with frequency analysis, was used to evaluate the outputs of SWAT and NARX model
simulations in terms of future water resource conditions in the sub-basin. Both analyses were
conducted using monthly time series data from the Hombole gauge station. The equation
used to calculate SSI is given by Equation 6.5 [144]. SSI was computed for 3 and 12-month
time steps after fitting a gamma distribution to the monthly flow series using the SPEI
package in R [145].

SSI = W − Co + C1W + C2W
2

1 + d1W + d2W 2 + d3W 3
(6.5)

Where W =
√

−2ln(p) for p ≤ 0.5, p is the probability of exceeding a given value x,
and p = 1 − F (x). Also, if p > 0.5, p will be replaced by 1 − p and the sign of SSI will be
reversed. Co = 2.515517; C1 = 0.802853; C2 = 0.010328; d1 = 1.432788; d2 = 0.189269; and
d3 = 0.001308 are constants.

The SSI values computed were classified into certain drought classification using classi-
fication standard developed by Mckee, et. al (1993) [146] and Hughes and Saunders [147]
(Table: 6.1).

Table 6.1: SSI/SPI Drought Classification

SPI/SSI values Drought Classifications

≥ 2.0 extremely wet
1.5 to 1.99 very wet
1.0 to 1.49 moderately wet
-0.99 to 0.99 near normal
-1.0 to -1.49 Moderate drought
-1.5 to -1.99 Severe drought

≤ −2.0 Extreme drought

Another technique applied in this study to examine extreme flow conditions involves
observing the return level versus return period plot. This was executed by fitting Generalized
Extreme Value distributions (GEV) (Equation: 6.6) to the maximum annual series using the
Statistics and Machine Learning Toolbox in MATLAB [148]. Subsequently, return levels for
a given return period (probability) were estimated from the fitted probability distributions.
Finally, the return periods were plotted against return levels, providing insights into how
flow extremes obtained from different scenarios behave for a given return period.

pGEV (x) =
1

σ
t(x)ξ+1e−t(x) (6.6)

Where:

t(x) =

{[
1 + ξ

(
x−µ
σ

)]−1/ξ
, for ξ ̸= 0

e−
(
x−µ
σ

)
, for ξ = 0

(6.7)
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Assuming that µ = 0 and σ = 1, then when, ξ = 0 then PGEV is Gumbel distribution
(Type I), ξ > 0 then PGEV is Frechet distribution (Type II), and ξ < 0 then PGEV is Weibull
distribution (Type III). The cumulative distribution can expressed as follows,

F (x) = et(x) (6.8)

At same time, the inverse of PGEV distribution is given by,

F−1(p) =

{
µ+ σ

ξ

[
(lnp)−ξ − 1

]
, for ξ ̸= 0

µ− σln(−lnp), for ξ = 0
(6.9)

6.4 Results

6.4.1 SWAT Model Run, Calibration and Validation

The SWAT model was executed with the prepared inputs and subsequently calibrated using
observed data from the Hombole station, employing the SUFI-2 algorithm in SWAT-CUP
[141]. The total period of analysis in the modeling procedure spans 30 years (01/01/1980
- 12/01/2009). The initial five years of data were designated for model warm-up, with the
remaining data used for calibration and validation. A significant portion of the total dataset,
covering the period from 01/01/1985 to 01/12/2000, was utilized for model calibration, while
the remainder was allocated for validation.

During the model sensitivity analysis under SWAT-CUP, a total of 14 parameters were
identified as the most sensitive for streamflow prediction. The top three most sensitive param-
eters were identified as CN2, Sol K, and Sol BD, as illustrated in Figure 6.2. Subsequently,
their possible ranges and best fits were determined, as shown in Table 6.2.

Table 6.2: SWAT model parameters ranges and fits identified during model sensitivity and
calibration stage for Hombole Station

No. Parameter Name Fitted Value Min value Max value

1 CN2.mgt -0.08 -0.335 -0.031
2 GW DELAY.gw 50.228 -64.751 278.471
3 GW REVAP.gw 0.247 0.096 0.288
4 RCHRG DP.gw 0.053 0.01 0.508
5 ALPHA BF.gw 0.596 0.068 0.69
6 REVAPMN.gw 3.943 0.564 6.856
7 GWQMN.gw 15.361 9.635 28.915
8 SOL BD(..).sol 0.232 0.114 0.361
9 SOL K(..).sol -1.272 -1.348 0.084
10 SOL AWC(..).sol 0.611 0.077 0.631
11 USLE K(..).sol 0.014 0.001 0.014
12 OV N.hru -0.065 -0.15 -0.049
13 SURLAG.hru 11.978 3.527 17.179
14 ESCO.bsn 0.465 0.362 1.066
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Figure 6.2: SWAT model sensitive parameters in calibration procedure at Hombole station.

The model performance measures in Table 6.3 indicate that the model parameters have
been adequately calibrated, and the results are deemed very good based on commonly used
performance measures such as Nash-Sutcliffe efficiency (NS) and R2. These results meet the
minimum model requirements suggested in Moriasi, 2007 [149].

Table 6.3: SWAT-CUP model calibration and validation period performance summary at
Hombole station

Period p-factor r-factor R2 NS bR2 MSE SSQR PBIAS

Calibration 0.9 1.19 0.89 0.88 0.8098 600 180 -12.3
Validation 0.87 1.31 0.83 0.82 0.6771 760 220 -19.4

Following the calibration of the model, its performance was tested with a second dataset
that was not used during the calibration period. Model simulations for both the calibration
and validation periods, compared against their corresponding observed data, are illustrated
in Figure 6.3 and 6.4. It is evident from both plots and the corresponding Nash-Sutcliffe
efficiency (NSE) performance measure that the model performed reasonably well.

Figure 6.3: Hombole SWAT simulated stream flow for Calibration period plotted together
with observed flow.
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Figure 6.4: Hombole SWAT simulated stream flow for Validation period plotted together
with observed flow.

6.4.2 Future Water Availability Scenarios

After successfully training/calibrating, and validating both the NARX and SWAT models
for the Upper Awash basin, the next step involves projecting future water availability. This
projection will be executed using an ensemble of selected climate model outputs from the
CMIP6 archive. In chapter 3, a meticulous ranking of climate models was conducted to pin-
point those capable of accurately capturing the climatic characteristics of the Upper Awash
Sub-basin. Among the initially identified 12 models, five exhibited relatively good perfor-
mance. Consequently, this section focuses on employing an ensemble of scenario outputs
from these top-performing climate models, in conjunction with the hydrological models, to
observe and analyze future water availability in the sub-basin.

SWAT Simulation Results

The mean monthly flow obtained from SWAT simulations aligns with the uni-modal charac-
teristics of precipitation in the sub-basin. Notably, significant flows are still recorded for the
months of July, August, and September, with low flows in December, January, and February,
mirroring the patterns observed during the control period (1980-2009), represented by the
blue color in Figure 6.5. Over the 30-year control period, the minimum and maximum mean
monthly flows were 4.09 m3/s and 203.8 m3/s, occurring in January and August, respec-
tively. In contrast, for the near period, the predicted values are 0.42 m3/s and 255.89 m3/s,
for the mid period, they are 0.51 m3/s and 259.96 m3/s, and for the far period, they are 0.68
m3/s and 406.48 m3/s, for minimum and maximum flow conditions, respectively. Across all
three periods of climate model simulations, the minimum mean monthly flows are predicted
for the month of February, while the maximum flows occur in August. Additionally, there
is a noticeable tendency for a decrease in minimum mean monthly flows and, conversely, a
significant increase in maximum flows, particularly for the far time period, compared to the
control period.

124



Figure 6.5: Future monthly average water availability scenarios at Hombole station obtained
using an ensemble of five CMIP6 climate model outputs under SWAT model.

The decrease in flow during low-flow seasons is evident in Figure 6.6, and this trend is
predicted to continue for all three time periods of analysis. The plots indicate an increase in
mean monthly flow during the summer period (July-August-September) with varying degrees
of proportions. Additionally, all three time periods of future simulations generally show a
doubling of mean monthly flows in May and October. However, a decrease in June mean
monthly flow is anticipated, especially for the near and mid-time periods, particularly in the
SSP2.45 scenario.

Figure 6.6: Mean monthly changes between flows obtained from control (1980-2009) and
SWAT model simulated scenario periods.

The box plots depicting SWAT-generated annual mean flows for all scenarios in Figure 6.7
reveal a clear increasing trend in each scenario when compared against the observed values.
This trend is evident by observing the means of the box plots.
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Figure 6.7: Boxplots of future annual mean flows of observed and scenarios obtained using
an ensemble of five CMIP6 climate model outputs under SWAT model at Hombole station.

The change in annual mean flow from the control period for all scenarios indicates a
relative increase of more than 20%, as shown in Table 6.4. Notably, a significant increase is
predicted for the far time period under the SSP5.85 scenario.

Table 6.4: Percentage changes of SWAT model simulated annual mean flow of scenarios from
control period (1980 - 2009) for three time periods.

Near (m3/s) Mid (m3/s) Far (m3/s) Near (∆ Q in m3/s) Mid (∆ Q in m3/s) Far (∆ Q in m3/s)

SSP1.26 52.26 57.63 56.59 27.29 40.37 37.85
SSP2.45 52.64 54.01 64.95 28.22 31.57 58.22
SSP5.85 51.71 69.09 92.02 25.96 68.29 124.14
Observed 41.05

NARX Simulation Results

Similar procedures were followed to simulate future flows at the Hombole station using the
trained NARX model from the previous chapter. It is important to note that in this chapter,
the best-fitting NARX model was found to require only rainfall data to predict future flow
conditions. Additionally, in this section, rainfall time series for each corresponding time
period of analysis and scenarios are obtained from the previous climate modeling endeavor.

As shown in Figure 6.8, the outputs of flow prediction obtained from the NARX model
also exhibit bi-modal mean monthly flows, with high flows in July, August, and September,
and low flows in December, January, and February. Similar to the SWAT model simulations,
the long-term flow analysis indicates that minimum mean monthly flows occur in February,
while maximum flows are observed in August. The respective minimum | maximum mean
monthly flow values for each time period of analysis are as follows: for the near period, 3.68
m3/s | 228.52 m3/s; for the mid period, 3.64 m3/s | 248.45 m3/s; and for the far period, 3.54
m3/s | 253.58 m3/s.
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Figure 6.8: Future monthly average water availability scenarios at Hombole station obtained
using an ensemble of five CMIP6 climate model outputs under NARX model.

An important finding, similar to SWAT simulations, is a clear indication of a decrease
in mean monthly flows during low-flow seasons compared to the control period (Figure 6.9).
Similarly, flows in May and October show an increase of more than 50%. There is also a
predicted increase in mean monthly flow during the summer rainy seasons, particularly in
August and September, especially at higher proportions for the SSP5.85 scenario. Similar
to SWAT model simulations, there appears to be a decrease in mean monthly flow for the
month of June, especially in two scenarios (SSP2.45 and SSP5.85) for the near and mid time
periods. Additionally, similar to SWAT model simulations, mean monthly flows in May and
October show a dramatic increase.

Figure 6.9: Mean monthly changes between flows obtained from control (1980-2009) and
NARX model simulated scenario periods.

When observing the annual mean box plot in Figure 6.10, it can be generally concluded
that there is an increasing trend in the long-term minimum, maximum, and mean of annual
mean flows in each scenario compared to the observed values.
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Figure 6.10: Boxplots of future annual mean flow scenarios at Hombole station obtained
using an ensemble of five CMIP6 climate model outputs under NARX model.

Similar to the climate model scenario analysis performed with the SWAT model, change
estimation was carried out on annual mean flow from the control period for all scenarios, as
shown in Table 6.5. The results of the analysis in the table show a similar trend as before,
with all scenarios indicating an increase of more than 20%, and a significant increase being
projected for the far time period under the SSP5.85 scenario.

Table 6.5: Percentage changes of NARX model simulated annual mean flow of scenarios from
control period (1980 - 2009) for three time periods.

Near (m3/s) Mid (m3/s) Far (m3/s) Near (∆ Q in m3/s) Mid (∆ Q in m3/s) Far (∆ Q in m3/s)

SSP1.26 52.25 53.49 51.87 27.27 30.29 26.35
SSP2.45 50.34 51.99 58.26 22.63 26.65 41.93
SSP5.85 49.75 58.73 70.38 21.18 43.07 71.44
Observed 41.05 41.05 41.053

Additionally, flow frequency analysis was conducted by fitting Generalized Extreme Value
(GEV) distributions to the annual maxima of the control period, mid, and far scenarios. The
annual maxima obtained from the SWAT model suggest that higher magnitudes of floods can
be expected for a given return period in scenarios compared to the control period. However,
the same cannot be said about flow simulations obtained from the NARX model. The
difference in the two plots arises from how the two models behave in simulating peaks during
the training phase. In general, the NARX model encounters difficulty in handling extreme
events from climate scenario outputs since the model has been trained on observed data.
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Figure 6.11: Return period versus return level plots for simulations of SWAT (left) and
NARX (right) model for different climate scenarios

6.4.3 Comparison of SWAT and NARX Model Future Simulations

While both models have performed satisfactorily when evaluated against data in the control
period, the results of simulations using climate model outputs are not similar in magnitude, as
shown in the previous two sub-sections. However, both models were able to produce similar
trends in future water resource projections, as discussed above and additionally shown in
Figure 6.12.

Figure 6.12: Mean (top left), maximum (top right), and minimum (bottom middle) of annual
mean flow simulations obtained from SWAT and NARX models.

In general, SWAT model predictions resulted in higher predictions for the mean and
maximum of annual mean flows for different scenarios. In contrast, low flow predictions were
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lower than NARX model simulations for most scenarios. This difference might be due to the
fact that the calibrated SWAT model tends to predict the base flow component relatively
poorly compared to the NARX model, as already shown in Figure 6.4 and 5.34.

6.4.4 Present and Future Water Resource Conditions

In this specific section, the utilization of the Standardized Streamflow Index (SSI) is contem-
plated for the comprehensive examination of water resource conditions within the sub-basin.
The SSI, distinguished by its conformity to the identical calculation steps as the Standard
Precipitation Index (SPI) and its endorsement by the World Meteorological Organization
(WMO), shall be deployed for analytical purposes. The gauge station situated at Hombole
is deliberately selected for scrutiny, given its proximity to the terminus of the Upper Awash
Basin.

Present Conditions
The analytical process commenced with the computation of the Standardized Streamflow

Index (SSI) derived from the 30-year streamflow time series data collected at the designated
station. The application of SSI calculations, spanning both 3 and 12 months, was undertaken
to elucidate the prevailing water resource availability within the sub-basin, with a specific
focus on both agricultural and hydrological considerations (refer to Figure 6.13).

Upon examination of Figure 6.13 and the concise presentation in Table 6.6, it is discernible
that, out of a total of 360 months within the 30-year span, 50 and 47 months were identified
as drought months (i.e., SSI ≤ −1) for the 3 and 12-month SSI calculations, respectively.
Specific time periods, such as Oct (1985), Aug-Nov (1987), and Sep-Nov (1997), were notably
characterized by the occurrence of the most severe 3-month droughts, with the maximum
duration extending to 4 months in Aug-Nov (1987). Conversely, Sep (1987)-Jul (1988), Sep-
Oct (1997), and Jun (1998) marked the most extreme 12-month dry periods in the basin. The
lengthiest duration of an extreme dry period spanned a consecutive 11 months (Sep (1987)-
Jul (1988)) for the 12-month category, as evident from the SSI plot (indicating Hydrological
Drought).

Figure 6.13: Standardized Streamflow Index (SSI) for Upper Awash Basin at Hombole guage
station.

Over the course of the 30-year analytical timeframe, a cumulative total of 61 and 60
months were identified as wet months for the 3 and 12-month SSI analyses, respectively.
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The most pronounced instances of wet months in the 3-month SSI analysis were observed
in Apr (1981), Jun-Aug (1996), and Jan (2009). The lengthiest consecutive periods of ex-
treme wetness spanned from Jun-Aug (1996), encompassing a mere 3 months in total. In
parallel, Aug (1996) - Jun (1997), Sep (1998) - Jul (1999), and Jun (2007) emerged as the
most precipitation-rich months for the 12-month SSI analysis. Conversely, for the 12-month
analysis, two distinct occurrences of 11 consecutive months each were noted. The first tran-
spired from Aug (1996) - Jun (1997), while the second extended from Sep (1998) - Jul (1999).
Both plots collectively illustrate the 1980s as the epoch of most severe drought years, jux-
taposed against the contrasting precipitation abundance characterizing the initial decades of
the 2000s.

Table 6.6: Summary table of SSI for Observed in Upper Awash Basin at Hombole guage
station.

State 3-Months 12-Months

Extremely wet 5 0
Very wet 14 23

Moderately wet 42 37
Near normal 235 230

Moderately dry 31 13
Severely dry 10 20
Extremely dry 9 14

Future Conditions
In the exploration of potential future water resource scenarios, we employed streamflow

simulations generated through the combination of various scenarios derived from an ensemble
of climate model outputs. The analyses incorporated outputs from both SWAT and NARX
models, with a specific focus on mid and far time periods, as the near time period did not
meet the requisite minimum of 30 years for SSI analysis.

The application of the Standardized Streamflow Index (SSI) for 3 and 12-month time
frames provided insights into potential future conditions, as succinctly summarized in Table
6.14 and 6.15. Notably, the summary table indicates a relatively stable outlook, with no
discernible significant increase or decrease in the number of months for each prospective state
when compared to the existing conditions outlined in Table 6.6. This analytical endeavor
stands as a valuable tool for comprehending and foreseeing future dynamics in water resource
availability within the sub-basin.
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Figure 6.14: Summary table of 3 month SSI of outputs obtained from SWAT and NARX
models for Upper Awash Basin at Hombole guage station.

When comparing the number of months classified as extremely wet conditions for both
the 3 and 12-month SSI calculations in both the mid and far periods, a relative increment
is evident in contrast to the existing conditions. Conversely, concerning extremely dry con-
ditions, there is a relative decrease across almost all scenarios. The exceptions in this case
include mid2.45 for the 3-month period and far2.45 for the 12-month SSI. This observed
trend remains consistent for the NARX simulations as well.

Figure 6.15: Summary table of 12 month SSI of outputs obtained from SWAT and NARX
models for Upper Awash Basin at Hombole guage station.

In the 3-month SSI analysis, the longest successive extreme wet months are projected to
occur for a duration of 4 months, expected in Sep-Dec (2078) for SWAT and Jun-Sep (2068)
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for NARX simulations simultaneously. Conversely, extremely dry conditions are anticipated
to last for 4 months (Feb-May 2073) for SWAT and 3 months (Sep-Nov 2075) for NARX.

For the 12-month SSI analysis, the most prolonged extreme wet conditions are predicted
to last for a total of 13 months, spanning from Jul 2096 to Jul 2097 for SWAT, and 9 months
(Oct-Jun 2079) for NARX. Additionally, extreme dry months are projected to persist for a
total of 8 months (Oct 2075 - May 2076) for both SWAT and NARX simulations.

Summarizing the severity of events (SSI values ≤ −1) in each time period for various
scenarios in Table 6.7, it is evident that there is a decrease in severity as the analysis period
progresses from mid to far time periods. Moreover, for the annual SSI analysis, the worst-case
scenario (SSP5.85) exhibits higher severity than the other two scenarios.

Table 6.7: Severity analysis based on SSI analysis done on streamflow simualtions of SWAT
and NARX model

3-month 12-month

Obs SSP1.26 SSP2.45 SSP5.85 Obs SSP1.26 SSP2.45 SSP5.85

Mid Duration 50 50 44 52 47 58 51 63
SWAT Severity -74.82 -77.64 -68.78 -77.82 -84.31 -82.56 -82.28 -97.84

Far Duration 52 42 56 54 49 64
Severity -76.53 -67.32 -74.13 -71.77 -81.88 -86.19

Mid Duration 44 43 48 58 47 67
NARX Severity -59.56 -66.1 -65.01 -80 -71.86 -89.76

Far Duration 39 46 43 42 45 50
Severity -51.41 -66.53 -61.05 -63.53 -80.66 -81.51

6.5 Discussion

In this chapter, an assessment of the potential impact of prospective climate changes on the
water resource potential of the Upper Awash Sub-Basin (UASB) was conducted through the
application of two hydrological models in conjunction with various climate scenarios. The
initial model employed was a semi-distributed, physically-based Soil and Water Assessment
Tool (SWAT) model. This model underwent calibration (Nash-Sutcliffe Efficiency (NSE) =
0.88) and validation (NSE = 0.82) at the Hombole gauge station, utilizing monthly data.
The second model employed was a non-linear data-driven model known as Non-linear Auto-
Regressive with eXogenous inputs (NARX). This model underwent training (NSE = 0.93)
and validation (NSE = 0.92) utilizing the same dataset used for SWAT model calibration, as
detailed in Chapter 5. Climate model scenarios were derived from an ensemble of five climate
model outputs in the CMIP6 archive (ECEARTH3, GFDL-ESM4, MPI-ESM1-2-HR, MRI-
ESM2, and INM-CM5-0).

The results of simulations from both the SWAT and NARX models exhibit a prevail-
ing trend of increased future water availability across all combinations of time periods and
climate scenarios when compared to the control period. This trend is particularly evident
when examining changes at the annual level. Additionally, a distinct observation from the
mean monthly flow series indicates a reduction in flow magnitudes during the low flow season
(Dec-Jan-Feb) and a significant increase during the high flow season (Jul-Aug-Sep). Further-
more, an augmentation in mean monthly flow for both May and October has been projected,
contributing significantly to higher flows in the MAM (March-April-May) and OND (October-
November-December) seasonal periods. This finding aligns with a recent study conducted in
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the East African region by Gebrecherkos et al. (2023) [12]. It is noteworthy that previous
studies by Taye et al. (2018) [58] and Chelkeba et al. (2023) [139] presented similar pro-
jections for recent and mid-time periods, but projections for the far time period from both
studies indicated a decrease.

A noticeable distinction is apparent in the magnitude of flow simulations derived from the
SWAT and NARX models, particularly noticeable for mid and far time periods. Nevertheless,
both models exhibit a clear consensus regarding the general trend of future water resource
conditions in the sub-basin. The calibration and validation results of the SWAT model un-
derscore its relative inefficiency in simulating low flows, occasionally tending to overestimate
them when compared to the NARX model. Conversely, the NARX model displays poor
performance in capturing peaks, potentially attributed to its sensitivity to outliers. The
combination of these characteristics has led to future climate projections obtained from the
SWAT model indicating relatively higher magnitudes of flow compared to the NARX model.
Both SWAT and NARX flow simulations affirm that the minimum mean monthly flow oc-
curs in February and the maximum in August, consistent with the control period. However,
minimum mean monthly flows derived from the NARX model surpass those from the SWAT
model significantly, suggesting the former’s enhanced capability in simulating low flows.

For a more detailed understanding of future water resource conditions in the sub-basin,
Standardized Streamflow Index (SSI) was generated using data obtained from both the con-
trol and scenario periods of SWAT and NARX model simulations. The analysis of 12-month
SSIs reveals that the longest successive extreme events occurred at the same time periods
between observed and simulated data. For instance, the longest extreme dry event during
the control period spanned from September to July, lasting for a successive 11 months, while
for SWAT and NARX simulations, it endured for 8 months (October-May). Similar findings
were observed for the analysis of the longest successive wet events. In the control period,
the longest successive wet months persisted for a total of 11 months (two events, one lasting
from Aug - Jun, and the second from Sep-Jul). Conversely, for the simulations, it extended
for a length of 13 months (July-July). The 12-month SSI analysis suggests that the dura-
tion of dry events will shorten, while wet events will become longer. However, in the case
of the 3-month SSI analysis, temporal congruence between observed and simulated outputs
was only observed for results obtained from the NARX model. Here, the longest extreme
dry events occurred from September to November (3 months), with June to September (4
months) being the wettest. This implies that no significant change in the duration of dry
and wet events is expected for the 3-month SSI.

In general, the SSI analysis conducted on streamflow outputs from climate models suggests
that extreme events will be more pronounced for the hydrological period (12 months) than the
agricultural period (3 months). Consequently, it is anticipated that water resource conditions
will become less severe in the long run, as indicated by predictions for far time periods.

6.6 Conclusion

The outputs of streamflow projections obtained using CMIP6 climate model outputs indicate
an increase in future streamflow across all time periods and scenarios. Previous studies
employing climate model outputs from the CMIP5 archive yielded similar results for recent
and mid-time periods but demonstrated a disagreement for the far time period.

Regarding seasonal changes, both spring and summer stream flows have exhibited an
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increase, with the latter demonstrating a relatively higher magnitude of increment. Addi-
tionally, the results of this study indicate a decrease in the flow during drier periods (Dec-
Jan-Feb).

Both the SWAT and NARX models demonstrate agreement regarding the direction of
future water resource conditions in the sub-basin. However, the NARX model exhibits less
capability in simulating peak flows compared to the SWAT model, while it performs well in
representing low flows.

The results of the 12-month Standardized Streamflow Index (SSI) analysis indicate that
the duration of dry events will shorten, and wet periods will become longer.

135



Chapter 7

Summary, Conclusion, and
Recommendations

7.1 Summary and Conclusion

As the primary contributor to streamflow in the greater Awash basin and amidst the es-
calating competition for this resource driven by population growth and diverse economic
activities, it is imperative to monitor the temporal status of this vital resource. Understand-
ing the future water resource conditions of a given region is facilitated through the combined
use of CMIP-GCM outputs with hydrological models. Despite similar studies conducted in
the sub-basin, there exists no consensus on the direction of future hydro-climatic conditions
in the area. Additionally, there are no studies that have tested future climate conditions us-
ing new sets of climate model outputs, specifically from CMIP6. In this study, a meticulous
and appropriate modeling effort has been employed to comprehensively examine both future
climate and hydrological conditions over the Upper Awash Sub-Basin (UASB). This chapter
presents some of the key conclusions drawn from the thesis.

7.1.1 Climate model selection and future projections

Globally, various institutions develop Climate Model Intercomparison Project (CMIP) -
Global Climate Models (GCMs), and the outputs from these models for a given region may
differ due to several reasons. The primary differences in their outputs arise from variations
in spatial resolution, model complexity, parametrization, initial conditions and forcing data,
and research focus. Consequently, there is a need to evaluate these models for their capacity
to simulate regional meteorological conditions.

In this study, a total of 12 climate models were preliminarily selected from the CMIP6
archive and evaluated for their potential to simulate the regional climate of the Upper Awash
Sub-Basin (UASB). This evaluation was conducted after downscaling and bias correction of
all climate models using distance-weighted average remapping and Quantile Mapping tech-
niques, respectively. The climate models were assessed against their ability to replicate
climate data obtained from ground observations. Five techniques, evaluating the models
on their capability to capture the distributional, trend, magnitude, seasonal, and temporal
characteristics, were applied. Additionally, the models’ performance in simulating the spa-
tial distribution of meteorological characteristics in the study area was assessed. Out of the
twelve initially identified models, the top five, demonstrating the best performance, were se-
lected for further analysis. These models are ECEARTH3, GFDL-ESM4, MPI-ESM1-2-HR,
MRI-ESM2, and INM-CM5-0.
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Future climate projections were then made using ensembles of these five climate model
outputs over the UASB for three socio-economic scenarios (sustainable, middle, and worst)
across three time periods (near, middle, and end of the century). The projections covered
areal weighted precipitation, maximum temperature, and minimum temperature. The results
of future climate predictions demonstrated relative increments compared to the base period
(1980–2009) for all three climate variables. The magnitude of increment was notably higher
toward the end of the century compared to the near and middle periods. Additionally, the
analysis of seasonal projections indicated that the magnitude of increment for spring rainfall
exceeded that for the summer. It is noteworthy that the outputs of this study align with the
new AR6 IPCC report on expected future climate changes in Northeast Africa.

7.1.2 Stream flow characterization and time series modeling

To assess water resource conditions under future climate change projections, the use of ap-
propriate hydrological models is crucial. In this study, both deterministic and stochastic
models were considered. Among the deterministic models, the Soil and Water Assessment
Tool (SWAT) was chosen due to its solid theoretical foundation and widespread acceptance
in Ethiopia and globally. Selecting a stochastic model was more complex than deterministic
models, as it required a careful examination of the statistical characteristics of the time se-
ries. These characteristics provide insights into the runoff generation mechanism and guide
the selection of an appropriate model. Stationarity and linearity, crucial features of a time
series, influence the choice of an adequate time series model.

The monthly time series from the three gauging stations (Akaki, Melka Kuntere, and
Hombole) in the Upper Awash Sub-Basin (UASB) were identified as having both stationary
and non-linear characteristics, posing challenges for the application of conventional time series
models like ARIMA. Consequently, two classes of modeling techniques with the potential to
capture the non-linear character in the flow data were suggested: Regime Switching and
Data-Driven models. Within the regime-switching models, the suitability of SETAR and
LSTAR models was evaluated. For data-driven models, the potential of NARX and ANFIS
was assessed. For each type of model, appropriate parameters were fitted using required
procedures, and model uncertainties were estimated using bootstrapping techniques.

The forecasts for each gauging station indicated that data-driven techniques exhibited
higher forecast capabilities than TAR models. Model setup and training were relatively
straightforward using various functions under the Deep Learning Toolbox in MATLAB. How-
ever, a significant challenge in these models was identifying the right set of model inputs that
would deliver acceptable performance. Future efforts to enhance forecast performance should
consider testing models that separately model the deterministic and stochastic components.
From the analysis using data-driven techniques, it was evident that the Adaptive Neuro-
Fuzzy Inference System (ANFIS) model demonstrated relatively better performance than
the NARX model.

7.1.3 Future Water resource availability

The assessment of future water resource availability in the sub-basin involved combining cli-
mate model outputs with a well-calibrated and validated hydrological model. In this phase of
the study, the Soil and Water Assessment Tool (SWAT) model was prepared, calibrated, and
validated at the Hombole gauging station. The calibration period yielded an Nash-Sutcliffe
Efficiency (NSE) of 0.9, and for validation, it was 0.87. The top three sensitive parameters
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for the SWAT model were identified as curve number, soil hydraulic conductivity, and bulk
density. Additionally, the Nonlinear Auto-Regressive with eXogenous inputs (NARX) model,
trained for the same gauge station, was employed. It was observed that the NARX model
exhibited good potential in simulating low flows, while SWAT performed relatively well in
capturing peak flows.

Following the calibration, future streamflow projections for each of the future scenarios
(SSP1.26, SSP2.45, and SSP5.85) and three time periods (near, mid, and far) were gener-
ated using the SWAT model. Mean monthly streamflow simulations for each scenario were
compared against a control period (1980-2009). Both the SWAT and NARX models showed
an increase in mean monthly flows during both spring and summer, with varying degrees
of proportion for all scenarios and time periods. However, the dry period (Dec-Jan-Feb)
exhibited a relative decrease.

While both the NARX and SWAT models yielded similar outputs in terms of future
projections on water resource availability, the magnitude of these projections differed due to
the models’ distinct assumptions. SWAT projections were notably higher in magnitude than
those of the NARX model. However, it was observed that the magnitude of future projections
is lowest for the near period (2022-2039) and highest for the far time period (2070-2099).

The Standardized Streamflow Index (SSI) analysis performed on the future projections
using the outputs of both NARX and SWAT models indicated that wet events would be more
likely in the future than dry events, especially in the hydrological period of analysis.

7.2 Recommendations

The regional climate in Ethiopia, influenced by rugged topography and proximity to the
equator, has been the subject of various hypotheses. Previous attempts to observe future cli-
mate conditions in the Upper Awash Sub-Basin (UASB) using climate models from different
institutions have resulted in divergent projections, with no common understanding of future
climate trends. This study utilizes models from the new CMIP6 archive to investigate future
climate conditions in the UASB. Notably, the CMIP6 models, when compared to previous
CMIP3 and CMIP5 efforts, exhibit different projections, particularly for the far time period.
The reasons for these differences remain unclear and warrant further investigation.

The findings of this study indicate an anticipated increase in future rainfall and stream-
flow in the area. This projected change can have significant socio-economic implications
for both the sub-basin and the larger Awash basin, given the expected population growth
and economic activities. The heightened potential for flooding in both the upper and lower
parts of the Awash basin, attributed to increased farming and urban development in the
UASB, emphasizes the need for sustainable land and water resource management practices.
Addressing this issue requires careful attention.

A major limitation encountered in this study is the quality of data obtained from river
gauging stations. Many stations in the Awash basin have fragmented data without accom-
panying metadata, highlighting the importance of improving data quality for these stations.

Two types of models, belonging to the deterministic and stochastic classes, were employed
in this study. Future efforts to enhance forecast performance should consider testing mod-
els that separately address the deterministic and stochastic components, providing a more
comprehensive understanding of the forecasting capability.
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nual discharges of large european rivers. Journal of Hydrology and Hydromechanics,
63(1):63–70, 2015.

[96] Peter J Brockwell and Richard A Davis. Introduction to time series and forecasting.
Springer, 2002.

[97] The MathWorks Inc. Matlab version: 9.13.0 (r2022b), 2022.

[98] David A Dickey and Wayne A Fuller. Distribution of the estimators for autoregres-
sive time series with a unit root. Journal of the American statistical association,
74(366a):427–431, 1979.

[99] Denis Kwiatkowski, Peter CB Phillips, Peter Schmidt, and Yongcheol Shin. Testing the
null hypothesis of stationarity against the alternative of a unit root: How sure are we
that economic time series have a unit root? Journal of econometrics, 54(1-3):159–178,
1992.

[100] Pierre Perron. Trends and random walks in macroeconomic time series: Further evi-
dence from a new approach. Journal of economic dynamics and control, 12(2-3):297–
332, 1988.

[101] Maurice S Bartlett. Smoothing periodograms from time-series with continuous spectra.
Nature, 161(4096):686–687, 1948.
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Appendix A

Metrological Data

Table A.1: Mean Monthly Temperature (◦C)

Maximum

Month Chefe Ginchi Debre Ejere Enselale Guranda Bole Obs Asgori

1 23.17 25.49 26.46 24.79 23.2 22.8 23.76 23.92 27.56
2 24.57 26.75 27.77 26.34 24.47 24.08 24.76 24.93 28.54
3 25.59 27 28.27 27.7 24.82 24.61 25.3 25.18 28.92
4 25.67 26.43 28.15 27.8 24.79 24.66 24.81 24.55 28.22
5 26.07 25.91 28.84 28.38 24.86 24.66 25.21 25.09 28.54
6 26.02 22 27.42 29.58 22.68 23.21 23.53 23.42 27.5
7 23.1 16.79 24.4 27.78 17.84 18.9 21.2 21.06 24.86
8 23.1 16.89 23.99 27.69 17.79 18.83 21.04 21 24.7
9 24.37 20.09 25.23 27.72 20.15 20.94 21.88 21.76 25.49
10 23.65 22.16 26.21 25.86 21.36 21.69 22.96 22.82 26.03
11 23.11 24.38 26.06 24.81 22.45 22.3 23.08 23.17 26.45
12 22.63 24.83 25.84 24.17 22.53 21.2 23.12 23.2 26.74

Minimum

1 6.12 8.45 9.71 7.4 6.53 6 7.38 9.03 6.11
2 7.37 9.86 11.13 8.59 8.12 7.49 8.94 10.24 7.39
3 8.02 10.6 12.74 9.36 9 8.35 10.57 11.64 8.83
4 8.8 10.76 13.53 10.23 9.39 8.81 11.31 12.21 9.91
5 9.1 9.94 13.1 11.24 8.7 8.17 11.19 12.42 9.32
6 11.58 10.38 12.83 14.19 10.01 10.04 10.73 11.47 10.01
7 11.93 10.64 13.45 14.26 10.5 10.61 11.07 11.34 10.64
8 10.98 10.1 13.48 13.22 9.67 9.7 11.17 11.43 10.85
9 7.09 8.59 12.59 10.09 7.07 6.49 10.43 11.25 9.64
10 4.91 7.53 10.4 7.06 5.47 4.76 8.31 10.23 5.86
11 4.72 7.38 9.15 6.17 5.07 4.44 6.4 8.71 4.62
12 4.97 7.63 8.98 6.25 5.36 3.89 6.42 8.33 4.45
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Table A.2: Mean Monthly Wind Speed (m/s)

Month Chefe Ginchi Debre Ejere Enselale Guranda Bole Obs Asgori

1 2.5 1.98 1.36 2.23 2.21 2.35 0.7 0.7 2.48
2 2.52 2.04 1.59 2.27 2.27 2.4 0.73 0.73 2.53
3 2.5 2.05 1.58 2.32 2.32 2.42 0.78 0.78 2.53
4 2.55 2.13 1.64 2.39 2.4 2.48 0.69 0.69 2.57
5 2.65 2 1.62 2.53 2.32 2.34 0.68 0.68 2.57
6 2.41 1.44 1.31 2.63 1.57 1.76 0.44 0.44 1.96
7 2.14 1.47 1.15 2.45 1.48 1.58 0.35 0.35 1.69
8 1.98 1.29 1 2.27 1.32 1.44 0.33 0.33 1.56
9 2.07 1.33 0.97 2.25 1.5 1.64 0.45 0.45 1.78
10 2.56 1.94 1.45 2.37 2.24 2.36 0.73 0.73 2.49
11 2.64 2.01 1.53 2.36 2.3 2.44 0.74 0.74 2.59
12 2.57 2.06 1.46 2.29 2.33 1.6 0.7 0.7 2.56

Table A.3: Mean Monthly Precipitation (mm)

Month Chefe Ginchi Debre Ejere Enselale Guranda Bole Obs Asgori

1 15.87 26.9 15.51 19.22 12.61 11.96 12.7 14.41 17.19
2 25.41 40.77 30.61 36.09 24.06 26.25 31.29 37.77 34.29
3 50.64 74.67 54.58 58.67 43.7 54.58 62.83 65.09 58.35
4 61.77 93.45 62.51 61.29 63.48 74.38 90.96 91.8 89.22
5 52.83 91.25 59.03 53.12 52.06 63.32 70.67 86.32 70
6 99.7 136.51 89.32 83.09 99.96 117.29 111.22 141.9 135.25
7 215.58 229 202.64 221.77 197.29 240.32 227.64 277.16 247.8
8 240.16 239.77 208.93 237.61 170.35 260.7 229.25 289.93 241.9
9 99.74 138.96 101.35 107.48 85.09 150.74 124.48 173.61 100.87
10 19.58 36.35 32.09 33.93 16.74 31.22 29.32 36.7 20.74
11 3.35 10.58 5.96 10.51 8.74 5.67 4.7 8.41 6.48
12 6.32 11.12 4.06 14.16 5.29 5.16 6.64 11 4.67

Table A.4: Mean Monthly Solar Radiation Mj/m2

Month Chefe Ginchi Debre Ejere Enselale Guranda Bole Obs Asgori

1 24.72 21.47 20.76 25.06 22.22 22.81 20.84 21.18 23.51
2 26.83 22.37 22.82 27.32 23.39 24.27 21.6 21.84 25.26
3 28.11 22.59 22.6 28.91 23.94 25.04 21.86 21.98 26.23
4 28.22 22.77 22.1 28.87 24.15 25.23 20.83 20.81 26.4
5 28.03 22.68 21.96 28.84 24.03 24.89 20.63 20.51 26.09
6 25.61 18.18 19.25 27.51 19.76 21.12 17.86 17.71 22.52
7 21.47 12.25 16.87 24.88 14.15 15.83 14.75 14.63 17.5
8 23.17 13.26 17.57 26.23 15.77 17.58 15.22 15.17 19.39
9 26.74 21.27 20.15 28.36 22.58 23.49 17.64 17.7 24.49
10 27.15 23.67 22.4 27.62 24.33 24.96 21.09 21.29 25.7
11 25.96 23.41 21.9 25.88 24.13 24.6 21.21 21.53 25.19
12 24.78 22.41 20.94 24.73 23.1 22.48 19.77 20.13 24.02
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Appendix B

Distributions

Here a description of the distribution types under gamlss package [150] used in sub-sub-
section 3.1.1 is listed as follows:
Normal (or Gausian) Distribution (NO(µ,σ)): The Normal distribution is parameter-
ized its pdf is defined by ;

fY (y|µ, σ) =
1√
2πσ

exp

[
−(y − µ)2

2σ2

]
(B.1)

For -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞ and σ ¿ 0. Where µ is the mean and σ is standard deviation
of Y.
Logistic distribution (LO(µ,σ)): The Logistic distribution is parameterized and its pdf
is defined by;

fY (y|µ, σ) =
1

σ

{
exp

[
−
(
y − µ

σ

)]}{
1 + exp

[
−
(
y − µ

σ

)]}−2

(B.2)

For -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞ and σ ¿ 0. Where µ is the mean and σ is standard deviation
of Y.
Gumbel Distribution (GU(µ,σ)): pdf is defined by;

fY (y|µ, σ) =
1

σ
exp

[(
y − µ

σ

)
− exp

(
y − µ

σ

)]
(B.3)

For -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞ and σ ¿ 0.
Reverse Gumbel Distribution (RG(µ,σ)): pdf is defined by;

fY (y|µ, σ) =
1

σ
exp

{
−
(
y − µ

σ

)
− exp

[
−(y − µ)

σ

]}
(B.4)

For -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞ and σ ¿ 0.
Power Exponential Distributions (PE):
PE(µ,σ,ν) pdf is defined by;

fY (y|µ, σ, ν) =
νexp

[
−
∣∣∣ zc ∣∣∣ν]

2cσΓ
(

1
ν

) (B.5)
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PE2(µ,σ,ν) pdf is defined by:

fY (y|µ, σ, ν) =
νexp

[
−
∣∣∣z∣∣∣ν]

2cσΓ
(

1
ν

) (B.6)

For -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞ and ν ¿ 0. And c2 = Γ(1/ν)
[
Γ(3/ν)

]−1
.

Normal Exponential t- distribution (NET(µ,σ,ν,τ)): is a four parameter distribution
and pdf is defined by;

fY (y|µ, σ, ν, τ) =
c

σ


exp

{
− z2

2

}
, when

∣∣z∣∣ ≤ ν

exp
{
−ν

∣∣z∣∣+ ν2

2

}
, when ν <

∣∣z∣∣ ≤ τ

exp
{
−ντ log

(∣∣z∣∣
τ

)
− ντ + ν2

2

}
, when

∣∣z∣∣ > τ

(B.7)

For -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞, ν ¿ 1, and τ ¿ ν. And c = (c1 + c2 + c3)
−1. Where,

C1 =
√
2π

[
1− 2Φ(−ν)

]
, C2 =

2
ν
exp

{
−ν2

2

}
and C3 =

2
(ντ−1)ν

exp

{
−ντ + ν2

2

}
, Where Φ(.) is

the cumulative distribution function of the standard normal distribution.
Sinh-Arcsinh (SHASH(µ,σ,ν,τ)): its pdf is defined by;

fY (y|µ, σ, ν, τ) =
c√

2πσ(1 + r2)1/2
e−z2/2 (B.8)

Where z = 1
2

{
exp

[
τsinh−1(r)

]
− exp

[
− νsinh−1(r)

]}
and c = 1

2

{
τexp

[
τsinh−1(r)

]
+ νexp

[
− νsinh−1(r)

]}
and r = (y − µ)/σ for -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞ and σ¿0 ,ν ¿ 0, and τ¿0.
Skew Exponential Power type I distribution (SEP1(µ,σ,ν,τ)): its pdf is defined by;

fY (y|µ, σ, ν, τ) =
2

σ
fZ1(z)FZ1(νz) (B.9)

for -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞ and σ¿0 ,−∞¡ν¡∞, and τ¿0, and where z = (y − µ)/σ
and fZ1 and FZ1 are the pdf and cdf of Z1 ∼ PE2(0, τ 1/τ,τ ) a power exponential type 2
distribution with fZ1 = σ−1exp[−|z|τ/τ ], where α = 2τ (1/τ)−1Γ(1/τ).
Skew Exponential Power type II distribution (SEP2(µ,σ,ν,τ)): its pdf is defined by;

fY (y|µ, σ, ν, τ) =
2

σ
fZ1(z)Φ(ω) (B.10)

for -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞ and σ¿0 ,−∞¡ν¡∞, and τ¿0, and where z = (y − µ)/σ and
ω = sign(z)|z|τ/2 and fZ1 is the pdf of Z1 ∼ PE2(0, τ 1/τ,τ ) and Φ(ω) is the cdf of standard
normal variable evaluated at ω.
Skew Exponential Power type III distribution (SEP3(µ,σ,ν,τ)): its pdf is defined
by;

fY (y|µ, σ, ν, τ) =
c

σ

{
exp

[
−1

2
|νz|τ

]
I(y < µ) + exp

[
−1

2
|z
ν
|τ
]
I(y ≥ µ)

}
(B.11)

For -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞, σ ¿ 0,ν ¿ 0, and τ ¿ 0 and where z = (y − µ)/σ and
c = ντ/

[
(1 + ν2)21/τΓ( 1

τ
)
]
.

Gamma Distribution (GA(µ,σ)): its pdf is defined by;
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fY (y|µ, σ) =
1√
2πσ2

1

y
exp

{
− [log(y)− µ]2

2σ2

}
(B.12)

for y¿0, where µ¿0 and σ¿0.
Inverse Gaussian Distribution (IG(µ,σ)): its pdf is defined by;

fY (y|µ, σ) =
1√

2πσ2y3
exp

[
− 1√

2µ2σ2y
(y − µ)2

]
(B.13)

for y¿0, where µ¿0 and σ¿0.
Weibull Distribution (WEI1, WEI2, WEI3): their parametrization and pdf is defined
by;
First parametrization (WEI1 (WEI(µ, ν))) is as follows,

fY (y|µ, σ) =
σyσ−1

µσ
exp

[
−
(
y

µ

)σ]
(B.14)

for y¿0, where µ¿0 and σ¿0.
Second parametrization (WEI2)

fY (y|µ, σ) = σµyσ−1e−µyσ (B.15)

for y¿0, where µ¿0 and σ¿0.
Second parametrization (WEI3)

fY (y|µ, σ) =
σ

β

(
y

β

)σ−1

exp

{
−
(
y

β

)σ}
(B.16)

for y¿0, where µ¿0, σ¿0 and where β = µ/Γ( 1
σ
+ 1).

Box-Cox Power Exponential Distribution (BCPE(µ,σ,ν,τ)): its parametrization and
pdf is defined by;

fY (y|µ, σ, ν, τ) =
yν−1fT (z)

µνσFT (
1

σ|ν|)
(B.17)

for y¿0, µ ¿0, σ¿0 , τ¿0, −∞¡ν¡∞, z = (y− µ)/σ, and where fT and FT are pdf and cdf of a
random variable T.
Generalized t Distribution (GT(µ,σ,ν,τ)): its parametrization and pdf is defined by;

fY (y|µ, σ, ν, τ) = τ

{
2σν1/TB(1/τ, ν)

[
1 + |z|τ/ν

]ν+(1/τ)
}−1

(B.18)

For -∞ ¡ y ¡∞, where -∞ ¡ µ ¡ ∞, σ ¿ 0,ν ¿ 0, and τ ¿ 0 and where z = (y − µ)/σ.
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