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Abstract

Advancement of standards is generally assumed to be one of two things. Either the intro-
duction of more efficiency into the prediction, or the eradication of previously unknown
and unwanted effects. Both are strived for and welcomed by the community, as it allows
for the reduction of material and cost, while ensuring the required degree of safety. This,
however, can not be said for the development of the shear verification method of reinforced
and/or prestressed concrete slender beams. The latest chapter of this development being
written by the Eurocode 2, where the partaking of the concrete compression zone, amongst
other influences, in the shear-bearing capacity of said specimens is neglected, leading to far
higher conservatism in design. Since neither damages or failures nor new research results
exist, pointing towards an unsafe design prior to it, this increased safety is not warranted.
Therefore the following work aims to showcase the impact, strength and weaknesses and
reasoning of the current design standards as well as provide a design approach, incorporat-
ing multiple shear-bearing mechanisms, that mimics reality more closely.

Facing the challenge of having biased test databases, leaning strongly on single span test
setups under concentrated loads, basically eliminating interactions of normal and shear
stresses, as well as small cross-sections, a numerical modelling approach is developed. It is
validated against tests reported in literature and allows for a more precise investigation as
well as acknowledgement of certain parameters, when being compared to physical testing.
Further on it is used to create a set of tests in accordance to the Design of Experiments,
allowing assertions about the dependence of the test results on individual variables. The
modelled test setup aims to represent bridge girders at intermediate supports, as research
shows large discrepancies between the calculable critical load for the old and new stan-
dards at these points. Spotlighted variables consist of the span length, the slenderness and
the transverse reinforcement ratio. Especially the allocable independence of the predicted
critical load from the transverse reinforcement ratio in case of compression stresses, re-
sulting from bending or prestressing, coinciding with the large shear stresses shows the
inability of the currents design standard to correctly predict the physical behaviour of the
reinforced and/or prestressed concrete slender beams. Furthermore the interaction of the
overlapping point of large normal stresses and large shear stresses partaking in this effect
needs to be stated.

Based on these findings an engineering model approach is developed, accounting for the
partaking of the uncracked concrete compression zone in the shear-bearing mechanisms,
in form of the compression arch with tension chord. Interaction of bending moment and
transverse forces is ensured by the model via the shape of the compression arch and the
coupling of the individual systems via the deformation. This ensures a stiffness dependency
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of the model, which is used to allocated the load onto the individual systems. Partaking
of the transverse reinforcement is covered by a smeared truss system, similar to the one in
Eurocode 2. The applicability of the approach is determined on basis of compatibility of
deformation.

For evaluation of the engineering model approach, the deformation of the smeared truss at
its individual load-bearing capacity is taken and applied to the compression arch with ten-
sion chord, resulting in an additional load, that the combined system is able to bear, before
reaching the failure load of the smeared truss subsystem. In coupling these subsystems in
this way, the physical behaviour of the beam is mimicked. In this the engineering model
approach differentiates itself from many existing shear models, which more often than not
add individual load-bearing mechanisms, that are mostly assumed to be indifferent to each
other as well as the actual physical behaviour of the specimen they attempt to predict.

Due to its stress dependency, aka the acknowledgement of stress interactions, the ratio of
the load-bearing capacities of the two subsystems are dependent on the structural system
as well as the loading. This is the major difference to the current design standards, which
does not account for this effect due to it being grounded on a biased test database.
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Zusammenfassung

Im Allgemeinen gibt es zwei mögliche Ursachen für die Weiterentwicklung von Normen.
Entweder die Verbesserung der Vorhersage, oder die Reduzierung von zuvor unbekanntem
und ungewolltem Verhalten. Jede davon ist von der Ingenieursgemeinschaft erwünscht,
und ermöglicht eine effiziente Material- und Kostengestaltung im Rahmen der geforderten
Sicherheitsanforderungen. Diese Maxime trifft jedoch nicht auf den Querkraftnachweis
von schlanke Stahlbeton- oder Spannbetonbalken zu. In der aktuellen Fassung des Eu-
rocodes liefert der Querkraftnachweis durch die Vernachlässigung der Betondruckzone
verstärkt konservative Ergebnisse im Vergleich zu den Nachweisen, welche gegen Ende
des 20. Jahrhunderts gegolten haben. Da weder bekannte Schäden oder Einstürze noch
neue Forschungsergebnisse vorliegen, ist die somit gewonnene Sicherheit nicht begründ-
bar, sondern führt vor allem im Zuge von Nachrechnungen zu erheblichen Problemen oder
unnötigen von Verstärkung. Aus diesem Grund zeigt die vorliegende Arbeit den Einfluss,
die Stärken und Schwächen als auch die Begründung des derzeitig gültigen Nachweises auf
und stellt ein Nachweisverfahren vor, welches mehrere Querkrafttragmechanismen vereint
und somit die Realität besser abbildet als der derzeit gültige Eurocode.

Für die Untersuchung einzelner Parameter wird ein numerisches Modell entwickelt, welch-
es anhand von Versuchen aus der Literatur validiert wird. Somit wird die Abhängigkeit der
folgenden Auswertung von Versuchsdatenbanken, welche hauptsächlich auf Versuchen an
Einfeldträgersystemen unter Einzellasten und geringen Querschnittsabmessungen beruhen,
vermieden und schwierig realisierbare Versuchszusammenstellungen ermöglicht. Mit dem
numerischen Modell wird eine Versuchsreihe nach den Empfehlungen des Design of Exper-
iments entwickelt, wodurch Aussagen bezüglich der Abhängigkeiten der Versuchsergeb-
nisse von einzelnen Parametern ermöglicht wird. Als statisches System wird ein einseitig
eingespannter Einfeldträger gewählt, da dieser die Situation an einem Zwischenauflager
gut wiederspiegelt. Ausschlaggebend dafür ist die oft festgestellte starke Abweichung
zwischen den Ergebnissen nach alten und neuen Bemessungsansätzen an diesen Stellen.
Die Abhängigkeit der Versuchsergebnisse von den Parametern Spannweite, Schlankheit
und Querkraftbewehrungsgrad werden im Detail untersucht. Es kann vor allem festgestellt
werden, dass die numerisch berechneten Versagenslasten, unter der gewählten Situation,
weitestgehend unabhängig von dem Querkraftbewehrungsgrad sind. Dies weist eine starke
Diskrepanz zum derzeitig gültigen Nachweisverfahren für schlanke Stahlbeton- und Spann-
betonbalken auf, welches maßgeblich auf diesem Parameter beruht. Ursächlich hierfür ist
unter anderem eine Interaktion von Normal- und Schubspannungen, welche in den gängi-
gen Nachweisverfahren nicht berücksichtigt wird.

Basierend auf diesen Ergebnissen wird ein Ingenieurmodell entwickelt. Hierfür wird ein
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Betondruckbogenmodell mit Zugband mit dem gängigen verschmierten Fachwerkmodell
gekoppelt. Somit wird neben der Querkraftbewehrung auch der ungerissene Betonquer-
schnitt für die Lastabtragung berücksichtigt. Die Spannungesinteraktion von Normal- und
Schubspannungen wird hierbei hauptsächlich vom Druckbogen übernommen, da seine For-
mgebung und somit die Steifigkeit davon beeinflusst wird.

Für die Auswertung des Ingenieurmodells, wird vereinfacht die Tragfähigkeit des Fachw-
erkmodells als Modellbestimmend angenommen. Die Verformung, welche das Fachwerk-
modell unter dieser Last erfährt, wird auf den Druckbogen angewendet. Die dafür benötigte
Kraft wird zusätzlich zu der kritischen Last des Fachwerkmodells angesetzt. Durch diesen
Ansatz wird das physische Verhalten des Balkens durch die zwei darin angesetzten Sub-
systeme nachgestellt. Hierdurch unterscheidet sich der Ansatz des Ingenieurmodells von
vielen existierend Querkraftmodellen, welche meistens eine Aufaddierung verschiedener
Tragmechanismen ansetzen, welche im Allgemeinen als untereinander ebenso wie Realität
unabhängig betrachtet werden.

Durch die Spannungs- und somit Steifigkeitsabhängkeit des entwickelten Ingenieursmod-
ells wird die Traglastaufteilung auf die zwei Tragmechanismen (Druckbogen und Fachw-
erk) direkt von Belastungsart und statischem System abhängig. Hierin liegt auch der größte
Unterschied zu den aktuell gängigen Nachweisverfahren, welche auf die begrenzte Varianz
der Versuchsdatenbaken zurückgehen.
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1. Introduction

1.1. Motivation

Society’s highest priority should always be a responsible and sustainable handling of its
resources. One major portion of these resources can be found in the building infrastruc-
ture. Ranging from transporting infrastructure over power plants to hospitals, schools and
governmental buildings, this building infrastructure can be seen as the backbone of mod-
ern society. Hence the maintenance of it is vital, but expensive and therefore an efficient
allocation of resources is necessary. In light of this, enabling and continued use of existing
infrastructure is most of the time preferable to rebuilding, cutting not only costs but also
construction surrounding impacts and disruptions.

Enabling structures to last its intended and designed for life-expectancy, or even surpassing
it is however easier said than achieved. While the design philosophy always has set life-
expectancies for different types of structures, the rules and regulations always account for
knowledge and boundary conditions of their time. Hence, with changing standards, the
need for reevaluation of the existing infrastructure arises. In case of Germany this last
major upheaval happened with the introduction of the Eurocodes in the early 2010s. In this
context, special attention was paid to reinforced and prestressed concrete bridges, sporting
86.0% of bridges of the long-distance road-network in Germany [12]. Reasons behind
this lie in the combination of updated design loads (EC1 [40]) and a change in the design
approach for shear-bearing capacity (EC2 [41]). Some early research [52, 69] shows that
nearly 60% of the investigated bridges did not conform to the requirements set by the new
standards, when being recalculated. Most of the blame for this can be directed towards the
fundamental changes in the design approach, rather than changing load models. Reasoning
behind this can be found in the composition of the acting forces on the bridge. Generally
speaking reinforced and prestressed concrete bridges require the majority of their load-
bearing capacity to carry their own dead load. In light of the approximately 75−80% load-
bearing capacity being reserved for this type of loading, an increase of the remaining acting
loads, namely the design load model of vehicles, has a diminishing effect. This can be seen
by the lack of calculable differences concerning bending [52]. Therefore the main culprit
for the shear strength dilemma has to be the changed design approach, further supported by
the lack of damages and failures on reinforced and prestressed concrete bridges in Germany
due to shear.

Since the apparent discrepancies, when facing the recalculation of reinforced and pre-
stressed concrete specimens in accordance with the Eurocodes (EC2 [41]) lie in the shear
design methodology, a short recapture of its development and the inherent difficulties is in
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1. Introduction

order. While being largely disregarded in the first half of the 20th century, research into the
shear-bearing capacity was jump-started by two similar collapses of US Air Force ware-
houses in the mid 1950s [46]. The prolonged interest in this topic is documented by figure
1.1, where the number of shear tests on concrete beams over a nearly 60 year span are
documented.
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Figure 1.1.: Number of shear tests on concrete beams with and without reinforcement in
terms of publication date as provided in [31]

Sparking a number of shear models and design approaches, like the smeared truss analogy,
compression field models or fraction mechanic models, this longevity of shear testing did
not manage to solve the riddle of shear in reinforced or prestressed concrete specimens
satisfactorily. Figuratively for this, tests showcasing the critical failure load being more
than double of the calculated expected failure load in accordance with the applicable stan-
dards exist [59]. Similar conclusions can be reached by the calculable shortcoming of the
existing infrastructure not evidencing themselves in sizeable damage, linked to prolonged
overloading, or a near failure loading [51, 64].

Pinpointing the reasoning for this proves to be challenging. The simple answer of the
change in design philosophy needs to be further investigated to allow for improvement of
the status quo. A starting point can be gathered from Fischer et al. [52], who highlighted
the intermediate supports of multi-span girders as a point of special interest regarding dif-
ferences in the amount of present shear reinforcement and the by recalculation required
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1.2. Objective of Work and Unique Selling Points

amount of it for existing bridges. Hence recent research into prestressed concrete slender
beams [78, 156] suggests a return to the partition of failure zones as previously supported
by the DIN 4227 [39], the predecessor of the EC2 [41]. Circumventing the inability of the
design approach to account for stress interactions, based on evaluation of biased tests.

This biased testing can be seen in the 2200+ shear tests on reinforced concrete beams with
and without shear reinforcement that were conducted over the last 70 years [139, 140],
being predominantly single-span test setups subjected to concentrated loads. While a lot of
information could be gained from these tests, ranging from aggregate interlock and dowel
action to shear-slenderness and size effect, the interaction of large normal stresses and
large shear stresses was overlooked. Furthermore an abundance of beams with a height
of less than 40.0 cm has to be noted, which do not represent most shear-critical beams,
especially for wide spanning structures like bridges, where the main girders are usually
exceeding 150.0 cm. Even so these circumstances are relatable due to limitations resulting
from the equipment and the practicability, their shortcomings in reflecting reality need to be
recognised and addressed. For this reason large scale tasting has become more prominent
in the recent years, incorporating different boundary conditions like clamped supports [50,
53, 60, 61, 78, 81, 128, 156].

Tackling these aspects seems necessary to create a better understanding of shear within
reinforced and prestressed concrete specimens, combining and embracing load interactions,
rather than subdividing them. Only then the design methods are able to better predict the
physical behaviour of the real life specimen and unintended conservatism can therefore be
reduced.

1.2. Objective of Work and Unique Selling Points

As mentioned in the motivation, today’s engineering standards concerning reinforced con-
crete beams are mostly based on tests, that do not reflect the reality satisfactorily. While
distributed loads are difficult to achieve in test setups due to experimental limitations, they
are the majority of loads used in today’s design. Furthermore the neglecting of interactions
of the internal stress distribution due to the abundance of similarly designed tests with re-
gard to the structural system needs to be addressed. Achieving a good predictability result-
ing from test series has always been one of the challenges in designing experiments, either
sacrificing broad applicability by focusing on singular influences, or informative value due
to limitations on tests not being able to either cover each individual variable satisfactorily
or combining variables resulting in an indistinguishability on the individual influences. To
combat this, modern methods of the so called Design of Experiments (DoE) can be em-
ployed, enabling the minimisation of physical tests by extending them with computer sim-
ulations. By a lack of physical experiments in the scope of this work, the DoE approach is
performed purely numerically. The numerical model and simulation are evaluated against
tests taken from the literature, showcasing the validity of this approach.

To advance towards solving the riddle of shear a more thorough investigation into not only
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1. Introduction

material investigations of failure mechanisms, but also structural load-bearing mechanisms
and stress-paths within the specimen need to be performed. In this context the developed
and introduced shear model approach focuses on the mechanical and statical aspects, com-
bining internal load-bearing subsystems by coupling their deformation. This approach al-
lows for a stiffness based attribution of the acting forces towards each subsystem, enabling
an investigation into individual subsystem failure loads as well as the critical shear load for
the cracked specimen. Due to the aforementioned topicality, the method is tuned to work
for bridge relevant dimensions and systems, focusing on the situation at intermediate sup-
ports and linear distributed loading conditions. The developed and introduced shear model
approach focuses on the compatibility of the theoretical structural model and the real live
behaviour of the reinforced and prestressed concrete, and aims to portrait a possible ap-
proach to shear validation. However it is neither intended nor evaluated to be used as a
shear verification model without further development concerning limiting and failure cri-
teria, as well as additional load bearing considerations, as explained and discussed within
the scope of the presented work.

In this context the interaction of normal stresses and shear stresses are investigated, show-
casing the shortcomings of the currently applicable German design standards and their
limits of applicability when attempting to recalculate existing reinforced concrete beams.
For this reason the research is constrained to normal strength concrete and slender beams.
Hence the findings of this work can not be adopted to high-strength or light weight concrete
as well as deep beams, slabs or shell-like structures without further investigation.
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2. Shear in Reinforced and
Prestressed Concrete Beams -
Mechanisms and Models

2.1. Overview

Throughout the development of the modern shear models for reinforced and pre-stressed
concrete beams, several mechanisms were discovered, examined and described to improve
the prediction of the shear load-bearing capacity of reinforced concrete beams. While some
of the load-bearing mechanisms and their mathematical definition are widely accepted,
some others are still to this day under debate on their correct expression. The shear models
presented in this section vary in this regard due to their time of development and focuses
given by their respective researchers.

2.2. Shear Bearing Mechanisms

2.2.1. General

Following the general approach of the static limit analysis within the theory of plasticity
theorem, the imposed shear force must be opposite and equal to the beams internal shear
resistance. This internal shear resistance, in case of reinforced concrete slender beams,
consists of the combination of the following widely accepted shear transfer mechanisms
(figure 2.1):

• Vcd – Direct strut or arch action within concrete members

• Vcc – Shear stresses in the uncracked compression zone

• Vct – Residual tensile stress in the crack processing zone

• Vai – Shear stresses transferred by crack friction and aggregate interlock

• Vs,t – Tensile forces in transverse reinforcements

• Vs,dw – Dowel action in the longitudinal reinforcements

• Vp – Vertical component of prestressing tendons
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Figure 2.1.: Shear bearing mechanisms within a reinforced concrete beam

The mathematically expression for the static limit analysis theorem including the previ-
ously stated mechanisms is given by equation 2.1, with a detailed description of each indi-
vidual mechanism being provided in the following subsections.

Vu,crit ≥ Vcd + Vcc + Vct + Vai + Vs,t + Vs,dw + Vp (2.1)

2.2.2. Direct Actions – Strut and Arch (Vcd)

The simplest form of direct action can be found in a strut and is generally acknowledged
for forces introduced close to supports, allowing for a direct flow of the stresses into it.
They can be approximated well using strut and tie models or stress fields (section 2.4.2).
Muttoni reckons that a direct strut can form for loads introduced as far has 1.5 times the
statical height of the concrete beam from the nearest support [119]. Standards usually
cover these areas with the definition of the critical control section for shear. Eurocode 2 for
example defines the location as 1.0 times the statical height of the concrete beam from the
nearest support [41], disregarding shear forces closer to it, since they are assumed to flow
directly into the support.

Prestressing or large compression forces can lead to an increase of the area, where direct
action is relevant [78], opening discussions of the position of the critical control section.
Especially the development of a so called elbow or arch can be achieved by this. This effect
can be seen for test 8-1 [103] in figure 2.2, where the elbow forms due to cracks crossing
the theoretical compression strut, while the smaller shear slenderness of test 4 [103] does
allow for a direct strut to form, which follows the theoretical compression strut.

Even so the strength of direct actions are reduced with increasing slenderness due to dis-
ruption resulting from flexural shear crack development, Yang does attribute residual load
capacity generated after dowel failure to these direct actions [186].

Additionally experiments show that, while the slenderness does effect the amount of force
being carried by direct actions, this influence decreases when comparing single-span sys-
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actual compression strut

2.48d
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Figure 2.2.: Theoretical direct strut and elbow strut constructed for beams of different slen-
derness taken from [103]

tems to multi-span continuos systems [156]. Furthermore the direct action can be linked to
the type of loading, which is discussed in more detail in section 2.3.4.

2.2.3. Shear stresses in the Uncracked Compression Zone (Vcc)

In the uncracked concrete compression zone, stresses still follow the theory of elasticity
and can be calculated depending on the boundary conditions of the uncracked concrete.
Since the boundary conditions of the uncracked concrete are almost impossible to deter-
mine exactly, a number of approximations result in different approaches to determine the
shear-bearing capacity.

On one side the truss models, strut and tie models as well as the arch and tension belt mod-
els often have an inclined compression belt, which can also be seen by a varying compres-
sion zone depth. Here the shear-bearing capacity of the uncracked concrete is determined
using the vertical component of the principle stresses. On the other side, approaches based
around a constant compression zone depth (parallel chords), use integration over the shear
stresses to determine the shear-bearing capacity. The first simplified expression of this is
given by Mörsch, who assumed a parabolic shear stress distribution above the neutral axis
[122].

These two approaches result in very similar results, since the shear stresses in the case of
a constant compression zone depth can be transformed to the vertical components of the
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Figure 2.3.: Load-bearing of the uncracked concrete compression zone: a) varying com-
pression chord; b) constant compression chord

principle stress in the case of a varying compression zone depth.

for Figure 2.3 a) Vcc = Fc · sin(α) (2.2)

for Figure 2.3 b) Vcc =

∫ xc

0

∫ be f f

0
τlt(t)dydt (2.3)

Over the years, a number of different shear stress distribution curves within the uncracked
concrete were suggested [47, 166]. However, as a comparison of experimental data with
the parabolic shear stress distribution proposed by Mörsch sufficiently verified the assump-
tion, where the experimental results attributed the shear-bearing capacity of the uncracked
concrete with 24.0% of the critical load and the parabolic distribution attributes 21.0% of
the applied load to the uncracked concrete. A reassignment of the uncracked concrete com-
pression zone and its height results in a limited influence on the shear-bearing capacity of
a reinforced concrete beam according to Albrecht and Schnell [7]. This showcases the
persistence of shear-bearing mechanism that is based on concrete compression.

Taylor [166] as well as Zink [193] also come to the conclusion, that the shear-bearing
capacity of the uncracked concrete is an important component of the overall shear-bearing
capacity of the reinforced concrete beam. The latter even naming it the foundation of the
shear-bearing capacity of beams without transverse reinforcements.

2.2.4. Residual Tensile Stress (Vct)

Firstly measured by Evans and Marathe [45], Hillerborg et al. were the first researchers
to describe the residual tensile stress mathematically and include it in their Fictitious Crack
Model [73]. Since then especially research linked to fracture mechanics (section 2.4.5) did
spearhead further development regarding the tensile softening behaviour of concrete, with
one of the most prominent models being derived by Hordijk and Reinhardt [74, 145]
concerning the tensile stress - crack width relationship.

Overall, while the function of tensile stress after cracking is still not agreed upon by most
researchers and further research points towards a very low significant of it in the case of
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shear cracks, it will not be presented in further detail. Overviews on this specific topic are
provided by [4, 19, 171].

2.2.5. Aggregate Interlock (Vai)

Aggregate interlock happens due to the shearing movement of the shear crack (figure
2.4). It is mostly influenced by the roughness of the developing crack surface, and hence
purely depending on the composition of the concrete material, with major factors being the
strength relation of the cement matrix and the aggregate. Where high performance concrete
sees a shift in this strength, where the strength of the cement matrix matches the one of the
aggregate, leading to crack development breaking the aggregate, cracks in normal concrete
usually develop around the aggregates, leading to a much rougher surface. It can therefore
be stated that the ability to transfer shear forces across the crack at normal concrete strength
due to aggregate interlock is more potent than in high performance concrete.

τpr
σpr

w

s

σag

σag

τag

τag

Aggregate
Cement matrix

Figure 2.4.: Load-bearing of the cracked concrete caused by aggregate interlock

Aggregate interlock is well researched due to its large impact on the shear transfer across
cracks [117, 143, 154, 183]. Albrecht and Schnell [7], f. e. did attribute aggregate
interlock with about 51% of the critical shear failure load in reinforced concrete beams
without transverse reinforcement. Walraven, based on his work in [180], published his
ground breaking two-phase model in [181], where the concrete is viewed as consisting of
two components, the spherical aggregates and the surrounding cement matrix (figure 2.4).
Assuming strictly plastic material behaviour, the stresses acting at the contact between
aggregate and cement matrix can be calculated, and therefore the transferable forces. Later
on the model was expanded upon to account for none normal strength concrete, in which
the crack can propagate through the aggregate [182].

Some alternative models revolving around aggregate interlock were derived by [58, 108].
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2.2.6. Transverse Reinforcement (Vs,t)

Transverse reinforcement subjected to shear stresses function equivalently to longitudinal
reinforcement subjected to normal stresses, meaning it is activated due to crack develop-
ment within the reinforced concrete specimen. Hence the resistance of reinforcement, no
matter if transversal or longitudinal, is largely governed by the bond behaviour, summarised
in detail in the following literature [24, 100, 109, 147]. While the bonding behaviour is
well investigated and the influencing parameters, like the reinforcement diameter, concrete
strength or reinforcement surface amongst others, it mostly influences the crack develop-
ment and spacing. In this context Schramm investigated the influence of none standard
reinforcement shapes towards the shear load-bearing capacity of prestressed reinforced
concrete beams, as well as their consideration towards shear verification [156, 157].

While the resistance of the transverse reinforcement is well documented and covered by
most models like the truss models (section 2.4.1) research showed a dependency on the
cross-section as well as the width of the web towards the stresses within the transverse
reinforcement [103]. This research did result in the definition of a minimal shear reinforce-
ment that is required by modern codes like the ACI 318 [2] or the EC2 [41, 42].

2.2.7. Dowel Action (Vs,dw)

First acknowledged as early as 1908 [122], the dowel action results from the interaction
of concrete with embedded longitudinal reinforcement bars in the context of differential
tangential displacement at the location of a vertically moving crack. Based on first experi-
mental results on beams performed by Krefeld and Thurston [93], Baumann and Rüsch
conducted a further extensive test series focusing on dowel action with regards to various
influencing variables [14]. Figure 2.5 shows the origin of the force attributed to dowel
action.

wcr

vcr

Figure 2.5.: Differential movement of a shear crack

The qualitative effect of the dowel action is viewed critically, with some researchers like
Zink [193] and others [83] advocating for a disregarding of the dowel action in the light
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2.2. Shear Bearing Mechanisms

of shear strength determination of reinforced concrete specimens, while other researchers
attribute it with about 15−25% of the shear-bearing capacity and therefore advocate for an
inclusion [7, 47, 136, 166].

Quantification of the dowel action can be done using equation 2.4, first defined by Baumann
and Rüsch [14] and modified to fit modern concrete parameters like the concrete strength
fck in MPa by Reineck [138]. It provides the critical force Vs,dw,cr, at which a dowel crack
is developing, which follows the longitudinal reinforcement.

Vs,dw,cr = 1.476 · ww,net · dl · f 1/3
ck (2.4)

with:

ww,net = w −
∑

dl

Clearly deductible is the linear influence of the reinforcement diameter dl in mm confirmed
by multiple researchers [14, 138, 177]. The cross-section geometry of the reinforced con-
crete is regarded by its net width ww,net, which is the width w in mm reduced by the width
of the combined longitudinal reinforcement. An alternative formulation for the calculation
of the force, resulting from dowel action can be found in [193], however it is shown, that
they differ only slightly for concrete strength up to 80.0 MPa.

It needs to be mentioned that the inclusion of transverse reinforcement leads to an increase
of Vs,dw,cr, since the exceeding shear force gets transferred into the transverse reinforce-
ment, where the developing horizontal crack crosses it [14]. Chana showed that the forma-
tion of a dowel crack, and resulting loss in dowel force, along the longitudinal reinforce-
ment bars always closely precedes the opening of the critical shear crack and corresponding
failure of a beam due to shear [26]. This is contradicted by a number of experiments, in-
cluding [156], which show dowel action occurring simultaneously or shortly after reaching
the critical shear load, further questioning the applicability of inclusion of the dowel force
in the determination of the critical shear force [193].

2.2.8. Prestressing (Vp)

While the vertical forces, resulting from a none horizontal line of tendons is straight for-
ward to determine, other effects need to be mentioned as well. Huber stated that the shear
load-bearing capacity of an angled tendon is the combination of the vertical component of
prestressing Vp,0, depending on age and quality of prestressing, and the added prestressing,
due to deformation of the crack ∆Vp [78]. Using his expressions the vertical component of
the prestressing in regard to the prestressing force P0 and the added prestressing resulting
from crack opening ∆P can be given for a single tendon to:

Vp = (P0 + ∆P) · sin(αp). (2.5)

The calculation of ∆P can be taken from [78, 152].

A secondary effect of prestressing is the influence it has on the stress distribution within
the cross-section. Zararis and Zararis included the influence of the stresses within the
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longitudinal direction in their generalized theory of shear strength of slender reinforced
concrete beams [192]. However, since axial forces can also result from loading conditions,
this influence can not be attributed solely to prestressing.

2.3. Influences on the Shear Bearing Capacity of
Reinforced and Pre-Stressed Concrete Beams

2.3.1. General

One of the major reasons on there not being a generally accepted approach to precisely
determine the shear bearing capacity of reinforced and pre-stressed concrete beams is the
number of influencing parameters and their interactions with each other. These influenc-
ing parameters can be vaguely grouped into cross-section, longitudinal system and loading
conditions. Each of which can only be viewed separately by specifically designed experi-
ments, usually focusing on a single influence parameter. This makes a classification of the
combinations rather difficult to predict and in generally hard to determine out of indepen-
dent and separately conducted experiments. A better understanding of these parameters
and their interactions is vital to further improve the prediction of the shear bearing capac-
ity in reinforced and prestressed concrete members. Here the advanced numerical analysis
(chapter 3) and the options provided by the Design of Experiments (DoE) [161] need to
be employed at a large scale to further substantiate the experimental databases, that are
covered in chapter 4.

The following subsections summarise the current understanding of the influencing param-
eters on the shear bearing capacity of reinforced and pre-stressed concrete beams. To avoid
doubling up on influencing factors already covered by section 2.2 the influences provided
by changing material properties, as well as reinforcement, pre-stressing and quality of
bonding between concrete and reinforcement are not stated in this section.

2.3.2. Cross-Section

As engineer, one of the important decisions during the design process is the definition of the
cross-section. In general a lot of factors play into the finally used shape of the beams cross-
section, spanning from optical preference, practicability, provided space and ease of use to
economical aspects. Especially for wide spanning beams, usually the latter of these factors
proves to be decisive, often resulting in cross-sections with efficient shapes and possibly
variable depth. However one of the most basic influences that needs to be studied lies in
the size effect. Otherwise conclusions gained by small scale tests can not be transferred to
large scale specimens.
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Size Effect

While scaling is a generally applicable practice in scientific research, often necessary due
to limited conditions but scalable or independent variables, like material properties, the
concrete beams without shear reinforcement subjected to shear failure are one of the ex-
ceptions. Early tests by Leonhardt and Walther [103] and Kani [88] showed a reduction
of the nominal shear strength (τ = V/(wd)) with an increase of the statical height d. Even
so the width w of the specimen is included in the nominal shear strength, it does not impact
in the case of slender beams. An influence can however be proven for large width, where
the beam transitions towards a slab [186].

An early attempt at linking the scaling relationship of nominal shear strength to the effective
height of the beam was related to the Weakest Link Theory by Weibull [184]. However
Bažant an Kazemi [17] did confirm Walraven’s findings, that the Weakest Link Theory
can not be applied to neither flexural shear failure nor tension failure [179].

Similarly the size effect as described in Linear Elastic Fracture Mechanics [15, 16, 20, 132]
is unable to capture the link between nominal shear strength and the statical height. In this
case the reason can be found in the quasi-brittle material behaviour of concrete, compared
to the brittle materials, for which the Linear Elastic Fracture Mechanics was developed.

Further attempts describing the size effect with singled out influences like the aggregate
interlock [32] can be torpedoed by research with neglecting or decreasing influences of
aggregate interlock [186]. Hence mostly empirical approaches are deployed and can be
found in standards like the EC2 [41]. While still present at reinforced concrete beams, the
size effect gets mitigated when transverse reinforcement is present [187]. Therefore the
main focus of all research done in the field of size effect concentrates on beams without
transverse reinforcement.

Shape

Multiple researchers showed that the shape of the cross-section does influence the shear
load-bearing capacity of reinforced concrete beams [103, 104, 156, 167, 170, 188].

Nearly all of the research concerning the influence of the shape focus on T-shaped cross-
sections, with some of it also covering I-shapes, in comparison to a rectangular cross-
section. This is expected, as these are the predominant shapes that are widely deployed.
Comparison between rectangular and T-shaped cross-section concerning the change in
shear-bearing capacity needs to be viewed critically however, since there has to be a differ-
entiation between which dimensions can be compared, and which cannot. Leonhardt and
Walther for example showed in their experiments reported in [104], that the width of the
web does influence the shear-bearing capacity greatly, similarly to how a wider rectangular
cross-section also is attributed with a higher shear-bearing capacity. Hence the usual com-
parison made in literature, linking T-shape to rectangular shape is done via the web width
and total height. Attributed with the increase in load-bearing capacity, which in general is
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not covered by most standards, is the flange due to the change in the compression zone and
resulting load bearing-capacity increase resulting from it (section 2.2.3) [156, 188].

Considerations of this effect are attempted by some researchers focusing on their respective
model, like Tureyen et al. [170] showcasing three approaches to extend models derived
for rectangular cross-sections to T-cross-sections. Similar to Zararis [188], Tureyen et
al. specified a form factor accounting for a direct influence of the flange towards the shear
bearing capacity, which further supports the assumption that the increase is linked to the
compression zone resulting from loading. Görtz [65] showed in numerical investigations,
that the effective width of T-shaped cross-sections should be taken as an increase of the web
width by 30% of the flange height for each side, when applying the standardised formula
for rectangular cross-sections provided in the EC2 [41].

Variable Cross-Section Depth – Haunch

Due to the more complex shape as well as the larger specimen size that is required to
properly account for a variable cross-section along the longitudinal length of a beam, only
limited research is available on its influences. One of the first test series conducted, focus-
ing on its influence was conducted by Rostásy et al. [149]. Their research focused on
the influence of the compression strut angle and therefore had the test specimens increase
their height towards the span mid. While the findings provide some valuable insight into
the influence of an angled compression chord, in it reducing the acting tension stresses
within the web, showing additional load-bearing reserves when being present, they find
limited practical use, since the shape is rarely present outside of short overhangs or roofing
constructions.

Caldentey et al. [25] did conduct tests on cantilevers with variable depth, finding an
increase of load-bearing capacity, partially linked to the type of loading (section 2.3.4),
further confirming the interdependencies of different factors on the total shear-bearing ca-
pacity of reinforced concrete beams. Attributed with this increase in load-bearing capacity
was, likewise to [149], the "inclination of compression chord carrying shear".

2.3.3. Longitudinal System

Rarely considered in the context of design verifications, the statical system can have a rele-
vant influence on the shear-bearing capacity of reinforced and/or prestressed concrete slen-
der beams. Partially determined by economical aspects resulting from geometrical bound-
aries or visual preferences, the statical system influences the stress distribution within the
beam, possibly leading to interaction of different load-bearing systems as widely recog-
nised for steel structures [43].

Structural System

One of the earliest comprehensive investigation on the influence of the statical system was
performed by Leonhardt et al. [106]. Their findings showed a decreased influence of the
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moment-shear-relation for two-span girders when compared to single span girders, noting
the reduction of the main tensile stress due to overlapping of stresses resulting from bending
and shear as one of the influences for it.

Huber et al. [79] noted that an increase ranging between 30 − 50% is encountered when
comparing intermediate supports to end supports, for the same critical control section re-
spective to each support. Moving this control section further away from the intermediate
support yielded more comparable results and fall in line with Herbrand’s argument of
it being located near the point of counterflexure for continuous beams under uniformly
distributed loads [70]. While this approach does acknowledge the influence of bending
moments on the shear bearing capacity, trying to reduce its influence by moving the critical
control section closer to the point of counterflexure, it is merely a work around instead of
a solution to its implicated complexity. In this also lies the foundation of the influence that
is linked to the statical system, where the interaction of the acting forces result in them
influencing each others load-bearing mechanisms.

Further research conducted on shear using other statical systems than a single span girder
were performed in [25, 61, 158].

2.3.4. Loading Conditions

Usually governed by the design code, the type of loading is none negotiable, approximating
the relevant loading during the structures lifetime. The same can be said for the loading
position, even so this can partially be controlled by design, like geometrical restrictions
or choice of coupling location. However these two influences need to be studied and con-
sidered in the context of reinforced and/or prestressed concrete slender beams, since they
control the stress distribution.

Loading Position - Shear-Slenderness

One major influence factor on the shear-bearing capacity of reinforced concrete members
can be found in the load position, also known as shear-slenderness or simply slenderness
in the context of shear. It is generally given as λ = a/d, where a describes the distance
between the support and the applied load and d is the static height of the reinforced concrete
beam. First described by Rüsch et al. [153] it was also used by Kani in his development
of the strength envelop (figure 2.6), where M f ail

∧
= moment at shear failure and Mbend

∧
=

resisting bending moment [86].

The shear-slenderness is equivalent to the bending moment-shear relation M/(V ·d) used by
Leonhardt and Walther [103] to determine the influence of the interaction of the internal
forces on the shear-bearing capacity of reinforced concrete beams.

Seeing, as the beam strength is associated with the shear-span to depth ratio a/d, it can
be determined that there is an influence on the beams shear-bearing resistance, depending
on the point of loading. This highlights, that not only the type of loading needs to be
considered, but also the location of it.
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Figure 2.6.: Shear valley following Kani [87] based on tests taken from Leonhardt and
Walther [103]

Type of Loading

Early research conducted into the influence of different loading types on the shear-bearing
capacity of reinforced concrete beams was performed by Leonhardt and Walter [103].
Based on their tests they concluded, that the shear-bearing capacity of a single span beam
increases by 20 − 40% when comparing distributed loading to single point loading, at-
tributing it mainly to the shear-stress bending moment interaction as well as the increasing
strength of the compression zone (section 2.2.3). Kani included their tests on uniformly
distributed loads in his paper concerning the influences different parameters on the shear-
bearing capacity of reinforced concrete beams [87]. When plotting the Kani strength en-
velop for those tests (figure 2.6), it can be determined, that uniformly distributed loads are
somewhat favourable towards the shear-bearing capabilities of reinforced concrete beams
when compared to point loads.

To include the dependencies of loading conditions and type of loading into design codes,
Brown et al. created a test series, focused on these parameters [23]. Of this test series
three sub-series were presented, comparing asymmetric concentrated loads and concen-
trated loads to uniform loads. The tests showcased a significant difference between uniform
and concentrated loads, as well as backed up the importance of the shear-span to depth ra-
tio a/d, as discussed above, when designing reinforced concrete beams for shear. Strain
measurements showed a clear difference between the different types of loading. While the
strut was clearly visible for the concentrated loads, the strain under uniformly distributed
loads followed the trajectories, and by that a compression arch within the concrete can be
seen.

Next to their research on the influence of variable depth of the reinforced concrete beam
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regarding shear resistance (section 2.3.2), Caldentey et al. also evaluated the influence of
load distribution [25]. They also state that the type of loading has a significant effect on the
shear-bearing capacity of slender reinforced concrete beams without transverse reinforce-
ment. Out of their test series it can be seen, that an increase of the shear-bearing capacity of
25− 30% can be achieved under uniformly distributed loads with respect to a concentrated
load, and even upwards of 100% when a triangular load distribution was applied. This
wide range of measured shear-resistances further adds to the importance loading has on the
shear-bearing capacity of reinforced concrete beams, that is mostly disregarded in today’s
codes and standards.

Considering the type of loading Herbrand did note that for single span girders, the effect
of taking the critical control section of the shear failure load as being located at a dis-
tance of the statical cross-section height does nullify the impact of a uniformly distributed
load compared to single loads [70]. It was also noted, that the critical control section for
continuous beams under uniformly distributed loads can not be defined that easily, further
highlighting the interdependence of influence factors concerning the shear load-bearing
capacity of reinforced concrete beams.

2.4. Shear Bearing Models

The development of the first shear bearing model goes back to the late 19th century when
Ritter published his basic theories of reinforced concrete in Die Bauweise Hennebique
[148]. Back then Ritter formulated some of the fundamentals still applicable to modern
reinforced concrete design. Mörsch followed up in the early 20th century. His extensive
book Der Eisenbetonbau, seine Theorie und Anwendung from 1908 [122] summarized all
theories, verification methods and experiments developed so far for the then new composite
material. The strut-and-tie model, which still forms the basis for shear verification methods
in modern standards like the Eurocode 2 [41] or the SIA [160], was first introduced in it.

The second half of the 20th century brought with it some improvements to the strut-and-tie
model. The introduction of the variable angle of the compression strut by Kupfer [95] was
taken up by Leonhardt and resulted in the modified truss model [101] (section 2.4.1).

Drucker combined the strut-and-tie model with the theory of plasticity in the early 1960th

[44]. The so called stress fields were created which are used in standards like the SIA [160]
and the FIB Model Code [48]. The stress field method will be examined in section 2.4.2 in
more detail.

The compatibility-aided truss models, better known as compression field models (section
2.4.3) resulted from extensive tests on reinforced concrete membrane elements. While the
strut-and-tie model is the result of an equilibrium approach when applying the principle
of a truss-like load-bearing system within reinforced concrete beams, the compatibility-
aided truss adds to this proven model by introducing compatibility conditions and further
expanding the model by taking the tensile strength of concrete into account. The oldest of
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these models is the Modified Compression-Field Theory by Vecchio and Collins [174].
However Hsu also published the so called Softened Truss Model in the late 1980th [76]
and followed it up in cooperation with Pang with an improved iteration of his previously
published model [129].

While the previously stated mechanical approaches are widely acknowledged in its appli-
cability to determine the shear load-bearing capacity of reinforced or prestressed concrete
beams with shear reinforcement, reinforced concrete beams without shear reinforcement
are written on a different page. Since the transverse reinforcement usually takes the brunt
of the shear force, other load-bearing mechanisms can be simplified or even forgone in the
name of resilience and/or safety. Since this can not be translated to reinforced concrete
beams without transverse reinforcement, a whole plethora of different models are instead
being used across the world.

Most prominently featured in the approaches to determine the load-bearing capacity of
reinforced concrete beams without transverse reinforcement are the empirical methods.
The ACI Code from 1995 [3] still featured 43 empirical equations solely for the determining
of the shear load-bearing capacity. More analytically and mechanically sound approaches
include Kani’s Teeth Model [86] (section 2.4.4) and the separately by Reinhardt [144]
and Bazant [18] pioneered fracture mechanic based models (section 2.4.5). A different
approach can ge found in the Critical Shear Crack Model(section 2.4.6), in which Muttoni
took account on the shear-bearing mechanisms, depending on the crack development within
the reinforced concrete.

One of the latest additions to the shear models of reinforced concrete beams are the com-
pression zone models (section 2.4.7), which focus on the shear bearing mechanism of the
uncracked compression zone (Section 2.2.3).

2.4.1. Truss Models

The classical 45◦ truss model first mentioned by Ritter [148] and defined by Mörsch
[122] is the first established shear bearing model. As the model name suggests the load-
bearing capacity is entirely attributed to the transverse reinforcement Vs,t, while being lim-
ited by the crushing of the concrete compression strut. Depending on the angle of the trans-
verse reinforcement α, the vertical component of the trusses tension strut can be calculated
and used as verification in the general stress based manner. Following the limit analysis
theory this marks the first step towards the determining of the actual shear load-bearing
capacity of reinforced concrete beams.

Figure 2.7 showcases some of the possible trusses within transverse reinforced concrete
beams. The depicted trusses follow Mörsch’s first assumption, which states that the tension
and compression belts are parallel. In fixing the angle of the compression struts ϑ to 45◦,
the second assumption is fulfilled. However Kupfer used the principle of stationary action
to show, that the angle ϑ of the compression strut can vary from Mörsch’s assumption,
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Figure 2.7.: Trusses of the classical truss analogy

depending on the beams geometrical as well as reinforcement parameters [95]. By that
Kupfer formulated one of the earliest compression field models (section 2.4.3).

The difference of complexity of calculation between the statically determined truss (figure
2.7 a)) and the highly statically undetermined lattice truss (figure 2.7 b)) can be clearly
stated. Also the major influence factor on the type of truss developing within a reinforced
concrete beam with transverse reinforcement can be determined to be the spacing of the
transverse reinforcement as. To tackle the bottle neck of computing power when dealing
with variations of the lattice truss, Mörsch derived the approach of deconstructing the
developing lattice truss into overlaying statically determined trusses, like the one given
in figure 2.7 a). In this concept lies the foundation of the truss analogy.

Following Kupfer’s finding of the variable angle of the compression strut as well as the
shear tests conducted in Stuttgart ([103, 104, 105, 106, 107]), Leonhardt derived the so
called modified truss analogy depicted in figure 2.8 [101].

As shown in figure 2.8, Leonhardt cast aside the assumption of parallel belts for a more
arch like shape of the compression belt for his modified truss analogy. Various parameters,
including the amount of shear reinforcement and the form of the cross-section, lead to this
arch like shape as well as the variable angle of the compression strut ϑ. Thus resulting in a
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F F

Figure 2.8.: Modified truss for single span beams

theoretical shear load-bearing capacity, which shows a better agreement with experimental
data than the one according to the classical truss analogy.

Some of today’s standards still use the varying angle truss analogy, assuming parallel com-
pression and tension belts, for the calculation of the shear load-bearing mechanisms in
reinforced or prestressed concrete beam with shear reinforcement. Due to its mechani-
cal description of the major load-bearing mechanism and the following simple calculation
scheme it is implemented in the Eurocode 2 [41], which gives the shear load-bearing ca-
pacity of the transverse reinforcement to:

Vs,t =
As,t

as
· z · fy,t (cot(ϑ) + cot(α)) sin(α). (2.6)

2.4.2. Stress Fields

In general stress fields require the cross-section to be split into plane sections, which
are then assigned a specific load-bearing behaviour. For reinforced concrete beams the
cross-section is split into compression/upper and tension/bottom chords as well as the
web, which functions as the stress field. Having this theoretical disassembly of the cross-
section in mind, it becomes clear, that, similar to the truss analogy, not all load-bearing
effects/systems, like f.e. the arch action (section 2.2.2), can be properly taken account of
when applying this method [162]. Within the stress fields there exists a gradation of mod-
els with different degrees of approximation. The rigid-plastic stress fields, the extended
rigid-plastic stress fields and the elastic-plastic stress fields [152].

Rigid-plastic stress fields, also known as the classical stress fields (CSF), were developed
in Denmark and Switzerland in the late 1970th [119, 126, 168]. They are based on the
plasticity theorem formulated by Drucker [44], which states that any loading is smaller or
equal to the critical loading, if a statically correct stress state within the cross-section can
be derived. CSFs were improved upon by taking account of the strain compatibility condi-
tions, which resulted in the extended rigid-plastic stress fields, also known as generalised
stress fields (GSF) [163].

In the model of the rigid-plastic stress fields the beam is split into parallel stress fields in the
areas without external forces and fan-like stress fields in the areas where concentrated ex-
ternal forces are applied (figure 2.9). These different sections are separated by discontinuity
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line of discontinuity

fan-like stress field

parallel stress field

F

Figure 2.9.: Classical stress field

lines, which shows the model abstraction, since these sections are furthermore viewed indi-
vidually. This shows parallels to the model version given by Kupfer [95]. The rigid-plastic
material formulation in this approach allows for the equilibrium conditions to remain in-
tact, even if the stresses parallel to the discontinuity line at the discontinuity line are of
different sizes. The angle of concrete compression following the CSF is given by:

ϑ = arcsin

Ç 
ρl fyl
fcm

å
≤ 45◦ (2.7)

Attempting to improve upon the CSF, the GSFs were developed by Kaufmann and Marti
[89] as well as Sigrist and Hackbarth [163]. They extended upon the purely force equi-
librium conditions of the CSF by adding a strain compatibility component. In contrast
to the models following the compression field approach (section 2.4.3), the compatibility
component in the GSFs is limited to the strain compatibility at a single control cross-section
height. Using this added degree of approximation, the resulting angle of the concrete com-
pression ϑ changes from Eq. 2.7 to Eq. 2.8.

ϑ = arctan
Å
ϵx − ϵ2
ϵy − ϵ2

ã0,5

(2.8)

In limiting the material behaviour of the reinforcement steel and the concrete to be elastic-
plastic, while still neglecting the tensile strength of the concrete, the elastic-plastic stress
fields (EPSF) incorporate a further generalisation of the CSF and GSF.

Ruiz and Muttoni showcased a finite element approach to stress fields on the basis of
EPSF to tackle the generally applicable limitations of stress fields, like the freedom in
choice of the underlying load-bearing mechanisms and not ensured alignment of the rein-
forcement with the stress fields [151].
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2.4.3. Compression Field Models

Compression field models are derived from the classical 45◦ truss model. Baumann [13]
generalised Kupfer’s [95] work, which resulted in a description for the principal compres-
sive stress direction in orthogonally reinforced concrete panels in plane stress (eq. 2.9).

tan2(ϑ)ρl(1 + nρt) + tan(ϑ)ρl
σt

τlt
= cot2(ϑ)ρt(1 + nρl) + cot(ϑ)ρt

σl

τlt
(2.9)

For this case the appendices l and t symbolise the longitudinal and transversal direction
applicable to the reinforcement ratio ρ and the normal as well as shear stresses σ and τ
receptively, with ϑ providing the angle of the compression strut.

Vecchio and Collins [173] developed a non-linear approach by conducting experiments
on orthogonally reinforced concrete panels that were loaded in different stress configura-
tions, expending on the previously stated linear approach by Kupfer and Baumann. The
non-linear definition of the compression field dates back to the compatibility equations by
Mitchell and Collins [118], which were derived by torsion experiments. This allowed
for a more mechanically sound model description of the shear load-bearing behaviour of
reinforced concrete members. A test setup for the reinforced membrane elements subjected
to shear used by Hsu in later tests of the same kind can be gathered from [77].

Due to the test setup a heavy emphasis on uniformly distributed reinforcement in each
axis can be established. This uniformity within the membrane elements allows for the
modelling of the composite material reinforced concrete as a single homogenous material
with changing properties pre and post cracking [174], which was used in the development
of the respective theory.

Modified Compression Field Theory

The Modified Compression Field Theory (MCFT) dates back to the mid 1980th and is based
on shear experiments on concrete membrane elements described in [173]. Using the ex-
perimental data and the assumptions given in [174], Vecchio and Collins deducted a
stress-strain relationship within the reinforced concrete membranes. They state that the
point of failure is reached when the reinforcement is not capable of transmitting the ten-
sion in the concrete across the crack. A revision and summary of the MCFT can be found
in [22], while a detailed derivation of the equations and the theory are provided by [174].

Since the theory was developed for membrane elements, the application to beam-like el-
ements is not that straight forward. A first approach in applying the theory to reinforced
concrete beams was done by Vecchio and Collins and showcases the need to divide the
beam cross-section into membrane sections in which the theory applies [175]. This can be
seen as a parallel to the stress fields, where the beam also needs to be deconstructed into
sections (section 2.4.2). Seeing the increased computational cost they also introduced some
approximations to streamline the calculation procedure, making it more user-friendly. The
best fit approximation provided was to define an effective section located between the top
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and bottom reinforcement and to assume the shear flow as uniformly distributed over this
section. Allowing for this section to be seen as controlling, concerning the shear resistance
of the beam.

Adebar and Collins furthermore showed, that due to the compatibility based approach,
the MCFT is not limited to reinforced concrete beams with shear reinforcement, but can
also be applied to reinforced concrete members without shear reinforcement [5]. Following
this approach the maximum shear stress τc in relation to the aggregate size ag and the
concrete strength fcm is given by,

τc ≤
0, 18

√
fcm

0, 31 + 24w
ag+16

, (2.10)

where the crack width w can be calculated, depending on the crack spacings in x and z
direction (sx, sz), following equation 2.11.

w =
1

sin(ϑc)
sx
+

cos(ϑc)
sz

· ϵ1. (2.11)

The variables are showcased in figure 2.10.

x

z

τ

τ

τ
σx

σz

σz

σx

τ

ϵ1

ϵ2

ϵx
ϵz

ϑc

Figure 2.10.: Variables of the Modified Compression Field Theory

Seeing a further necessity of simplification Bentz et al. [22] proposed that the shear stress
τ can be written as:

τ = τc + τs = β
√

fcm + ρt fytcot(ϑc) (2.12)

with:

β =
0, 4

1 + 1500ϵx
·

1300
1000 + lcr,m

ϑcrack = (29deg + 7000ϵx)
Å

0, 88 +
lcr,m

2500

ã
≤ 75deg

lcr,m =
35s

ag + 16
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While ϵ is the strain as defined in figure 2.10 and fcm and fyt are the concrete compression
strength and steel tension strength respectively, ρt describes the transverse reinforcement
ratio.

The shear contribution of the concrete τc following equation 2.12 also reaches its maximum
capacity in accordance to the MCFT (equation 2.10).

In 1996 "A General Shear Design Method" was proposed by Collins et al. [33]. It
follows the widely accepted additive of shear resistance due to shear reinforcement and
shear resistance due to the concrete, and pleads a case for a rational model in the light of
the 43 empirical equations provided by the 1995 ACI Code [3]. In the face of a standardised
approach the equations of the MCFT [174] were simplified and resulted in the following:

Vn = Vc + Vs + Vp (2.13)

Vc = β
√

fcm · bvdv (2.14)

Vs =
Av fy

s
dvcot(ϑ), (2.15)

where β and ϑ are functions of the longitudinal strain ϵx, the shear stress τ and the crack
spacing sx given in tabular form. The shear stress and strain in longitudinal direction are
given as:

τ =
Vn − Vp

bvdv
(2.16)

ϵx =

M
dv
+ 0, 5 (N + Vcot(ϑ)) − Aps fp0

EsAs + EpAp
(2.17)

In a final step the longitudinal reinforcement (As) as well as the prestressed reinforcement
(Aps) needs to be checked on its capacity using equation 2.18. To provide a characteristic
result equation 2.18 does not including any safety factors or strength reduction factors.

As fy + Aps fps ≥
M
dv
+ 0, 5N +

(
V − 0, 5Vs − Vp

)
cot(ϑ) (2.18)

This approach now signifies a pen-and-paper version of the MCFT and is usable in the
day to day work of structural engineers. It is incorporated in design procedures like the
Canadian Standards for concrete design [34] and applicable to reinforced concrete beams
with and without shear reinforcement.

Softened Truss Models

Improvements of the classical 45◦ angle truss model led to the development of the Softened
Truss Model (STM) by Hsu [76]. Similarly to Vecchio and Collins equilibriums and
compatibility equations [174], as well as a material law for softened concrete were used
to create a theory that is applicable to shear and torsional loading of reinforced concrete
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elements. Since the theory provides eleven equations with fourteen unknowns in the case
of shear calculation, some boundary conditions are required to allow for application of the
STM. Alternatively, some variables need to be determined iteratively. The STM is also
known as Rotating Angle Softened Truss Model (RA-STM), since the theory includes the
assumption of the rotating angle ϑ to coincides with the angle of the shear cracks ϑc.

Since the RA-STM is not capable of correctly predicting the shear resistance of reinforced
concrete elements with low amounts of steel reinforcements in one direction [172], Pang
and Hsu developed a variation of the STM called the Fixed Angle Softened Truss Model
(FA-STM) [129]. By introducing a new constitutive law for concrete in shear, derived
from full-size panel tests, the FA-STM is capable of taking the shear stress transfer across
cracks into account. Differing to the MCFT, the concrete contribution to the shear-bearing
capacity is not attributed solely on the tensile stress of concrete, but to the shear stress of
concrete in case of the FA-STM.

Further Models

Based on the principal models given by the MCFT and the STM some other shear formulas
have been developed. One of the most recent approaches was given by Lee [99]. Seeing
the complexity of the MCFT when applied to reinforced concrete beams he proposed the
following simplified equation:

Vn =
3

 (
ρt fyt + λλsσl

)2 700ρl

κ (av/d − 1)
bwτ (2.19)

with:

λ =

®
0, 75 for lightweight concrete
1, 00 for normalweight concrete

λs =

Ç…
200
d

å1,5

≤ 1, 0

κ =

Å
1 +
ρt fyt

βs fcm

ã0,9

Equation 2.19 in kN is derived to express the shear strength of reinforced concrete beams,
including the longitudinal and transverse reinforcement ration ρl and ρt respectively, the
concrete compression strength fcm and steel tensile strength fyt as well as the strength re-
duction factor for concrete cracked in shear βs (0.6(1˘ fc/250) with fc in MPa). The geome-
try is accounted for by av, being the distance between the support and the load introduction,
d, being the statical height of the beam, and bw, the width of the web.

2.4.4. Tooth Models

Tooth models got their name from the crack pattern of slender reinforced concrete beams at
failure load (figure 2.11). While Kani was the first to define a model based on the state of
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the reinforced concrete beam near failure [86], other researchers like Fenwick and Paulay
[47] or Reineck [137] also created their models following this approach. They represent
an early attempt towards a rational flexural shear failure model.

F

Fs
∆Fs

Fc
∆x

s

Figure 2.11.: Failure model basis for the tooth model

All tooth models have the same mechanical approximation in common, in them abstracting
the concrete tooth as cantilevers, which are anchored in the compression zone of the beam
and are loaded by the respective load ∆Fs,l due to the longitudinal reinforcement (figure
2.11). Kani stated that following this understanding of the internal mechanism of a rein-
forced concrete beam, the Euler–Bernoulli hypotheses that plane sections remain plane is
inaccurate and leads to an inconsistent shear strength theory [86]. The concrete teeth in his
model was loaded only by ∆Fs,l, which leads to to a failure load of the concrete tooth per
unit length at:

∆Fs,l

∆x
=

fct · ∆x
6s

· be f f (2.20)

When this condition is reached, it is assumed that the concrete teeth are being eliminated
from the load bearing mechanisms, leading to an arch with tension belt as the remaining
shear load bearing mechanism (section 2.2.2).

A series of tests performed by Fenwick and Paulay with manually arranged teeth within
the test beams led to the first improvements of the teeth model [47]. The tests showed
that aggregate interlock (section 2.2.5) should not be ignored when considering the tooth
model by Kani. Taylor reached similar conclusions and extended the tooth model to
further include dowel action [165]. Another approach, following Kani’s model, is given by
MacGregor and Walters, who also included aggregate interlock as well as dowel action
[113]. In their example the shear-bearing capacity of these two mechanisms added up to
30− 35 percent of the total load-bearing capacity, with aggregate interlock being the major
contributor.

Reineck developed a stand-alone tooth model, in which the teeth are loaded due to aggre-
gate interlock (figure 2.12 a)), bending of the teeth (figure 2.12 b)), dowel action (figure
2.12 c)) and global bending (figure 2.12 d)). The concrete tooth is defined by evaluation of
test data to have a cracking angle ϑcrack of 60◦ and a tooth length ∆x of 0, 7 · (d − x), while
the compression belt is assumed to be horizontal.
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Figure 2.12.: Loading of the concrete tooth according to Reineck [137]: a) aggregate in-
terlock; b) bending of the tooth; c) dowel action; d) global bending

Following Reineck’s model, the crack fully develops after failure of the load-bearing
mechanisms aggregate interlock and dowel action, which undergo an increase in loading
after rotation of the concrete tooth due to bending of it. After failure of the concrete teeth,
direct actions like the compressive arch (section 2.2.2) are made responsible for further
increase of the shear-bearing capacity.

The size effect (section 2.3.2) is described by the crack width according to [137], hence
Reineck attributes aggregate interlock to be a larger part in the shear-bearing of a rein-
forced concrete beam without transverse reinforcement than the dowel action. Reineck’s
model leads to a shear-bearing capacity of:

Vu =
0, 4 · be f f · d · fct + Vc,dwÄ

1 + 0, 16 · fct
fck
· λ ·

(
a
d − 1

)ä . (2.21)

Seeing as this formulation excludes transverse reinforcement, the tensile strength fct as well
as the compression strength fck of concrete is accounted for, next to the geometrical infor-
mation like the slenderness λ, statical height d, distance of the loading from the support a
and the effective width of the concrete beam be f f .

Altering Reineck’s approach to determine the forces within the concrete teeth by defining
stress fields within each concrete tooth, Marti and Beck derived a hybrid model consisting
of a tooth model extended by stress fields [116].

One of the latest entries, which can be sorted into the tooth models, Yang developed a
model, focused in the shear force displacement relationship [186]. Yang’s model allows for
the calculation of the shear transfer mechanisms from the compression zone Vcc, aggregate
interlock Vai and dowel action Vdw with respect to the vertical crack opening at the tensile
reinforcement. The mentioned shear transfer mechanisms need to be calculated iteratively
until their sum converges with the applied shear force. While Vdw is assumed to be in line
with the maximum dowel capacity given by Baumann and Rüsch [14] and Vcc is equal to
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the sum of the average shear stresses over the compression zone depth, Vai is calculated by:

Vai = f 0,56
c scrbe f f

0, 03
w − 0, 01

(
−978∆2 + 85∆ − 0, 27

)
, (2.22)

where ∆ is the relative displacement of the crack faces at the level of tensile reinforcement
in the vertical direction, scr is the height of the crack and w is the crack opening at the level
of the tensile reinforcement in the longitudinal direction. Equation 2.22 is a simplified
equation based on Walraven’s model [180].

2.4.5. Fraction Mechanic Models

From the perspective of fracture mechanic, the quasi-brittle failure of reinforced concrete
lies between the plastic limit analysis, that holds the correct results for small structures,
and linear elastic fracture mechanics, which applies to very large structures. While these
two extrema meet asymptoticly, the actual specimen behaviour follows a more gradual path
(figure 2.13).
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Figure 2.13.: Fracture modes used in shear models based on fracture mechanics

It is important to note, that the brittle shear failure of reinforced concrete consists of a
number of individual failure modes, which include diagonal shear fracture of the concrete
in the web, shear-compression fracture in the uncracked compression zone, interface bond
fracture at the reinforcement bars and splitting fracture of the concrete cover (figure 2.14).
As the fracturing behaviour of concrete in tension is rather complex, analytical equations
for the shear capacity based purely on fracture mechanics are seldom, but mostly used in
combination with regression analysis or finite element analysis. Basis for this is the sug-
gested serial fracture processes triggering the shear failure of reinforced concrete beams,
as suggested by some researchers.
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a)

b)

c)
d)

Figure 2.14.: Fracture modes used in shear models based on fracture mechanics: a) shear-
compression fracture; b) diagonal shear fracture; c) interface bond fracture;
d) splitting fracture

Since the shear failure of reinforced concrete beams represents a complex brittle fracture
process, some models based on fracture mechanics are developed in an attempt to derive a
physically sound analytical model. One of the earliest models was developed by Bazant
in the mid 1980th to describe the size effect observed in reinforced concrete beams with-
out transverse reinforcements [15] (section 2.3.2). Bazant and Kim derived equation 2.23,
which encapsulates a smooth transition between a plastic strength criterion and linear elas-
tic fracture mechanics (figure 2.13). Equation 2.23 can be considered a semi empirical –
semi fracture mechanics model [18], where ρ is the geometric reinforcement ratio and dag is
the maximum aggregate size, while the statical height d as well as the effective beam width
be f f and the concrete compression strength fc are equivalent to the previously introduced
models.

Vc =
8 3
√
ρ»

1 + d
25dag

Ñ
0, 083

√
fc + 20.7

√
ρ

Å
M
Vd

ã5
é

be f f d (2.23)

The size effect law derived in [15], taking into account a more sophisticated approach,
based on the assumption of shear-bearing capacity being controlled by propagation of co-
hesive fracture or softening damage was confirmed by Bazant and Yu [20]. This led to the
development of an improved fracturing truss model due to weighted least-square regression
of a database, which is given by [21], where µ represents a safety-factor:

Vc = µρ
3/8
Å

1 +
d
a

ã Ã
f ′c

1 + d
κ f
′−2/3
c

, (2.24)

with:

κ = 3, 8
»

dag if dag is known, κ = 3, 33 if not.

So and Karihaloo extended a previously developed fracture mechanic model [84], created
with focus on the diagonal shear crack, to include the bond-slip relationship as well as
dowel action and aggregate interlock [164].
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A more recent semi empirical - fracture mechanics model was proposed by Xu et al. [185].
The model attempts to stray away from a formulation of the splitting tension fracture prop-
erty of concrete to describe the shear failure of the reinforced concrete beam without trans-
verse reinforcement. Instead it uses the sudden release of longitudinal reinforcement from
the surrounding concrete, described by the shear fracture property along the interface be-
tween the steel bar and the concrete as the controlling shear mechanism.

Generally, the described methods require the assumptions of a simplified crack path as
well as of the critical inclined crack to be the dominating shear failure mechanism. This
also means, that shear-bearing mechanisms, like aggregate interlock and the shear-bearing
capacity of the uncracked compression zone are usually disregarded in the fracture me-
chanics approach, resulting in a narrow range if applicability as can be seen in experiments
of slender beams with high reinforcement ratio [186].

2.4.6. Critical Shear Crack Model

The critical shear crack theory (CSCT) was developed for slabs as well as beams without
transverse reinforcements. It is based on the limit state analysis and was integrated into the
Swiss standard, and currently represents the state of the art model for reinforced concrete
members without transverse reinforcements [160]. It was developed by Muttoni at the
beginning of the 1990th [119]. While the stress fields by Drucker (section 2.4.2), based
on the limit analysis, provide good results for reinforced concrete members with transverse
reinforcements, they lead to unsafe design in members without transverse reinforcements.

At its core, the CSCT describes the development of the critical shear crack, including their
responding shear-bearing mechanisms. Namely the aggregate interlock (section 2.2.5),
dowel action (section 2.2.7) and direct actions (section 2.2.2) are included in the CSCT.
According to it the critical shear crack propagates between the flexural cracks leading to
a reduction of the aforementioned shear-bearing mechanisms when the concrete tensile
strength within the reinforced concrete beam is reached [120].

Muttoni and Ruiz state, that the the arching action may develop within the beam even after
the critical shear crack develops, allowing for further increase of the critical failure load
[120]. Figure 2.15 shows the combination of the elbow-shaped strut [121] and the direct
strut due to aggregate interlock in the critical shear crack. This showcases the respond of
reinforced concrete member after development of the critical shear crack.

Following the CSCT the shear-bearing capacity of reinforced concrete members without
transverse reinforcement is given by [120] to be:

VRd =
0, 3/γc

1 + 50
16+ag

·
fyk

γs·Es
· d · mEd

mRd

·
Ä

bw · d ·
√

fck

ä
. (2.25)

The relation mEd
mRd

here by is the bending moment to flexural strength, bw the width of the
web, d the statical height, ag the aggregate size, fck and fyk the characteristic concrete
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Tension

Compression

Figure 2.15.: Load-carrying mechanism after development of the critical shear crack (re-
produced from [120])

compression strength and characteristic steel tensile strength respectively, with γs being a
partial safety factor for steel and Es being the Young’s modulus of steel.

A simplified version of equation 2.25 is the given by the Swiss Code for structural concrete
[160] for the verification of reinforced concrete members without transverse reinforce-
ments.

2.4.7. Compression Zone Models

Some researchers approached the problem of defining the shear resistance depending on
the predominant mode of failure. Failure controlled by tension or failure controlled by
compression within the compression zone of intact concrete [29]. This approach gained
popularity at the start of the 21st century and sprawled a number of different models.

Zararis and Papadakis proposed a model focusing on the spilling of concrete in the
compression zone [190]. It was extended in the following years to encompass rectangular
[189] as well at T-shaped cross-sections [188] and generalised by adding axial forces [192].
Even the influence of the type of loading is established by a modified model for uniformly
distributed loads [191]. Its development focuses around the shear load bearing capacity of
reinforced concrete slender beams without transverse reinforcement. To allow the appli-
cation in beams with transverse reinforcements, it uses the well established combining of
separate load bearing capacities to account for the transverse reinforcement.

Based on the previous work by Zink [193], Görtz developed an approach fitted to address
the gradual change from reinforced concrete beams without transverse reinforcement to
reinforced concrete beams with transverse reinforcement [65]. By accounting for a shear-
bearing capacity of the compression zone Vcc, which is added to the shear-bearing capacity
of the transverse reinforcement Vs,t. This model was later on expanded upon by Hegger and
Görtz for the application to beams with normal concrete and high performance concrete
[66] as well as to encompass deep beams (a/d < 3) [67].

Choi et al.’s goal was to derive a formula that is not restricted to slender beams (a/d > 2, 5),
but can also be applied to deep beams (a/d ≤ 2, 5) [29]. In this approach the shear strength
of concrete Vc is the combination of the shear contributions of tensile cracking Vct and
compression crushing Vcc. The simplified method published in [28] states that in case of
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slender beams Vcc can be disregarded since the tensile crack penetrates the compression
zone, leaving no room for concrete crushing to occur. Concerning the presence of trans-
verse reinforcements Choi et al., like Zararis, comply with the approach of added shear
strength of the reinforcement Vs given by standards like the ACI [2]. To ensure conserva-
tive results the contribution by the transverse reinforcement is restricted to the tension zone
of the cross-section (height of the crack) [27].

One of the latest approaches was introduced by Cladera et al. [30]. The multiaction
mechanical model for the shear design and assessment of reinforced and prestressed con-
crete beams was developed. The simplified model named the Compression Chord Capac-
ity Model (CCCM) focuses on the concrete contribution, which is separated into shear re-
sisted by the uncracked compression chord Vcc, the shear transferred across the web cracks,
mostly by aggregate interlock Vai and the dowel action Vdw. The shear resistance by trans-
verse reinforcement Vs,t follows closely the formula given by the EC2 [41]. The model
provided by Cladera et al. incorporates dependencies on the size effect (section 2.3.2),
normal forces, beam slenderness and effective shear width (section 2.3.4) and is applicable
to rectangular, T- and I-cross-sections. The failure criterion of the model is provided by
Kupfer’s biaxial failure envelop [96] and is assumed to occur shortly after the first branch
of the critical crack reaches the neutral axis. Figure 2.16 showcases the contributions ac-
counted for in the CCCM.
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Figure 2.16.: Shear contributions of the CCCM for a simple supported beam (reproduced
from [30])

In recent years, the assessment of existing prestressed concrete bridges grew more impor-
tant. In light of this development Huber created the Flexural-Shear Crack Model (FSCM)
[78]. The FSCM is named after the flexural-shear failure which it aims to predict. The
model splits the total shear load bearing capacity into the components concrete Vc, trans-
verse reinforcement Vs, vertical component of prestressing Vp,0 and added prestressing due
to deformation ∆Vp. Since the load bearing capacities resulting from transverse reinforce-
ment and prestressing are rather straight forward to determine and are independent on the
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mode of failure the major concept is given by:

Vc =
2
3
· τc,max · bV,e f f · c · βcc, (2.26)

where τc,max is the maximal shear stress within the concrete, bV,e f f gives the width of the
shear stress bearing cross-section, c is the depth of the compression zone and βcc is a factor
dependent on the type of loading.

An alternative approach describing the shear-bearing capacity of existing prestressed con-
crete bridges with varying depth of the tendons is given by Gleich. On the basis of the
dated model theory of compression arches in the webs of reinforced concrete beams [102],
previously validated by the Compression Arch Model (CAM) [91], the Extended Compres-
sion Arch Model (ECAM) was developed [61, 63]. By determining the shape of the com-
pression arch, the ECAM allows for an added shear-bearing capacity by the compressed
concrete respective to the direction and size of the principle stress (section 2.2.3). The
ECAM differs from the CAM by its calculation of the arch shape. While the CAM as-
sumes the Euler–Bernoulli hypotheses that plane sections remain plane and can only be
applied to prestressed concrete beams prior development of the shear crack. The ECAM
tackles this shortcoming by allowing for stress redistribution within the prestressed con-
crete beam and by that can be used to determine the critical loading post development of
the shear crack.

2.5. Conclusion

Opposing the clearly and undisputed load-bearing capacity of bending, the load bearing
capacity concerning shear in reinforced and/or prestressed concrete beams still is not solved
satisfactory. The reason for this lies in the complex shear bearing mechanisms, which can
not only interact, but sometimes even induce each other. An example of this interaction
can be seen in the dowel action (section 2.2.7), which can be increased, and therefore
influenced by the presence of transverse reinforcement. Furthermore the partially known
influences, like the size effect (section 2.3.2) or the position and type of loading (section
2.3.4) do complicate the formulation of a generally applicable shear-bearing capacity of
reinforced and/or prestressed concrete beams. Therefore a considerable amount of vastly
different shear models were developed. Ranging from the simplistic truss models for beams
with transverse reinforcement, mostly neglecting other shear-bearing mechanisms other
than the transverse reinforcement, over fracture mechanic models, applicable to beams
without transverse reinforcement, to compression zone models, where attempts are made
to combine most of the shear-bearing mechanisms. It has to be pointed out that, even with
the compression zone models showcasing an analytical approach to determining the shear
strength of reinforced concrete beams they are not tested for a wide variety or parameters
as mostly viewed by the shear-bearing influences. An example of this is given by Choi
et al. stating, that the model does not consider web crushing failure in case of thin web
cross-section types like I- or T-shaped beams [27].
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In summary, even so the shear-bearing mechanisms are mostly recognised, the importance
of some of them are still disputed and therefore are not accounted for consistently in the
shear models, sometimes falling victim to conservative approaches and other times being
viewed individually, without considering possible interactions between them. Hence no
uniformly agreed description of shear in reinforced and/or prestressed concrete slender
beams exists at this point.
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3.1. Overview

The numerical simulation and evaluation of experiments has come a long way. While in the
last century it was the norm to validate theoretical approaches by physical experiments, the
numerical modelling has risen to be a useful addition to this practice. Reducing the amount
of necessary tests by supplementing them with numerical simulations allows for econom-
ical research when dealing with a wide variety of varying parameters. Particularly where
the test setup is especially difficult to realize, or where geometrical restrictions concerning
specimen size apply, it is a rational approach to extend the tests by numerical simulations
validated against the same test setup.

Since computer simulations always yield the same outcome by constant input, it is even
more important to understand the variance within the modelling as well as to calibrate the
numerical model with the use of physical experiments [155]. In order to define the re-
quired physical and numerical tests the Design of Experiments (DoE) is a proven approach,
yielding reliable results [161].

The following chapter aims to present different modelling approaches (section 3.2), evalu-
ate them using documented tests (section 3.3) and define a best-use approach to numerical
tests later used for parameter studies and sensitivity analysis (section 3.4).

3.2. Model Development

3.2.1. General Approach

The selected finite element software is ABAQUS [36], which has been proven to provide
reliable results for reinforced and prestressed concrete beams subjected to shear [61, 68,
71].

3.2.2. General Approach

In general there are explicit and implicit methods used in numerical analysis. The major
difference of these approaches can be summarised in their handling of calculations of dif-
ferent time steps. While explicit methods use an extrapolation of the previous/current time
step to predict a later time step, implicit methods solve an equation, which uses variables
of the previous/current time step as well as the later time step, resulting in a more complex
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and time consuming calculation. These two approaches lead to different pros and cons,
even though they should yield similar results when applied correctly.

Using explicit methods reduces the calculation time, since the equation to be solved does
not need to be iterated to find the equilibrium, however using extrapolation of a previous
time step to predict a later time step boundary conditions should be implemented to correct
the extrapolation, and account for a change of behaviour.

Implicit methods do not need this kind of checking to ensure the calculation does predict the
correct behaviour. However by needing to solve an equation relying on the previous/current
time step as well as the later time step, a higher computing cost is required. Since implicit
methods provide solutions based on the calculation of an equilibrium and by that, provid-
ing easy to evaluate results, they are usually chosen when modelling static or quasi-static
loadings, while explicit methods are usually chosen for time step related problems like im-
pact or dynamic simulations. However the introduction of a damage model (section 3.2.3)
excludes the possibility of using implicit calculation, since, as soon as stiffness changes,
depending on strains are introduced, the system can only be solved iteratively. Hence the
numerical calculations featured in this work will use the explicit solvers. This choice has a
number of implications for the numeric model, like the material models that are compatible
with the solver.

3.2.3. Concrete Material Models

There exist a plethora of different material models for usage when performing numeri-
cal analysis on concrete elements. These models are developed to account for the highly
non-linear behaviour of concrete, not only depending on the currently applied strain of the
elements, but also accounting for the stress history of the elements and the resulting stiff-
ness changes. Seeing this highly non-linear material behaviour, there is no single material
model, that is widely accepted as the ’correct one’ to model concrete. Generally speak-
ing, any material model relies on a variety of parameters, which are mostly tuned using
standardised material testing. Differences between the models usually derive from these
parameters leading to varying influences on the resulting calculations, making it vital to
understand and define each of the parameters of the material model.

The material models for concrete included in ABAQUS are the smeared crack concrete
model (SCCM), the concrete damaged plasticity model (CDPM) and the brittle cracking
model (BCM) (sections 4.5.1 - 4.5.3 in [36]). Since only the BCM and the CDPM are
usable in combination with the explicit solver in ABAQUS, the SCCM is not covered in
high detail.

SCCM is based on smeared crack models, that were developed to be used on brittle ma-
terials and go back to Rashid [135]. Using stress-strain relations, the initial isotropic
stress-strain law is changed to an orthotropic law upon crack formation. Differing from
discrete crack models, which track a crack within the material model using separation be-
tween element edges, leading to a huge cost of computing power needed for constant mesh
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adaptation close to the crack, smeared crack models calculate stresses at the integration
points of the numeric element, initiating a crack when a specified criterion is reached in-
dependently, meaning it does not track individual crack development [35, 150]. One of the
most mentioned drawbacks of the smeared crack model is an apparent mesh sensitivity with
respect to the shape/orientation of the finite elements and its size [131]. Crack development
within the SCCM is numerically accounted for by a reduction of the material strength and
stiffness, which influences calculation at the integration points of the finite element.

The CDPM, based on the work by Lubliner et al. [111] and later modifications by Lee
and Fenves [98], is a constitutive model combining the plasticity theory with the damage
model (figure 3.1). It combines the different modes of failure resulting from compression
and tension in a general failure criteria, allowing analysis of cyclic and/or dynamic load-
ing. To account for compressive as well as tensile failure the CDPM requires the complete
description of the stress strain behaviour of the concrete, allowing for a more precise defini-
tion of the material when compared to the SCCM and BCM. Even so the CDPM is based on
an empirical formulation, it is widely used in numerical calculations of reinforced concrete
specimens, as can be gathered from publications [55, 57, 61, 71, 159].

σ σ σ

ϵϵ ϵ

a) b) c)

Figure 3.1.: Comparison of material behaviour following - a) damage theory b) plasticity
theory c) combination of damage theory and plasticity theory

The focus on the brittle behaviour of a material is inherent of the BCM that is available
in ABAQUS. By using smeared crack assumptions, the main points given for the SCCM
can be translated to the BCM. A fixed orthogonal cracks model [150] is used to ensure that
the crack face normal vectors are orthogonal within the finite element [36]. The BCM is
defined by an elastic and a cracking strain rate in combination with cracking conditions and
a cracking evolution law, which can namely be summarised as a pure elastic stress-strain
relationship and a stress-crack-width relationship. In research, the BCM is often applied to
other brittle materials like glass [92] or plexiglas [90]. The BCM can be interpreted as the
SCCM, which is usable with explicit methods.

Analysing the pros and cons of the material models, the CDPM is chosen for the numer-
ical analysis using ABAQUS in the context of this work. The major advantages of the
CDPM over the other two models is mainly based around the more precise definition of
the stress-strain relationship. Where the BCM and SCCM mostly account for linear elas-
tic behaviour of concrete in compression and focus solely on the cracking behaviour, the
CDPM presents a more complete material model for concrete. It also has the advantage to
be usable in implicit as well as explicit calculations using ABAQUS (section 3.2.2). The
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number of recently published research using CDPM to assess reinforced and prestressed
concrete specimens under shear ([55, 57, 61, 71, 159]) further solidifies the usage of this
material model for the here examined problem.

Concrete Damaged Plasticity

As stated above, the CDPM combines principles of the plasticity theory and the damage
theory. The reduction of the stiffness resulting from increased loading (figure 3.1 c)) results
from a progressive reduction of the cross-section due to damage propagation. In the CDPM
the loading and unloading is influenced by these irreversible changes.

The behaviour of the CDPM is defined by the yield function, the yield criterion and the
softening or stiffening law of the material. In this it follows material models based on the
plasticity theory, which describe the total strain as the sum of the reversible elastic strain
and the irreversible plastic strain. Contrary to the damage theory, the plasticity theory ac-
counts for loading history and non-linear material behaviour. However the damage theory
incorporates the material damage (D > 0), while the plasticity theory assumes an undam-
aged cross-section (D = 0). The CDPM was developed to extend the plasticity theory to
include the influence of a damaged cross-section, so the following definitions of the yield
function as well as the yield criterion are not restricted to the CDPM but also apply to ma-
terial models based solely on the plasticity theory. For a detailed definition [114] can be
used.

The yield function defines the boundary between elastic and plastic material behaviour. It
can be interpreted as a surface (equation 3.1) in the Haigh-Westergaard stress space (princi-
pal stresses σ1, σ2 and σ3) and limited by the yield-point k f , which represents every plastic
material state (F = 0) encompassing every combination of principal stresses resulting in
a purely elastic material behaviour (F < 0). Combinations of principal stresses resulting
in F > 0 can not be achieved by the material. In the CDPM the yield-surface is defined
by a modified Drucker-Prager function, allowing for different rates of stiffness degradation
depending on compression and tension (figure 3.2), with Kc being the ratio of the second
stress invariant on the tensile meridian.

F(σ1, σ2, σ3, k f ) = 0 (3.1)

The evolution of the materials plastic strain is defined by the yield criterion. It describes
softening or stiffening of the material after the yield-point is exceeded. Most materials will
soften after the yield-point is reached, resulting in the general stress-strain diagram shown
in figure 3.3.

Softening or stiffening laws describe the change of the yield criterion due to yielding. It is
distinguished between isotropic softening or stiffening and kinematic softening or stiffen-
ing. While the isotropic change of the yield criterion results from a change of the yield-
point due to reoccurring strain, the kinematic change describes a translation of the origin of
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Figure 3.2.: Yield surfaces in the deviatoric plane, corresponding to different values of Kc,
reproduced from [36] and [61]
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Figure 3.3.: General stress strain diagram of concrete in compression
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Figure 3.4.: Material stiffening - a) isotropic stiffening; b) kinematic stiffening

the stress space, while the yield-point stays relative to it (figure 3.4). This results in a con-
stant but translating yield-surface, while the isotropic softening or stiffening law decreases
or increases the yield-surface respectively [114].

39



3. Numerical Calculation

The CDPM uses a Drucker-Prager potential function for the non associated yield criterion
to describe the strain behaviour of the material after exceeding the yield surface [98].

Yield function

The main key in defining the CDPM, lies in the choice of the yield-function, that represents
the real concrete. Figure 3.5 shows the yield surface as provided by [97], similar to the one
used in ABAQUS, which is based on the model by Lee and Fenves [98]. It is conceptu-
alised for in-homogeneous materials, as shown by the yield-functions that do not centre on
the zero stress origin.

σ 1
=
σ 2

σ1/βp

σ2/βp−1.0

−1.0

−0.8

−0.6

−0.4

−0.2
−0.8−0.6−0.4−0.2

Figure 3.5.: Yield surface in plane stress taken from [97]

One of the most well known yield-functions for concrete under compression is given by the
Eurocode 2 (equation 3.14 [41]) and the FIB Model Code 2010 (equation 5.1-26 [48]) used
to determine the deformation of a concrete specimen. The equation 3.2 used in both stan-
dards uses the mean value of the concrete compressive strength fcm. When using test data
with known material properties, fcm is replaced by σc,max, the experimentally determined
compressive strength of the concrete.

σc =
kη − η2

1 + (k − 2) η
· fcm (3.2)

with

η =
ϵc
ϵc1

k = 1.05 · Ecm ·
|ϵc1|

fcm
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The factor of 1.05 for the variable k is only included in the EC2, but not in the FIB Model
Code 2010.

Concerning concrete in tension, the FIB Model Code 2010 [48] suggests a bilinear stress-
strain relationship for uncracked concrete sections (equations 3.3 and 3.4) and a bilinear
stress-crack opening relation for cracked concrete sections (equations 3.5 and 3.6). For
equations 3.5 and 3.6 w represents the opening fo the crack in mm, GF is the fracture
energy in N/mm, Ecm is the Young’s modulus in N/mm and fctm is the tensile strength of
concrete in MPa and will be calculated in accordance with [48] to be fctm = 0.3016 f 2/3

ck for
cases, where the concrete tensile strength was not determined via testing.
The EC2 does not provide any concept for the inclusion of the tensile behaviour of concrete,
due to its conservative approach in design.

for σct ≤ 0.9 · fctm

σct = Ecm · ϵct (3.3)

for 0.9 · fctm < σct ≤ fctm

σct = fctm ·

Å
1 − 0.1 ·

0.00015 − ϵct

0.00015 − 0.9 · fctm/Ecm

ã
(3.4)

for w ≤ w1

σct = fctm ·

Å
1.0 − 0.8 ·

w
w1

ã
(3.5)

for w1 < w ≤ wc

σct = fctm ·

Å
0.25 − 0.05 ·

w
w1

ã
(3.6)

with
w1 = GF/ fctm in mm when σct = 0.2 · fctm

wc = 5 ·GF/ fctm in mm when σct = 0

However there also exist other definitions of the yield-function, like the one given by Mark
[115], which include considerations for the numerical application, by making the loss of
compression strength of concrete, due to compression failure, dependent on the volume VE

and the number of integration points nIP of the numeric element used, or the slightly altered
approach by Alfarah et al. [8].

Following these methods the stress-strain relationship of concrete can be divided into five
regions (figure 3.6). For the material under compression the behaviour is given by a purely
elastic compression stress-strain region (equation 3.7), the plastic compression stress-strain
increasing region (equation 3.8) and the plastic compression stress-strain decreasing region
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Figure 3.6.: Stress-strain diagram of concrete defined by Mark [115]

(equation 3.10).

for (C1) σc ≤ 0.4 · fcm

σc = Ecm · ϵc (3.7)

for (C2) 0.4 · fcm < σc ≤ fcm

σc =
Eci

ϵc
fcm
−
Ä
ϵc
ϵc1

ä2

1 +
Ä

Eci ·
ϵc1
fcm
− 2
ä
ϵc
ϵc1

· fcm (3.8)

with

Eci =
2

3 · Ecm
·

Å
fcm

ϵc1

ã2

−
4 · fcm

3 · ϵσc,max

+
5
3
· Ecm (3.9)

for (C3) ϵc > ϵc1

σc =

Å
2 + γc · fcm · ϵc1

2 · fcm
− γcϵc +

γc · ϵ
2
c

2 · ϵc1

ã−1

(3.10)

with

γc =
0.5 · π2 · fcm · ϵc1î

gcl −
fcm
2

Ä
ϵc1 · (1 − bc) +

bc· fcm
Ecm

äó2 > 0 (3.11)

gcl =
Gcl

lc
(3.12)

lc =

Å
VE

nIP

ã1/3

(3.13)

lc ≤
Gch

fcm

Ä
ϵc1 · (1 − bc) + bc ·

fcm
Ecm

ä (3.14)

In these equations Gch is the compression equivalent to the fracture energy of concrete GF .
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While [115] assumes Gch = 15 N/mm in accordance with and determined from [178]. The
material flow potential will be calculated following equations 3.15 in accordance with [48]
and 3.16 for the here pursued approach.

GF = 0.073 f 0.18
cm (3.15)

Gch =

Å
fcm

ftm

ã2

GF (3.16)

The compression damage parameter bc =
ϵ pl

ϵin
is assumed to be 0.7 and the equation 3.14

accounts for the "Snap-Back" effect to not be relevant [115, 133].

The material behaviour of concrete under tension is described by two regions and is based
on the Fictitious Crack Model by Hillerborg [72]. The elastic tension stress-strain region
(equation 3.17) and the plastic tension stress-strain decreasing region (equation 3.18).

for (T1) σct ≤ fctm

σct = Ecm · ϵct (3.17)

for (T2) ϵct > fctm/Ecm

σt =

ñÇ
1 +
Å

c1 ·
w
wc

ã3
å
· e−c2

w
wc −

w
wc
·
(
1 + c3

1

)
· e−c2

ô
· fctm (3.18)

with
c1 = 3; c2 = 6, 93 [75]

Differing from the definition of wc used by the FIB Model Code 2010, here the approach
following Mark assumes a constant critical crack width for normal concrete to be 180 µm.
The numerical verification of experimental results of shear experiments on reinforced con-
crete specimens of this approach can be found in [8, 61, 115].

Damage Parameters

Damage within the material is a vital indicator towards the stress distribution. The CDPM
accounts for damages due to compression as well as tension via irreversible stiffness reduc-
tion of the material, where the strains exceed the defined limitations. Müller states that
due to the nature of shear tests being performed under static loading, an inclusion of the
isotropic damage accountability of the CDPM should not yield more accurate results [123].
Since the chosen approach of the developed method is based on stiffness relationships it
is however important to account for stiffness changes to allow for a solid evaluation. A
comparison calculation however will be performed and included in section 3.3.

The damage reduction factor d has a value between 0 and 1, relating to the percentage
reduction of stiffness. So the material, while being undamaged has a damage reduction
factor of 0, which increases, in theory, up to 1, where the materials stiffness is negligible. A
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lot of damage parameter equations can be found in the literature like [8, 55, 82, 115]. Their
approach usually is based on the same concept, a relation between strains as highlighted in
figure 3.7.

ϵ

σ

ϵc

ϵ inc σc · E−1
cm

σc
Ecm

Eci

Eci = Ecm · (1 − dc)

Figure 3.7.: Stress-strain relation used for determining the damage parameter of concrete

The major difference between the previously listed approaches lies within its mesh sensi-
tivity. Here especially Alfarah et. al. [8] developed a definition of the damage parameters
dc and dt for compression crushing and tension cracking damage respectively that is de-
pendent on the size of the numeric element. This is important, since the damage parameter
leads to an element consistent weakening of the material. A mesh-insensitivity verification
can be found in the stated reference.

The equations 3.19 and 3.20 state the furthermore used definitions of dc and dt respectively.
A comparison of the equations shows, that the approach is unified and independent of the
strain direction.

dc = 1 −
1

2 + ac

î
2(1 + ac) · e−bcϵ

in
c − ace−2bcϵ

in
c
ó

(3.19)

dt = 1 −
1

2 + at

î
2(1 + at) · e−btϵ

in
ct − ate−2btϵ

in
ct

ó
(3.20)

The strains ϵ inc and ϵ inct represent the inelastic strains in compression and tension respectively
and can be calculated by subtracting the elastic strain from the total strain ϵ inc/ct = ϵc/ct −(
σc/ct/Ecm

)
. While the parameters ac and at are only depending on material parameters of

compressive strength and tensile strength, the parameters bc and bt are mesh size dependent
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with the inclusion of the characteristic length of the finite element lch.

ac = 2
fcm

fc0
− 1 + 2

√Å
fcm

fc0

ã2

−

Å
fcm

fc0

ã
(3.21)

at = 2
fctm

ft0
− 1 + 2

√Å
fctm

ft0

ã2

−

Å
fctm

ft0

ã
(3.22)

bc =
fc0leq

Gch

(
1 +

ac

2

)
(3.23)

bt =
ft0leq

GF

(
1 +

at

2

)
(3.24)

Using equations 3.19 and 3.20 the damage parameter for any given strain exceeding ϵc1 and
ϵt1 can be determined.

Summary of the CDPM

By applying the equations derived in the previous section, the behaviour of the concrete
damaged plasticity model can be illustrated. Figure 3.8 shows the stress-strain curve for
a C35/45 concrete under compression, while figure 3.9 provides the tension parameters.
The damage parameter d is provided in % in both cases. The selected element size has an
edge length of 20 mm. The here provided model will be used for the numerically derived
shear-tests in section 4.5.
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Figure 3.8.: Stress-strain and damage-strain relation of C35/45 under compression
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Figure 3.9.: Stress-strain and damage-strain relation of C35/45 under tension

3.2.4. Steel Material Model

Due to the homogeneous material properties of steel, the material model used for reinforce-
ment and prestressing steel is a standard elastic-plastic material model as given in numerous
standards [41, 48, 160]. Most often a bilinear stress-strain diagram is assigned to the steel.
This approach will also be used in this numerical model, since the stress-strain relations of
reinforcement and prestressing steel is rarely available in the experimental database.

For the steel used for support and loading plates a purely elastic material model is assumed,
following the Young’s modulus of 210 GPa.

3.2.5. Reinforcement

A number of factors must be considered, when selecting any modelling approach. In the
case of reinforcement one of the major influence factors can be found in the definition
of the bonding behaviour between the singular bars and the concrete. In case that the
main interest of the simulation is within this interaction, a modelling strategy including a
representation of the reinforcement as volume elements should be considered. Otherwise,
if a more wholistic consideration of the reinforcement as part of a test specimen is the focus,
like in the presented case, the modelling strategy should account for it, by not overvaluing
certain interactions, while generalising other behaviours, like aggregate interlock (section
2.2.5) due to approximation and generalising of material behaviour.
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Bonding of Concrete and Reinforcement

As touched upon in the section introduction there are different possibilities on defining the
bond between reinforcement and concrete, depending on the chosen modelling approach.
In general ABAQUS allows for reinforcement to be modelled as volume elements (3D-
Elements) or wire elements (2D-Elements). Selecting to use 3D-Elements for the repre-
sentation of the reinforcement enables the user to define the bonding in detail, including
the slip criteria, friction between the steel and concrete surface and other interactions be-
tween the steel and concrete elements. Additionally the comparatively small dimensions of
the reinforcement when compared to the beam would result in more extensive convergent
studies and a more limited range of element sizes to counteract expected numerical prob-
lems like shear-locking and mashing. This results in a very detailed and computing cost
expensive numerical model. Hence this modelling is usually done, when the main focus is
set on the interaction of reinforcement and concrete, like the numerical evaluation of pull
out tests [37, 49].

Especially larger specimens however are generally modelled under a more wholistic ap-
proach focusing on the load-bearing behaviour. In this case the modelling of the reinforce-
ment is predominantly realised as 2D-Elements, that are fully embedded within the con-
crete. By using embedded wire reinforcement, the assumption of perfect bonding between
the 2D-Elements and the 3D-Elements is being made. This assumption is applicable when
studying the behaviour of the entire specimen under loading and using ripped reinforce-
ment bars. When studying the behaviour of concrete specimens with plane reinforcement
bars, this assumption needs more thorough investigation, since it may lead to unsafe results.

In addition the usage of embedded 2D-Elements is compatible with the chosen CDPM (sec-
tion 3.2.3). Due to the reduction of stiffness induced by damage within the elements, the
embedded elements experience the corresponding non-linear behaviour of strain happening
at cracks. The pendent to tension-softening in the concrete [123], the tension-stiffening of
the steel however is not necessary in accordance with [61, 91, 115, 123].

Chosen Elements

ABAQUS provides a number of truss elements, that can be used for linear 2D-Elements that
are applicable for the modelling of reinforcement bars. The element type herby defines the
number of integration points and the selected trial functions used for the calculation. Using
an element type T3D2 f. e. only allows for truss like behaviour, neglecting bending, while
the element type B31 includes the consideration of bending moments.

The T3D2 element is chosen due to the generally negligible bending stiffness of the longi-
tudinal reinforcement and the irrelevant one for the stirrups.
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Prestressing

In general there are two fundamentally different ways of modelling prestressed tendons
for a finite-element analysis. A general overview can be taken from [1], which splits the
modelling techniques into consideration of the prestressing as either additional loading
on or additional load resisting elements in addition to the concrete member. While the
first modelling technique solely focuses on the loading induced by prestressing tendons, it
neglects the changes in the prestressing forces due to concrete deformation. The consider-
ation of prestressing tendons as load resisting members similar to the previously discussed
reinforcement allows for a more thorough inclusion of its effects on a reinforced concrete
member [10].

When considering prestressing tendons as load resisting elements, the prestressing force
needs to be introduced to a point, where the load resisting element is loaded to the same
capacity as in reality. Modern finite-element software, like ABAQUS [36], allows for the
prestressing of elements via certain functions. In the case of ABAQUS a predefined field
can be generated, resulting in element local stresses. Alternatively a temperature change
on the tendon-elements can be used to generate the prestressing load [146]. The uniformly
applied temperature T in ◦C to the prestressed elements can be determined following equa-
tion 3.25. The required variables are the coefficient of linear expansion c in MPa/◦C, the
modulus of elasticity Ep in MPa as well as the cross-sectional area of the prestressing
tendon Ap in mm2 and the desired prestressing force P in N.

T = −
P

c · EpAp
(3.25)

The chosen modelling approach follows the in [1, 10] favoured inclusion of the prestress-
ing tendons as load resisting elements embedded in the concrete. Prestressing forces are
applied using predefined fields in normal direction of the truss elements, which functioning
as tendons, thus following the previously determined modelling approach for the general
reinforcement.

3.3. Evaluation

3.3.1. General

A first evaluation of the modelling approach described in section 3.2 will be conducted on
two beams where the load-displacement information is recorded. For the verification of
the chosen element types and material models a beam without transverse reinforcement is
used (section 3.3.2). Excluding any transverse reinforcement allows to focus on the usabil-
ity of the CDPM as well as on the simplest and clearest load-bearing mechanisms. The
second beam (section 3.3.3) will include transverse reinforcement to provide a validation
of the changing load-bearing capacity this inclusion results in. Additionally it allows for a
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validation of the chosen modelling approach for the reinforcement as discussed in section
3.2.5.

Both beams are taken from test series performed by Leonhardt and Walther, published
in [103]. Main foci of the selection are put on the reported type of failure, recorded crack-
pattern and load-displacement behaviour.

Further in-depth evaluation, using tests taken from literature, follows in section 4.3, inves-
tigating the capacity of the numerical model concerning singular changing variables.

3.3.2. Reinforced Concrete Beam without Transverse
Reinforcement

The selected reinforced concrete beam without transverse reinforcement is presented in fig-
ure 3.10. As previously mentioned it is taken form [103] and failed due to sudden fracture
resulting from shear. The presented test was conducted twice resulting in slightly varying
points of failure which will both be presented for the numerical evaluation.

145
54 5437

[cm]

2∅26S tIIIb

3227

5

19

Distributing plate 2 x 13 x 19 Distributing plate 2 x 13 x 19

P/2 P/2

Support plate Support plate
5 x 10 x 19 5 x 10 x 19

Figure 3.10.: Parameters of the tested reinforced concrete beam without shear reinforce-
ment V3 taken from [103]

The beam was subjected to a 4-point bending experiment and did not include shear re-
inforcement. The material strength of the concrete was given to be 355 kg/cm2, which,
given the time period of the experiments, can be assumed to be derived from 20x20x20 cm
cubes, resulting in ≈ 29.2 MPa for todays cylindrical test specimens. The used reinforce-
ment steel grade of S tIIIb has a nominal yield strength of 400 MPa for reinforcement with
a diameter exceeding 18.0 mm and was not recorded further. The transverse reinforcement
shown in figure 3.10 is located behind the supports and was only required construction
wise to ensure a correct anchorage of the longitudinal reinforcement. It will not be mod-
elled for the numerical calculation, since the longitudinal reinforcement will be taken to be
fully embedded within the concrete, requiring no anchorage length to be considered. The
dimensions for the support and loading plates can be taken from figure 3.10 and the purely
elastic steel material is assumed as stated in section 3.2.4.
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3. Numerical Calculation

Figure 3.11 shows the calculated load-displacement curve of the numerical calculation with
respect to different element sizes as well as the displacements as reported in [103]. It has to
be noted, that due to the time period in which the tests were performed, the measurement
of load-displacement data was not continuous via automated systems, but had to be done
manually at given load intervals. Hence the displacement at the failure load is not provided
by the literature.
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Figure 3.11.: Load-displacement diagram for V3

A mesh independent behaviour of the numerical model up to the critical load can be de-
duced from the load-displacement diagram, with some discrepancies being found at the
post-failure behaviour. Since the post-failure behaviour however is not part of the per-
formed investigation this can be disregarded. Henceforth, considering V3 is a beam with-
out transverse reinforcement, the mesh independence of the concrete material model as
constituted in section 3.2.3 can be confirmed for the presented case.

Additionally, even though the load-displacement curve resulting from the numerical sim-
ulation behave stiffer than the recorded values from the test, the critical load provided in
table 3.1 fall within a less than 6 % range.

Table 3.1.: Critical loads of beam V3
Test FEM-5 FEM-10 FEM-20

Pcrit [kN] 294.2 280.68 277.96 277.80

Furthermore the good relation between the numerical simulation and the physically per-
formed test can be taken from the similarity of the critical shear crack as provided by figure
3.12. Especially at smaller mesh sizes the crack angle as well as the crack development
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mimic the recorded one exceptionally well. However the predominantly visual asymmetry
present at the larger element sizes needs to be addressed. Since the boundary conditions
are not precisely copied by the numerical model. While the physical test setup had no ac-
tual horizontal support, the numerical model required it. Therefore one support plate was
fixed horizontally, resulting in a slight asymmetry of the beams stiffness, which explains
the asymmetric crack pattern.

The most prominent difference between the numerical simulated tests and the physical test
now lies within the previously mentioned differing stiffness behaviour 3.11. Looking at the
provided data from the literature [103] it has to be stated that, even so the concrete strength
is given, no further information were provided. The previously assumed test specimen size
of a 20x20x20 cm cube is mentioned at a different section of the report and henceforth can
be assumed to conform with the test specimen for the recorded material. It also has to be
noted that this does contradict the information provided in [141] about the same test series.
Since neither a stress-strain relationship, nor the Young’s modulus has been provided in the
original test report they were calculated, using the in section 3.2.3 introduced approach.
All of this, as well as the perfectly assumed and modelled support conditions and the other
previously stated assumptions and simplifications can be the origin of this recorded differ-
ences. Since the main failure criterion, that is defined by the critical load does however
correspond well to the recorded values, the modelling approach can be endorsed for further
usage.

3.3.3. Reinforced Concrete Beam with Transverse Reinforcement

Varying from the previously discussed beam V3 (section 3.3.2) the selected reinforced
concrete beam with transverse reinforcement has a T-cross-section. Its reported type of
failure is given to be shear failure resulting from plastic deformation of the transverse
reinforcement leading to the destruction of the web and the compression zone [103]. The
parameters of the test specimen ET3 are provided in figure 3.13.

The beam was subjected to a 4-point bending experiment and its material strength of the
concrete was recorded to be 285 kg/cm2. Given the time period and the assumed test
specimen being a 20x20x20 cm cubes this translate to ≈ 22.4 MPa for todays cylindric test
specimen, used for the numerical simulation. While steel of the grade S tIIIb with a nominal
yield strength of 400 MPa was used for the longitudinal reinforcements, the transverse
reinforcement was made out of 6 mm diameter bars and a steel grade S tI, corresponding to
a nominal yield strength of 220 MPa. The transverse reinforcement was spaced at 11.0 cm
between the supports and loading points. Anchorage failure was avoided by the reduced
spacing of 5.0 cm between the supports to the specimens ends. Due to undisclosed precise
location information of the reinforcement, other than the static height, a constant spacing
of 5.0 cm was assumed for the longitudinal reinforcement, with the stirrups enclosing it.
The constructively required reinforcement within the compression zone of the cross-section
was ignored for the numerical model.
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Element size 5 [mm]

Crack pattern recorded by the test

Element size 10 [mm]

Element size 20 [mm]

Figure 3.12.: Comparison of the numerically derived crack patterns for V3 with the litera-
ture [103]

Missing precise information, the distributing plates and support plates are assumed to be
covering the entire width of the respective part of the cross-section and to have a geometry
as disclosed in figure 3.13. This assumption is based on previously provided dimension
from the same literature as well as the determined minor influence on the size of the loading
plates [103].
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Figure 3.13.: Parameters of the reinforced concrete beam with shear reinforcement ET3
taken from [103]

0 5 10 15 20 25
displacement [mm]

0

50000

100000

150000

200000

to
ta

l f
or

ce
 [N

]

5 [mm]
10 [mm]
20 [mm]
10 [mm], no damage
Test

Figure 3.14.: Load-displacement diagram for ET3

Figure 3.14 provides the load-displacement curve of the numerical simulation with regards
to different mesh sizes as well as the reported displacements of the test taken from [103].

At lower loads the trend of the numerical model behaving stiffer than the physical test
as previously seen in section 3.3.2 can be confirmed. In contrast with the investigation
of the beam without transverse reinforcement, a softening of the beam at higher loadings
can be observed. This behaviour can be attributed to an underestimation of the Young’s
modulus, or the neglecting of aggregate interlock and dowel effects due to the modelling
approach [71]. A comparison of the cracking patterns is provided in figure 3.15, showing
good correlation, especially for the smaller mesh sizes.

Noteworthy, the noticeable asymmetry at the 5 mm elements. This stems from the asym-
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Element size 5 [mm]

Element size 10 [mm]

Element size 20 [mm]

Crack pattern recorded by the test

Figure 3.15.: Comparison of the numerically derived crack patterns for ET3 with the liter-
ature [103]

metric boundary conditions used in the numerical model, where only one side was fixed
in beam direction. The increased cracking is located on the side without that boundary
conditions.

Since neither the longitudinal nor the transversal reinforcement steel material was described
in more thorough detail than their respective steel grade, the previously stated yield strength
was assumed in unison with historical data. Figure 3.16 provides the stresses within the
steel reinforcement in total and the transverse reinforcement in particular at failure load.

Table 3.2.: Critical loads of beam ET3
Test FEM-5 FEM-10 FEM-20

Pcrit [kN] 250.07 200.77 222.01 225.69

As can be seen, the transverse reinforcement as well as the longitudinal reinforcement
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Figure 3.16.: Steel stresses for ET3 with element size of 10 [mm]

reaches plasticity after the critical shear crack has developed. Accordingly the critical load
at failure is directly influenced by the yield strength present at the cracked beam location.

Due to the incomplete data of these parameters of the reinforcement in particular the vari-
ance in the stiffness near the critical load as well as the value of the critical load itself (table
3.2) can be justified.

3.4. Conclusion

Evaluation of the two tests investigated in section 3.3 provides a general understanding of
the applicability of numerical simulations for the recalculation of physical tests. While
the loads at failure matched well between the numerical simulations and the recorded test
values, the behaviour of the beam, mainly attributed to the stiffness, showed some dis-
crepancies. Since the load-bearing capacity as well as the damage propagation within the
concrete and the resulting crack-patterns fitted well with the recorded data this can how-
ever be attributed to some modelling assumptions like the perfect tie between the support
plates and the beam or the boundary conditions with the added support in beam direction.
Additionally the influence of the mesh size can be defined as negligible for the presented
examples. The major influence of mesh size can be determined to lie in the more precise
definition of the crack pattern, which provides only a small qualitatively bonus, but does
not influence the behaviour, nor the critical load when compared to the material model
without the inclusion of damage parameters.

All in all a good applicability of the chosen material models and modelling approach has to
be determined and will be used for the further conducted numerical simulations in section
4.3, where the capability of the numerical model is investigated on more variables.
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4.1. Overview

In general, a database has to consist of enough separate and independent data over a range
of variables to provide a reliable informative value on a given approach. Concerning shear
tests on reinforced and prestressed concrete beams a database consisting of tests pub-
lished has been created by cooperation of the American Concrete Institute (ACI) and the
Deutscher Ausschuss für Stahlbeton (DAfStb) with regards to reinforced concrete beams
without transverse reinforcement [139, 142] as well as with transverse reinforcement [140].
In light of the databases consisting purely out of single span girder tests that are predomi-
nantly tested under concentrated loading, with ≈ 70 % of them having a total beam height
of less then 40.0 cm and only about 7.5 % having a height of 100.0 cm or more, a bias
towards small beams can be assumed when performing any kind of statistical evaluation
on the database. In light of shear-critical beams, as discussed in chapter 1, usually exceed-
ing of least 50.0 cm in height and the possibility of resulting scale effects an evaluation of
shear-formulas and -models based on these databases needs to be viewed critically.

As the developed approach is aimed at evaluating existing structures, mainly bridges, it
has to be concluded, that a validation based purely on the aforementioned databases can
not be assumed to be accurate. Especially in light of the major difference in stresses,
resulting form different loading and structural systems, when comparing multi-span bridge
girders with the experimental database, a different approach is to be pursued. The focus
on construction related configurations of the reinforced concrete member also excludes
any experiments without transverse reinforcement. Hence a small database was created
numerically that covers a number of relevant variations as well as realistic dimensions
(section 4.5).

Attempting to mimic the principles of the Design of Experiments (DoE) [161] (section
4.2), pairs of tests are taken from the recorded databases to represent maxima and minima
of the specific influence factors, whereas the rest of the defined influence factors are kept
as similar as possible. Seeing as the selected tests to validate the numerical model (section
4.3) are taken from a number of different researchers, studying varying aspects of shear
within reinforced concrete members over multiple decades, some leeway from the ideal
theoretical tests has to be accepted. An overview of the applicability and representability
of the numerical approach on the basis of physical tests is provided in section 4.4.
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4.2. Design of Experiments

When investigating a system, there is a controllable input which leads, under consideration
of interferences, to a result (figure 4.1). The so called Design of Experiments (DoE) was
founded to describe and explain the variation of information and their influences. Therefore
the DoE encompasses methods aimed to analyse the relation of input variables to results.

One of the most well known methods for generating test data using simulation is the Monte-
Carlo-Method (MCM) [11, 94, 124]. It is usually used in computer-aided engineering
(CAE), since the required amount of test combinations can not be achieved by physical
test setups. Hence different methods were created prior to the spread of numerical meth-
ods. The DoE describes a statistical approach to the design of test specimens, generally
developed for physical tests and later on extended to CAE [155, 161].

System
Controlable parameters

Input

Environmental influences
Non controlable/measurable variables

Interferences

Results
Output

Figure 4.1.: System visualisation for DoE

As soon as multiple input variables are to be included in a test study the full factorized
design should be considered. Here every combination of input variables are included in
the tests. Depending on the required level for each variable nl, meaning the gradation to
account for non-linear effects, this leads to:

nr = nn f

l (4.1)

required tests, with n f being the number of variables, also known as factors. Following
equation 4.1 the amount of tests required to cover seven factors being investigated at two
levels results in 128 test specimens. If quadratic effects are assumed and correspondingly
the required level raised to three, the resulting number of test specimens accumulates to
2187. Since these numbers are often impossible achieve physically due to time and costs,
restrictions methods like the so called Screening Design (e.g. Definitive Screening Design
[85, 112]) or the Central-Composite-Design (CCD) were developed [161].

While the previously described test specimens following the full factorised design, it can
be imagined as the corner points of a n-dimensional dice, in case of a second level inves-
tigation, where n symbolises the number of investigated variables (e.g. for three variables
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the resulting shape in the three-dimensional space is a cube as shown in figure 4.2), the
CCD adds additional tests in the centre points of the surfaces. These additional tests can
be imagined as the tips of a star shape, with every tip centring in the surfaces of the dice,
and the centre point of the dice. These additional tests are designed to determine any non-
linearity of the variables. To allow for the most precise results these additional tests should
exceed the defined variable ranges in the positive as well as the negative direction. If, due
to limitations, this exceedance can not be achieved a special case of the CCD is derived.
The so called Face-Centered-Central-Composite-Design (FCCCD) is depicted in figure 4.2
for the three-dimensional space. As can be seen for the FCCCD the star (light orange), sits
on the faces of the dice limited by the defined variable ranges (orange).

Tests required for a full factorisation
Tests added to determine non-linarity
Centre test of all variables (centre point)

Figure 4.2.: Face-Centered-Central-Composite-Design for a level two investigation of three
factors

The CCD does provide more thorough understanding of the relations between input pa-
rameters and measured output when compared to the FCCCD [161]. However additional
test series can be conceptualised in case achieved results from the FCCCD warrant a more
precise investigation.

4.3. Composition of the Experimental Database

4.3.1. General

Seeing the need for an unbiased evaluation, that confirms the general applicability of a
shear model, this section briefly introduces the tests, which form the cornerstones of the
validation of the numerical model. To ensure maximum applicability, the chosen tests en-
compass a number of shear influencing factors defined in section 2.3 (section 4.3.3). Before
diving into the topic of shear influences, the general accuracy of the numerical model has
to be validated using a set of basic experiments to control the influence of different shear-
bearing mechanisms. Especially the correct influence of the transverse and the longitudinal
reinforcement, as well as the concrete strength needs to be verified (section 4.3.2). Every

59



4. Evaluation Database

numerical model will be calculated using three different mesh sizes, following the progres-
sion of 1 : 2 : 4, to evaluate the possibility of mesh dependencies for each investigated
aspect on the shear-bearing capacity of reinforced and prestressed concrete slender beams.

0.00 0.25 0.50 0.75 1.00

Figure 4.3.: Legend scale for tension damage factor dt

Figure 4.3 provides the legend scale for the tension damage factor for all numerical results
in this section. It is equivalent to the tension damage factor dt from section 3.2.3.

Further clarification has to be noted for the provided load-displacement diagrams in the
following sections. Since some of the recorded tests from the literature were performed at
a time without the ability of continuously recording and measurement of data, some load-
displacement curves do not provide the final deformation at the point of failure, but rather
the last loading step prior to it, at which a manual measurement of the beams deformation
was taken. Hence the shown load-displacement diagrams do not coincide with the recorded
failure load, that is also provided and discussed.

4.3.2. Benchmark Experiments

Experiments Concerning the Influence of Transverse Reinforcement

As discussed in section 2.2.6 the transverse reinforcement is the major load-bearing mech-
anism attributed with the shear-bearing capacity of a reinforced concrete beam. Being able
to tune the shear load-bearing capacity of a reinforced concrete beam without needing to
adjust the cross-section is the most influential property of reinforcement in general and for
stirrup in particular. Hence there has been a huge number of tests being performed with the
focus on the transverse reinforcement of reinforced concrete beams [105, 134, 140, 176].

Concerning the influence of the transverse reinforcement two main variables need to be
investigated. The first being the amount of transverse reinforcement, while the second
focuses on the spacing of it. Both of these factors can be linked via the variable ρt, which
expresses the amount of transverse reinforcement for a one meter long section of the beam.

The investigated pair of tests was conducted by Leonhardt and Walther and published
in [105]. The test setup was a single span girder beam with a span length of 3, 00 m
and a T-shaped cross-section. According to the documented results the test TA13 failed
due to bending-shear, while TA4’s mode of failure was due to plasticity of the transverse
reinforcement. Figure 4.4 provides the experimental set up as well as the geometry.

As previously mentioned, the major difference between the tests TA4 and TA13 is the
amount of transverse reinforcement, namely the cross-section of it. While the first men-
tioned was fitted with ∅6 mm stirrups, the latter had double the diameter with ∅12 mm
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Figure 4.4.: Dimensions and geometry of transverse reinforcement tests TA4 & TA13 taken
from [105]

stirrups. The spacing between the transverse reinforcement is constant at 113, 0 mm. Fur-
thermore the concrete strength varied slightly between the two tests. All required variables
for the tests are summarised in table 4.1.

Table 4.1.: Material properties of beams TA4 and TA13 from [105]
TA4 TA13
concrete strength

fck,cyl [N/mm2] ≈ 15, 0 ≈ 17, 8
longitudinal reinforcement

∅ [mm] 24, 0
fy,l [N/mm2] ≈ 410, 0
Ey,l [N/mm2] ≈ 200.000, 0

transverse reinforcement bars
∅ [mm] 6, 0 12, 0
fy,t [N/mm2] ≈ 427, 0 ≈ 440, 0
Ey,t [N/mm2] ≈ 190.000, 0 ≈ 205.000, 0

One minor difference between the tests discussed here, is the strengthening of the longitu-
dinal reinforcement’s anchorage done for TA13 in comparison with TA4. The reason for
this was slipping of the longitudinal reinforcement for TA1 - TA3, which were identical to
TA4. Since TA4 did not show any slip, the numerical model will include the strengthening
done for TA13 for both beams, which is already included in figure 4.4. For the tests two
different kinds of strengthening where performed. At one end a doubling of the anchorage
length was done, while at the other end ’anchorage rebars’ were implemented. Since, the
reinforcement is assumed to be fully embedded (section 3.2.5), neither modification should
influence the simulation results.

61



4. Evaluation Database

0 5 10 15 20 25
displacement [mm]

0

100

200

300

400

to
ta

l f
or

ce
 [k

N]

10 [mm]
20 [mm]
40 [mm]
Test

(a)

0 5 10 15 20 25
displacement [mm]

0

100

200

300

400

500

600

to
ta

l f
or

ce
 [k

N]

10 [mm]
20 [mm]
40 [mm]
Test

(b)

Figure 4.5.: Load-displacement diagrams for TA4 (a) and TA13 (b)

The general trend already mentioned in section 3.3 of the numerical test being softer than
the physical test can be seen in the load-displacement diagrams given in figure 4.5. While
the load-displacement curves for the physical tests also show a softening of the test speci-
men at approximately similar loads, the numerical model does show a far greater reduction
of its stiffness. This effect can be attributed to the development of cracks, the final stages
of them being provided in figures 4.6 and 4.7.

While the crack patterns and crack development of the numerical models provides a sim-
ilar behaviour as the recorded test information, additional effects like dowel action and
aggregate interlock, more simply put as friction, are not present in the chosen modelling
approach. Another influence can be attributed to the application of the load. Since the dis-
cussed tests were performed using force controlled loading [105], the simulation also was
performed using the load as the controlling variable. As previously discussed in section 3.3
this can lead to higher critical loads and less specific points of failure when compared to
displacement controlled tests.

Additionally the incomplete data concerning material parameters like the concrete tension
strength, which generally can vary rather strongly, can also impact the results which can be
achieved by numerical simulation.

Next to the good comparison of the numerically achieved crack patterns to the recorded
ones, the critical loads provided in table 4.2 show a good correlation between physical test
and numerical simulation in the case of varying transverse reinforcement.

The variation of the critical load between the physical test and the numerical simulation
has a maximum divergence of less than 15%, with most of them being less than 10%.
The influence of the transverse reinforcement can therefore be seen as being accurately
represented in the numerical simulation.

It must be noted, that the numerical simulation was able to replicate the tests behaviour in
light of the varying transverse reinforcement correctly. The deviations between the numer-
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Element size 20 mm

Crack pattern recorded by the test

Element size 10 mm

Element size 40 mm

Figure 4.6.: Comparison of the numerically derived crack patterns for TA4 with the litera-
ture [105]

Table 4.2.: Critical Loads of beams TA4 and TA13
TA4 TA13

Pcrit,test [kN] 458, 95 686, 47
Pcrit,FEM,10 [kN] 389, 05 615, 07
Pcrit,FEM,20 [kN] 404, 77 642, 11
Pcrit,FEM,40 [kN] 422, 21 642, 35

ical and the recorded data are present at both tests to the same degree and can be attributed
to incomplete data and approximations made by the numerical model.

Experiments Concerning the Influence of Prestressing

Since prestressing can have an influence on the shear-bearing capacity of reinforced con-
crete beams 2.2.8, it has to be ensured that it is correctly accounted for in the numerical
simulation. For this reason a comparison between two prestressed concrete beams with

63



4. Evaluation Database

Element size 10 mm

Element size 20 mm

Element size 40 mm

Crack pattern recorded by the test

Figure 4.7.: Comparison of the numerically derived crack patterns for TA13 with the liter-
ature [105]

differing degrees of prestressing force is analysed. The selected tests are taken from [102]
(IP1 and IP3) and are shown in figure 4.8.

As it can be gathered from figure 4.8, the cross-section of the selected test specimens
follows an I-shape and the two prestressing tendons are parallel to the bottom flange. The
tendons were made up of 12 individual strands with diameters of 12.2 mm each and a steel
grade of S IGMA S t 125/140 with b0,2 of 1201.3 N/mm2. Further material parameters are
given in table 4.3.

Since the concrete strength was tested on 20 × 20 × 20 cm cubes table 4.3 already includes
the conversion following [110] to todays standard of a 30/15 cm cylinder.

While IP1 was prestressed to the maximum allowed force of ≈ 995.4 kN per tendon, IP3
was only subjected to a prestressing of 99.5 kN, corresponding to about 10% of the allowed
prestressing force. These forces however decreased to 890.9 kN and 90.2 kN per tendon
for IP1 and IP3 respectively at the time of testing due to the time-depending behaviour of
concrete - creep, shrinkage - and anchor-slip.
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Figure 4.8.: Dimensions and geometry of prestressing tests taken from [102]

Table 4.3.: Material properties of beams IP1 and IP3 from [102]
concrete strength

IP1 IP3
fck,cyl [N/mm2] ≈ 25.9 ≈ 29.5
Eck ≈ 26772.2 ≈ 26085.7

longitudinal reinforcement
Web/Flange Bottom Flange Top

∅ [mm] 8.0 14.0
fy,l [N/mm2] ≈ 451.1 ≈ 389.3
Ey,l [N/mm2] ≈ 195, 000.0 ≈ 200, 000.0

transverse reinforcement bars
IP1

∅ [mm] 12.0 16.0
fy,t [N/mm2] ≈ 490.0 ≈ 392.0
Ey,t [N/mm2] ≈ 200, 000.0 ≈ 191, 230.0

IP3
∅ [mm] 12.0 16.0
fy,t [N/mm2] ≈ 505.0 ≈ 470.0
Ey,t [N/mm2] ≈ 201, 000.0 ≈ 198, 000.0

prestressing tendons
Ap [mm2] ≈ 1403.0
fp [N/mm2] ≈ 1200.0
Ep [N/mm2] ≈ 200, 000.0

The load-displacement diagrams for the underside of the beam at mid-span is given by
figure 4.9. While it shows a great fit for the strongly prestressed IP1, including the negative
deformation resulting from the prestressing before loading, a slightly stronger difference
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Figure 4.9.: Load-displacement diagrams for IP1 (a) and IP3 (b)

can be seen for the less prestressed IP3. However this results mostly from the pre-crack-
behaviour of the concrete, due to possibly incomplete data. The post-cracking increase in
loading follows the test astonishingly well, like it does for IP3. Even so slight decrease of
quality can be determined for the largest element size of 40 mm edge length when compared
to the smaller ones.

The crack-patterns as shown in figures 4.10 and 4.11 need to be discussed more closely
since a clear change of quality can be seen for them between IP1 and IP3. While IP1 on the
one hand is represented well in the numerical simulation, even so fewer cracks did form
than are shown in the test report, their direction, even the ones resulting from direct arching
action, can be clearly determined. Like previously discussed the increasing mesh size again
leads to less defined cracks.

IP3 on the other hand seems to be a rather different story. While the smallest element size
does show good agreement with the test report, the larger element sizes seem to show the
beam to be completely damaged due to tension. Taking the load-displacement diagram
(figure 4.9) into account and the fact that the crack-patterns were recorded for the same
loading prior to failure the conclusion that the larger elements are able to display the rather
tightly spaced cracks, resulting from the high amount of reinforcement present in the beam,
correctly is reached. Correspondingly this needs to be taken into account when evaluating
likewise tests with a high reinforcement ratio using the CDPM. The good agreement of the
critical load (table 4.4) with less than 7.5 % in total and less than 3.5 % when comparing
the numerical results further highlights the separation between the visually represented
crack-patterns and the actual calculated results concerning the shear-bearing capacity.

In light of the tests IP1 and IP3 it can be stated, that the influence of prestressing reinforced
concrete beams is captured accurately by the numerical model. Especially IP1 shows a
good fit of the load-deformation curve as well as the critical load highlighting the numerical
implementation of the prestressing. IP3 needs to be viewed more critically when focusing
on the critical load, which has a much higher discrepancy. However, when studying the load
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Element size 10 mm

Element size 20 mm

Element size 40 mm

Crack pattern recorded by the test

Figure 4.10.: Comparison of the numerically derived crack patterns for IP1 with the litera-
ture [102]

Table 4.4.: Critical Loads of beams IP1 and IP3
IP1 IP3

Pcrit,test [kN] 1, 897.59 1, 701.45
Pcrit,FEM,10 [kN] 1, 873.94 1, 780.06
Pcrit,FEM,20 [kN] 1, 914.08 1, 769.51
Pcrit,FEM,40 [kN] 1, 862.32 1, 829.89

displacement curve a similar behaviour can be seen with the sole difference being the point
of crack initiation, aka the end of the elastic deformation. Subtracting the elastic influence it
has to be stated, that the plastic behaviour of the numerical model does follow the recorded
test behaviour exceptionally well. Figure 4.12 does provide the load-displacement curves
for IP3 with and without prestressing.

Seeing as the elastic deformation of the recorded test data still fails prior to the numerical
simulation where the prestressing force is neglected, the difference must be found in the
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Element size 10 mm

Element size 20 mm

Element size 40 mm

Crack pattern recorded by the test

Figure 4.11.: Comparison of the numerically derived crack patterns for IP3 with the litera-
ture [102]
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Figure 4.12.: Load-displacement diagrams for IP3 with and without prestressing

material, geometrical inconsistencies or damages. Since the test was taken from the liter-
ature a detailed analysis on the exact reasons for the discrepancies can not be made, but
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should not fault the quality of the numerical simulation concerning prestressing.

Since the general behaviour and trend does, however, follow the test data and a clear in-
fluence of the prestressing force can be seen between IP1 and IP3 as well as in figure 4.12
it has to be stated that the influence of prestressing is represented well in the numerical
modelling approach and simulations.

Experiments Concerning the Influence of Concrete Strength

Any influence can best be measured when other mechanisms are eliminated. Hence the
impact of varying concrete strengths on the shear bearing capacity of reinforced concrete
beams should be evaluated on the basis of tests performed on beams without transverse
reinforcement. Angelakos’s showed for this case that no measurable influence of the
varying concrete strength (20 MPa to 80 MPa) was existent [9]. Same results have also
been recorded by [66, 105].

The addition of transverse reinforcements however showcases a split in behaviour between
normal strength concrete and high strength concrete. Within each of these two categories
the influence of the concrete strength was negligible, but a clear difference when comparing
them needs to be taken into account. This phenomenon is also seen in recent tests on ultra
high performance concrete (UHPC) [6]. Since the focus of the presented work is based
around the evaluation of existing structures, high performance concrete and UHPC are not
regarded further. For future applications however this topic should be revisited.

4.3.3. Influence Experiments

Experiments Concerning the Influence of Loading Conditions

A rarely investigated, but important influence factor on the shear capacity of reinforced
concrete beams presents itself in the loading conditions as discussed in section 2.3.4. Since
the numerical model consists of 3-D volumetric elements the correct stress distribution
within the modelled reinforced concrete beam is supposed to be reached. However the
extend of its influence on the selected modelling approach needs to be quantified. For this
verification the previously investigated test V3 (section 3.3.2) will be paired with test V11/1
from the same reference [103].

Both tests share the same cross-section as well as reinforcement, however, varied slightly
in its span-length (1, 45 m for V3 and 1, 50 m for V11/1) as well as their concrete strength.
While the test setup of V3 can be found in figure 3.10, the one for V11/1 is given by figure
4.13.

To allow for an easy comparison of the two beams the material properties are given in table
4.5.

As discussed in section 3.3.2, due to a lack of information in the yield strength of the re-
inforcement a yield strength of 400.0 N/mm2 was used in the finite-element calculation.
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Figure 4.13.: Parameters of the reinforced concrete beam without shear reinforcement
V11/1 taken from [103]

Table 4.5.: Material properties of beams V3 and V11/1 from [103]
V3-1 V11/1
concrete strength

fck,cyl [N/mm2] ≈ 29.2 ≈ 31.1
longitudinal reinforcement

∅ [mm] 24.0
fy,l [N/mm2] ≈ 400.0

While the test V3 was loaded using loading plates with known properties, the uniformly
distributed load in test V11/1 was introduced using a fire hose as distribution surface be-
tween the loading press and the beam to ensure a constant stress over the beam, even when
deformed. In the numerical model the distributed load is introduced directly on the beam
surface making use of a pressure field, which distributes the load directly on the surface
nodes independent on their current deformation. This also ensures the ideally perfectly
constant load distribution along the beam axis. Figure 4.14 provides the load-displacement
curves for tests V3 and V11/1.

While the load-displacement curve for beam V3 has been discussed in detail in section
3.3.2, it shows a great fit for V11, with small discrepancies concerning the large mesh size.
Especially when compared to V11 it shows a much better correlation to the recorded test
data, furthermore confirming the chosen material model and modelling approach as being
capable of providing realistic data and depicting the real specimen behaviour adequately.

The crack-patterns provided in figures 4.15 and 4.16 further attest the capabilities of the nu-
merical model. Keeping in mind that both beams did not include transverse reinforcement
the development of a shear-crack leads to sudden failure. Hence the crack patterns at failure
for V3 (figure 4.15) being partially provided post failure, where part of the beam is already
destroyed. The distributed loading on V11 on the other-hand allows for a more gradual de-
velopment of the shear-crack resulting in a better comparison between the recorded crack
pattern and the numerical representation.
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Figure 4.14.: Load-displacement diagrams for V3 (a) and V11 (b)

Element size 10 mm

Element size 20 mm

Element size 40 mm

Crack pattern recorded by the test

Figure 4.15.: Comparison of the numerically derived crack patterns for V3 with the litera-
ture [103]

The comparison of the critical loads (table 4.6) does confirm the previously stated tenden-
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Element size 10 mm

Element size 20 mm

Element size 40 mm

Crack pattern recorded by the test

Figure 4.16.: Comparison of the numerically derived crack patterns for V11 with the liter-
ature [103]

Table 4.6.: Critical Loads of beams V3 and V11
V3-1 V11/1

Pcrit,test [kN] 294, 2 535.44
Pcrit,FEM,10 [kN] 277, 96 477, 09
Pcrit,FEM,20 [kN] 277, 80 504, 78
Pcrit,FEM,40 [kN] 277, 84 439, 52

cies, with only the 40 mm mesh size for V11 strafing further from the reported test results.

In conclusion of the comparison of V3 and V11 it has to be stated, that, the numerical
model was able to thoroughly compute the different types of loading.
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4.4. Summary of the Experimental Database

Remodelling existing experiments provides some further insight in the applicability of nu-
merical simulations for the case of shear failure in reinforced and prestressed concrete
slender beams. While the generally expected convergence with reducing element size can
be seen in all highlighted tests of section 4.3 some details need to be pointed out.

• Firstly the point of failure can be seen more clearly the smaller the element size was
chosen. This is mostly due to the nature of running a force controlled test. If the tests
were rerun using a displacement controlled loading, the cut-off points would be seen
more prominently for larger elements as well.

• Secondly the good fit of the behaviour of the numerical model across the different
element sizes. Seeing the very similar behaviour does confirm the adjustments made
in 3.2.3 to account for the changing element size.

• Thirdly the trend of a decrease in critical load with regards to smaller numerical el-
ement sizes. It has to be stated, that the decrease is minimal with it being < 5% for
every element step, and an expected variance due to the explicit solver. While this
effect is linked to the first point, it does not, however, result from the nature of the
loading control, but from the inclusion of the damage propagation. By introducing
tension and compression damage in the material model (section 3.2.3) the ability of
an element focused weakening of the structure is given, which is visualised in the
crack-patterns. Since this weakening is linked to the volume of the element it can not
be translated coherently and directly for different element sizes, leading to different
areas being weakened to different degrees. With reduced element size a more promi-
nent weakening at the same strain is realistic, since the physically forming crack is
smeared over a smaller area. As by-product of this the failure load can be determined
more precisely for smaller element sizes.

• Fourthly the visualisations of the crack-patterns do greatly improve with decreas-
ing numerical element size. As stated in the previous detail, this effect is directly
linked to the material model and its method of introducing material weakening on an
element basis.

To summarize the remodelling of existing experiments it can be stated that the chosen
modelling approach and all its decisions as provided in chapter 3 provide good results and
can be applied to theoretical as well as design problems. For further evaluations an element
size of 20 × 20 × 20 cm will be used as they provide results with the required degree of
accuracy.
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4.5. Numerical Database

4.5.1. Test series

As previously stated the need for an unbiased database can be gathered from the limited
variance the test databases [139, 140] provide due to physical limitations of sensible test
setups. Nowadays more real-size tests are performed like shown in [53, 62], however they
are limited to a small number and can rarely be used in the sense of a test series, since there
usually are not multiple tests with varying parameters when it comes to large scale tests
setups.

Hence the need for a numerically derived database of simulated tests arises. As discussed in
section 4.4 numerically simulated tests can not account for every physically present aspect
and effect concerning shear-tests in reinforced and prestressed concrete beams. However
the general influences and trends as seen in the physical tests can also be seen in the numer-
ical simulations, when using the approach as described in chapter 3. More detailed models
might be capable of including additional effects like bond-slip, dowel action (section 2.2.7)
or aggregate interlock (section 2.2.5). Since the proposed engineering model (chapter 5)
focuses on a global approach it is vital not to get tangled up in local effects, which in the
end could even obscure or have interplay with the monitored influences. An extension of
the proposed numerical model should be considered under these aspects. Any modification
requires further detailed analysis of any added parameters and influences.
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Figure 4.17.: Setup of the numerical tests

The parameters for the numerical tests performed when elaborating this thesis are chosen
in light of the problem portrayed in the introduction (chapter 1) and are based on scenarios
typically encountered at bridges. The cross-section with its variables as well as the statical
system can be taken from figure 4.17. A one-sided clamped single span girder is chosen
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to investigate the generally accepted controlling conditions at intermediate bearings, while
the slab-girder cross-section is the most used cross-section for bridges due to its economic
feasibility. Table 4.8 in combination with the maximal (+), mean (0) and minimal (-) values
defined in table 4.7 provide the changing and constant variables.

The test series is designed following the FCCCD as described in section 4.2 and depicted
in figure 4.2. It is designed to investigate the influences span-length L, the slenderness λ
and the amount of shear-reinforcement Ay,t with regard to the shear-bearing capacity of one
sided clamped reinforced concrete single span girders. In this regard the first eight tests
according to table 4.8 represent the required tests according to a fully factorised design,
while the latter seven tests are included to account for quadratic effects.

Table 4.7.: Variables ranges of the numerical experiments in accordance with DoE
+ 0 -

L [m] 20.0 15.0 10.0
λ 20 15 10
Ay,t [mm2] 153.94 102.10 50.26

The varying cross-sections as assigned in table 4.8 can be found in Appendix A and vary
only in their total height in accordance with the variable λ.

Rather than modelling the vertical supports separately, requiring a consideration of the tie
between support elements and beam elements, the beam is fixed directly. While the support
conditions of the hinged support is modelled using line supports, the clamped support is
modelled consisting of two parts. The moment bearing is achieved by restricting the cross-
section to deform in beam direction, while the vertical support is modelled assuming a
10.0 · bw cm2 area at the bottom of the web. Further information about the modelling
approach can be taken from chapter 3.

For the beam presented in figure 4.17 a minimal amount of shear reinforcement of∅8 every
30.0 cm is chosen since the resulting shear-reinforcement-ratio (ρt) of 0.112% is between
the minimal shear-reinforcement-ratio (ρt,min) of 0.105% or 0, 118% in accordance with
EC2 [41] and NA Germany [42] respectively. A ρt = 0.342%, being roughly three times the
minimal ρt,min, was achieved by ∅14 stirrups every 30.0 cm and marks the upper bound
of the investigated range. The mean variable (’0’ in table 4.7) is the purely theoretical
diameter of 11.4 mm providing a shear-reinforcement-ratio of 0.227%.

The amounts of longitudinal reinforcement are determined to ensure shear failure of the
beams and are kept constant for the same cross-section a span-length pairing as provided
by table 4.8. To allow for some degree of comparability between the tests, the amount of
longitudinal reinforcement is determined to withstand the critical moment resulting from
VRk,s (equation 6.8 EC2 [41]) assuming the maximal allowed cot(θ) of 3.0 in accordance
with the German national annex to EC2 [42] and the maximal amount of shear reinforce-
ment as defined in table 4.7. The precise values of the resulting amount of reinforcement
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are used for the numerical analysis, hence the unusual amounts that can not be replicated
by generally available reinforcement bars.

Additional simulations are conducted on equivalent cantilever beams, to isolate the failure
section from the overall beam behaviour for tests T10-2-1, T10-2-2, T20-2-1 and T20-2-2.
The test setup is provided in Appendix B section B.1.

The results of these additional simulations will also be discussed in the following evaluation
of the test series.

4.5.2. Evaluation of the Test Series

The evaluation of the test series needs to be viewed under two aspects. On the one hand
the design of experiments view, focusing on the influences of the observed variables and
on the other hand the failure mechanisms and total ultimate forces. In a first step however
a convergence study, as well as the investigation on certain numerical peculiarities needs to
be discussed.

Convergence and Numerical Peculiarities

The mesh size is chosen to 20 mm in accordance with the previous simulations provided in
section 4.3. A separate convergence study is performed on test T10-2-2, to further solidify
the selection. The results are provided in figure 4.18.
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Figure 4.18.: Convergence study for T10-2-2

As can be seen, especially the loading behaviour up to the failure load matches. The slight
discrepancies when comparing the load-displacement curves can be traced back to a weak-
ening of the beam near the mid-span due to tension in the concrete elements, which are
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more present at the 10 mm mesh size. This effect was also observed at the T20-2-1 and
T20-2-2 beams for the chosen mesh size of 20 mm (appendix A.4). Comparing the load-
displacement curve for T10-2-2 (figure 4.18) with the visualisation of the tension damage,
aka cracks, (figure 4.19) shows that the numerically derived cracks at the point of maximal
moment do not influence the beams behaviour.

Mesh size 10 mm

Mesh size 20 mm

Figure 4.19.: Numerically derived tension damage of T10-2-2 for different mesh sizes

As can be gathered from figure 4.18 that numerical peculiarity leads to a slight decrease in
stiffness when approaching the failure load, but does not influence it in a measurable way.
This can further be highlighted by using a corresponding cantilever model and comparing
its failure load as well as its load-displacement curve to the one-sided clamped single span
girder (figure 4.20).
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Figure 4.20.: Comparison of load-displacement curves for T10-2-1 and T10-2-2 and their
corresponding cantilevers
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Critical Loads and Type of Failure

The first thing that needs to be addressed and defined in the context of evaluation is: What
categorises the point of failure? In the simplest case for civil engineering this question
can be answered with the circumstances under which a structure collapses. Another defi-
nition could be an irreversible change, which prevents further intended usage. Figuratively
speaking a failure of a part or a section may result in limited usability, but does not neces-
sarily lead to total collapse of a structure. Standards touch on this subject by differentiating
between an ultimate limit state and a limit state of usability [41].

Since the test series can be described as consisting of only single parts, namely the rein-
forced concrete beam, tested separately, the definition of failure and its resulting critical
load Fcrit should be the point of collapse. The values resulting from this definition are
provided in table 4.9 for the shear force at distance d of the clamped support (Vcrit,is) and
the theoretical critical shear force VRc,EC2−NA (further referenced as theoretical shear force)
using the angle of the compression strut cot(ϑ) resulting from [41] in combination with
[42]. Furthermore the visually deductible angle of the compression strut ϑsim is provided
and can be gathered from the appendix (A.4).

Table 4.9.: Numerical and theoretical critical shear forces of the test series at distance d
from the support

Test ID Vcrit,is [kN] VRc,EC2−NA [kN] cot(ϑ)calc cot(ϑ)meas

T10-1-1 483.98 103.22 1.52 8.14
T10-1-2 467.97 319.02 1.54 11.43
T10-2-1 865.05 229.0 1.6 2.14
T10-2-2 853.53 704.48 1.61 2.25
T20-1-1 645.3 258.2 1.8 6.31
T20-1-2 692.52 764.58 1.74 6.31
T20-2-1 1152.49 572.94 1.95 2.36
T20-2-2 1254.94 1669.61 1.85 1.6
T10-0-0 660.17 287.67 1.52 4.33
T20-0-0 899.0 697.87 1.78 2.48
T15-1-0 607.07 348.53 1.63 5.67
T15-2-0 1059.95 773.05 1.74 1.66
T15-0-1 747.15 241.67 1.69 4.33
T15-0-2 846.82 706.36 1.61 5.14
T15-0-0 820.37 473.73 1.63 5.14

Three things catch the eye when viewing table 4.9. Firstly the general underestimation
of Vcrit,is by the standards. Secondly the independence of the numerical shear-failure load
on the reinforcement ratio, contradicting the theoretical approach from EC2. And lastly
the two anomalies of T20-1-2 and T20-2-2, where the theoretical shear forces exceed the
numerical ones.
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For the first mentioned statement, supported by a number of tests by different researchers
[52, 69, 127], the indifference of the standards towards moment-shear interaction needs
to be addressed. While the formulation for VRc,EC2−NA includes a variable angle of the
compression strut ϑ, this angle is depending on two major factors. On the one hand the
normal-stress at the cross-sections centre of gravity, which in the case of pure bending be-
comes irrelevant and consequently only accounts for effects resulting from external normal
forces or prestressing forces. On the other hand the ration of VRd,cc/VEd, where a higher
ratio results in a smaller ϑ, resulting in more stirrups being activated and an increased
VRc,EC2−NA. Table 4.9 provides the cot(ϑ) resulting from EC2 NA when substituting VEd

with Vcrit,is. Analysing them provides the generally applicable understanding, that the angle
of the compression strut, being assumed equivalent to the shear-crack angle, gets steeper
for larger acting shear forces. This statement is confirmed by the measured compression
strut angle ϑmeas provided in table 4.9.

Even so ϑ being used to determine the length over which the stirrups get activated in case
of a shear crack, the main influence parameter for the theoretical shear-failure force can
be found in the reinforcement ratio ρt, leading to the second statement. The numerical
simulations provide a vastly different view on its influence. Probably best described using
the tests T15-0-0, T15-0-1 and T15-0-2, where the only changing parameter is ρt (figure
4.21).
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Figure 4.21.: Influence of the changing transverse reinforcement ratio on the critical failure
load at the clamped support

Two aspects have to be considered when comparing the results. Firstly the span of the re-
sults from lowest to highest reinforcement ratio, which provide an increase in shear force at
failure of 99, 67 kN for the numerical simulations and 681, 69 kN for EC2 NA. Therefore
a reduction of 700% solely focusing on ρt can be stated. Secondly the varying degree of
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conservatism, or safety when comparing the numerically determined failure load to the the-
oretical one. Here the range spans from 3.09 for the small reinforcement ratio to just 1.20
for the large one. Seeing the conservatism decrease by a factor of ≈ 2.5, the question of in-
tent has to be asked. Studying the regulations however does not provide any acknowledged
intent on the increased caution when dealing with small reinforcement ratios, introduced
with the introduction of the Eurocodes, sparking a number of new research focusing on
small amounts of shear reinforcement in the recent years [56, 80, 134, 169].

Additionally the extreme cases T10-1-1 and T10-1-2, resulting from the measured crack
angle ϑmeas, and the constant failure load between them need to be inspected more closely.
Figure 4.22 provides the van Mises stresses within the concrete as well as the stresses of
the transversal reinforcement for T10-1-1.

Figure 4.22.: Stresses within the transversal reinforcement and the concrete in N/mm2 at
the section in which failure occurred for beam T10-1-1

Two aspects need to be mentioned. Firstly the transverse reinforcement does not reach
its yielding strength, and secondly the compressive strength of the concrete, visualised
by the Mises stresses is reached for virtually the entire height of the web at the clamped
support. This does lend itself to the assumption of the beams not failing due to shear, but
due to bending. Further strengthening this argument is the recalculation of the main tensile
stress for Vcrit,is, where, even under the assumption of the normal stress only reaching 40.0
N/mm2 and the shear stress resulting from 480.0 kN being 3.2 N/mm2 in case of the T10-1-
1, the main compression stress and main tension stress are calculated to be −40.25 N/mm2

and 0.25 N/mm2 respectively. Seeing as the main tensile stress does not reach fct of the
concrete, which is at 3.2 N/mm2, no cracks resulting from shear develop, hence the failure
of beams T10-1-1 and T10-1-2 has to be noted as bending failure.

Lastly the anomalies mainly evident in tests T20-1-2 and T20-2-2, where VRc,EC2−NA ex-
ceeds Vcrit,is. The first assumption made after review of the simulation results, mainly the
crack-pattern (figure 4.23) is the previously mentioned large failure area at the section of
positive bending moment.

However, as already discussed under the subsection ’Convergence and Numerical Peculiar-
ities’, this visually presented major anomaly, when compared to the rest of the test series
(appendix A.4), does not represent the correct influence. In fact the described beams do fail
due to compression failure within the concrete induced by the shallow shear crack angle.
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Figure 4.23.: Numerically determined cracking pattern of test beam T20-2-2

Figure 4.24 shows the equivalent cantilever for the test T20-2-2 providing the van Mises
stresses within the concrete as well as the tension damage.

a) b)

Figure 4.24.: Van Mises stresses (a)) and tension damage (b)) in the concrete for the T20-
2-2 equivalent cantilevers

The main connection between these two parameters can be seen when studying the edge
of the shown tension crack. The high stresses do run parallel to it and reach the fck of the
used concrete, hence the lower Vcrit,is.

Influence of Span Length, Slenderness and Shear-Reinforcement Ratio

The 15 beams encompassing test series focuses on the influence of the span length L, the
slenderness λ and the shear reinforcement ration ρt. Their influences on the critical load
at failure can be gathered from figure 4.25. It has to be noted, that the tests T10-1-1, T10-
1-2, T20-1-2 and T20-2-2, which had different failure modes, are included in these effect
diagrams.

The effect diagrams are derived by determining the mean-result for all tests sharing the
same value for the separate variables. Hence the trend of the variables effect on the se-
lected result parameter can be seen. The first major effect apparent from figure 4.25 is
the comparable small influence the amount of transverse reinforcement has on the critical
load of a one-sided clamped single span girder. In stark contrast to this the influence of
the slenderness can be seen. Here a linear dependency of the critical load can be gathered,
prompting a decrease in it for larger values of λ. This effect however does not surprise and
is regarded in standards like the EC2 [41] by the lever of the internal forces z which is lin-
early depending on λ when set to z = d/2. More surprising is the apparent increase of load
bearing capacity with an increase of the span length. Considering a change in span length
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Figure 4.25.: Effect diagrams for the influence variables L, λ and ρt

leads to a change in clamped moment to support force at the clamped support this can be
attributed to be one of the main causes of it. However the effect of L gets counteracted by λ
if the cross-section is kept constant, since the size of the impact of a change in L is smaller
than the impact of a change of λ.

Also an important aspect gained by the effect diagrams is, that L and ρt have an non-linearly
influence on the critical shear-load. This is more prominent for the span length, providing
another indication that the stress distribution at the point of shear failure, resulting from
the bending moment, has a noticeable influence on the shear-load bearing capacity. This
conclusion is derived, the bending moment and its resulting stress-distribution is the only
factor changing none-linearly with a change in L.

4.6. Conclusion

Based on the previously introduced and tested numerical modelling and simulation ap-
proach, the test series, consisting of 15 individual varying specimens, shows a diminishing
influence of the transverse reinforcement ratio on the shear-bearing capacity. While this
statement can be taken from the presented results, it has to be broken down to its limiting
factors, since the test series does focus around the case of overlapping high shear stresses
and high normal stresses at the location of failure. Hence the statement can firstly be lim-
ited to this case and not be applied directly to the huge amount of test data gathered in
literature, for which the numerical modelling approach was benchmarked.

The usage of DoE focusing on three different variables, that could influence the shear-
bearing capacity, as well as the restricted application usage of multi-span girders, which
the test series is supposed to mimic, a clear restriction of the gained information has to be
stated, that focuses on the influences of span length, slenderness and shear-reinforcement
ratio in light of overlapping high shear stresses and high normal stresses. Hence the trans-
fer of this knowledge to single span girders can not be performed without further investi-
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gations. However the same has to be stated vice-versa and the knowledge that is gained
by excessive, but still mostly restricted tests based on single span girder set-ups can not be
universally applied to alternate configurations. The inability to do this does come from the
interlinking load-bearing mechanisms within reinforced or prestressed concrete specimens,
that are currently not acknowledged within the standards but can be seen by the numerical
tests provided in this chapter.
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5. Mechanical Shear Model for
Reinforced and Prestressed
Concrete Beams

5.1. Overview

The recently resurfaced discussion on shear verification of reinforced and prestressed con-
crete beams founded the motivation to develop a mechanical shear model in the scope of
an engineering model fitted to this task. While a high level of conservatism is welcomed
in the design process of long lasting constructions, the introduction of EC 2 [41] brought
with it a number of changes in its verification procedures, leading to a number of inconve-
niences, which are mostly founded and confined to national regulations and application of
the introduced design standards. In Germany for example due to the requirement to reeval-
uate existing structures of high importance for the public infrastructure, like bridges, engi-
neers are faced with the task to apply these newly introduced standards with their usually
higher degree of conservatism to constructions designed following a different philosophy
as well as standards. Concluding from this challenge a number of new guidelines like the
Nachrechnungsrichtlinie [125] in Germany were developed, requiring a more thorough in-
vestigation of the construction and introducing changes to the verifications that might be
applied for the sole purpose of reevaluating of existing constructions.

While these guidelines extend and/or differ upon/from the limits set by the codes and stan-
dards they do not engage in the origin of the existing discrepancies. For this reason an
engineering model focused on the physically compatibility of the individual mechanical
shear-bearing mechanisms is developed. To unify these individual parts a calculable vari-
able is required. As an obvious choice the vertical deformation resulting from loading
can be chosen for this purpose. Furthermore by coupling multiple systems via a common
resulting variable provides the pleasant byproduct of determining the internal load distribu-
tion among the systems, since each individual deformation is directly linked to the loading.
Simply said the stiffness of the individual system determines the distribution of the load
across them, to ensure the same behaviour.

The engineering of the proposed model focused on coupling individual shear-bearing mech-
anisms to work in parallel with each other is showcased in this chapter. First an approach
to determine the actual stiffness of a reinforced and prestressed beam is provided in section
5.2. It can be used to determine the deformation, which can further on be used to link the
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subsequent load-bearing sub-systems. The proposed model includes the compression arch
with tension chord and the truss which are introduced in section 5.3. An evaluation of the
applicability of the proposed engineering model with regard to the test series (section 4.5)
can be taken from section 5.4.

5.2. Beam Stiffness

5.2.1. Overview

This section showcases the approach on how to determine the stiffness of a general beam.
It can be applied to prestressed or none prestressed beams, yielding its stiffness in case of
recalculation, where not all parameters, like the state of the prestressing force are known.

5.2.2. General Approach

The basis for the showcased approach lies within the Euler–Bernoulli beam theory, which
states that the beam must be slender, plain cross sections remain plain after deformation
and that cross sections that were perpendicular to the beams longitudinal axis prior to defor-
mation remain perpendicular to the beams longitudinal axis post deformation. By taking
these assumptions into account the following general differential equations of the beam
can be derived with regard to the distributed force loading q(x), distributed moment load-
ing m(x) and an externally applied curvature κe(x), f.e. resulting from temperature loading
or eccentric forces, at the given location x along the beam. The internal shear force (V(x))
and bending moment (M(x)), as well sa the beam dependent parameters of the Young’s
modulus E and the area moment of inertia I(x), are also variable along the beams axis.

dV(x)
dx

= −q(x) (5.1)

dM(x)
dx

= V(x) + m(x) (5.2)

dφ(x)
dx

= −

ï
M(x)

E · I(x)
+ κe(x)

ò
(5.3)

dw(x)
dx

= φ(x) (5.4)

Equation 5.5 can be derived by rearranging Equation 5.3. It allows for the calculation of
the local stiffness depending on the bending moment and the resulting curvature.

E · I(x) = −
M(x)

dφ(x)
dx − κ

e(x)
(5.5)

Assuming that the internal forces as well as the initial state of the beam are known, the
curvature resulting from these parameters is required to derive the beams stiffness. The
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curvature therefore can be determined by the cross-sections strain distribution. The param-
eters needed for the next steps can be taken from figures 5.1 and 5.2.

bmax

hmax

y

z

Figure 5.1.: General cross section
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Figure 5.2.: Equilibrium of forces at a section

Figure 5.1 shows a general homogenous cross section. It has a maximal height of hmax and
depending on the height coordinate a varying width. The width will be referred to by w(z).
The equilibrium of forces at a given section of the beam is defined in figure 5.2. The two
following equations (equations 5.6 and 5.7) result from it.

CCS − TCS = N (5.6)
CCS · (zt − zc) + N · (zt − zN) = My (5.7)

As long as the stress and strain within the cross section are depending on each other, the
resulting force can hence be given by:

FCS =

∫ hmax

0
σ(ε(z)) · b(z)dz(.) (5.8)
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Using the equilibrium equations 5.6 and 5.7 as well as equation 5.8 a system of equations
depending on the stress σ(ε(z)) can be derived. The resulting equations for the equilibrium
of forces and moments are given by equations 5.9 and 5.10 respectively.∫ hmax

z0

σ(ε(z)) · b(z)dz −
∫ z0

0
−σ(ε(z)) · b(z)dz = N (5.9)∫ hmax

z0

σ(ε(z)) · b(z)dz · (zc − zt) + N · (zN − zt) = My (5.10)

Combining the equation forσ(ε(z)) with the assumption, that the strain distribution is linear
over the cross section height, the following two variables are unknown:

• z0 ,

• εtop or εbottom.

Determining the unknowns using the equations of equilibrium is then possible.

If the strain distribution is known within the cross-section, equation 5.11 can be used to
calculate the curvature at that point.

κ(x) =
εtop + εbottom

hmax
(5.11)

Using equation 5.3 in combination with the calculated curvature for a given stress distribu-
tion yields the beams stiffness at that location (equation 5.12).

E · Iy =
M(x)

κ(x) − κe(x)
(5.12)

The given approach has the advantage that the local stiffness can be determined independent
of its cross section, material and statical system.

5.3. Development of the Mechanical Model

5.3.1. Arch with Tension Chord

Theory

As previously discussed, one of the shear-bearing mechanisms that make up the behaviour
of a reinforced or prestressed concrete beam is the compression arch with tension chord
(section 2.2.2). Some advanced shear models incorporating this mechanism like the ECAM
(section 2.4.7) already exist and are able to showcase its compatibility in determining the
shear-bearing capacity of a reinforced concrete beam.

For the stiffness based approach pioneered here it is necessary to determine the stiffness of
the compression arch with tension chord within the reinforced concrete beam. This allows
a coupling of it to other sub-systems to predict the distribution of loading amongst them.
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5.3. Development of the Mechanical Model

Simply Supported Beam

The differential equations of the arched beam can be derived, providing the necessary ge-
ometry and boundary conditions (figure 5.3). Even so the differential equation can be
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Figure 5.3.: Deformation and equilibriums states of an arch

developed using polar-coordinates, for the further use and compatibility with the beam and
the subsequent shear-bearing mechanisms the Cartesian-coordinate system (l, t) is chosen
in accordance with [130]. Following figure 5.3 the arch section-length ds is defined by√

ds2 =
√

dl2 + dt2 and provides the relation between global deformations u, w, the local
strain ε and the local rotation angle due to bending φ to be:

dw = dt − (1 + ε)ds · sin(ϑ + φ) (5.13)
du = −dl + (1 + ε)ds · cos(ϑ + φ). (5.14)

Applying small-angle approximation for φ and as a result imposing φ ·ε = 0 equations 5.13
and 5.14 can be rearranged to:

φ =
dw
ds
· cos(ϑ) +

du
ds
· sin(ϑ) (5.15)

ε =
du
ds
· cos(ϑ) −

dw
ds
· sin(ϑ). (5.16)

For the following equations the differentiation with respect to the coordinate l will be
marked as ′. This results in a rewriting of equations 5.15 and 5.16 into equations 5.17
and 5.18 respectively, where the beam and cross-section parameters Young’s modulus E,
area moment of inertia I and area A as well as the temperature tt in ◦K and temperature
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variable αt in 1/◦K.

φ = w′ + εtan(ϑ) (5.17)
ε = u′ − φ · tan(ϑ) (5.18)

ε =
N

EA(l)
+ αttt (5.19)

κ = −
M

EI(l)
(5.20)

Implementing Hooks’ law (equations 5.19 and 5.20), where κ = φ′

cos(ϑ) is the curvature
resulting from bending, in the rearranged equations (5.17 and 5.18) for u′ and w′′ results
in:

u′ =
Å

N
EA(l)

+ αtt
ã (

1 + tan2(ϑ(l))
)
+ w′tan(ϑ(l)) (5.21)

w′′ = −
M

EI(l)
·

1
cos(ϑ(l))

−

ïÅ
N

EA(l)
+ αttt

ã
· tan(ϑ(l))

ò′
(5.22)

The equilibriums equations gathered from figure 5.3 are stated below and combine with the
elasticity law (equations 5.23 - 5.25) to a coupled non linear system of differential equations
(equations 5.26 and 5.27).

L′ + ql(1 + u′) = 0 (5.23)
T ′ + qt(1 + u′) = 0 (5.24)

M′ − T (1 − u′) + L(tan(ϑ) + w′) = 0 (5.25)

Since horizontal loadings on beams are in general rare and minor in size (ql → 0), in a first
step this system of differential equations can be simplified. Thus for the further equations
L′ = 0→ L = const. is valid.

T ′(l) + qt(l)(1 + u′(l)) = 0 (5.26)ï
EI(l) · cos(ϑ(l))

Å
w′′(l) +

ïÅ
N(l)

EA(l)
+ αtt
ã
· tan(ϑ(l))

ò′ãò′′
+

+L
(
tan′(ϑ(l)) − w′′(l)

)
+ T ′(l) +

[
T (l)u′(l)

]′
= 0

(5.27)

Equation 5.27 is derived by differentiating equation 5.25 with respect to l and substituting
M with equation 5.22.

The derived system of differential equations can only be solved numerically. When con-
sidering the compression arch as an internal system of a reinforced or prestressed concrete
beam it is sufficient to calculate the deformation in accordance with first order analysis.
Including stability related influences introduced in higher order analysis in fact can lead
to a decrease of plausibility since these influences mostly related to slenderness of the
calculated system and therefore do not occur when being embedded within the complete
load-bearing structure.
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As with all differential equations, the boundary conditions need to be considered. One
major point of influence considering the system stiffness in the context of an internal load-
bearing system of a reinforced concrete beam is given by the tension chord, affecting the
horizontal displacement.

Alternatively further well known engineering approaches can be used to determine the
deformation of the compression arch with tension chord, like the principle of virtual work
and energy.

Application to a General Reinforced or Prestressed Concrete Beam

Substituting part of the load bearing capacity of a reinforced or prestressed concrete beam
with a compression arch with tension chord requires some consideration concerning its
geometry, since they need to coincide with the beams dimensions, loading and boundary
conditions. Since the arch shape, within the external geometrical limitations, tries to mimic
the moment curve to create an arch which is as moment free as possible, the fix points in
arch direction resulting from this can be determined as follows:

• Supports,

• Minima/Maxima of the Moment Curve,

• 0-Points of the Moment Curve.

Additionally the verification of the cross-section, which provides the compression zone
height, is required to finalise the shape of the arch. The generally applicable formulas for
the verification can be taken from EC2 [41] or FIB Model Code 2010 [48]. Equations
5.28 and 5.29 are used for the relation between the stress σc and strain εc in the concrete
(compare to section 3.2.3), while the generally applicable bi-linear stress-strain relation is
assumed for the reinforcement steel.

σc = fcm while εc > εc1 (5.28)

σc =
kη − η2

1 + (k − 2) · η
· fcm while εc ≤ εc1 (5.29)

with
η = εc/εc1

k = 1.05 · Ecm · |εc1|/ fcm

Combining the cross-sectional geometry with the centre of gravity of the resulting com-
pression zone provides the height coordinates of the compression arch at the previously
mentioned fix points corresponding to the minima/maxima of the moment curve. At the
0-points the cross-sectional centre of gravity and at the boundary conditions the respective
support locations provide further coordinates. Using a polynomial of the degree equal to
the amount of determined boundary conditions, aka fix points, the shape of the compression
arch can be constructed.
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In addition to the shape, the cross-sectional values along the arch as well as the internal
forces under loading are needed to determine the arches deformation. It has a varying
area which can be determined at the fix points according to either the compression zone at
moment minima/maxima, the entire cross-section at moment 0-points and support areas at
exterior boundary conditions. Between these calculated values the cross-sectional values
are assumed to behave linear. Alternatively constant values could be assumed, leading
to slightly larger deformations under the same loads. In both cases the compression zone
under moment load bearing capacity according to the amount of longitudinal reinforcement
is used.

When this constructed arch is then loaded, the deformation can be calculated following the
before mentioned differential equations or alternate methods.

The application of this approach is highlighted in the following section for a beam from the
numerical test series (section 4.5).

Example Beam T10-2-2

As exemplary application beam T10-2-2 of the numerical test series is used (section 4.5
and annex A.4). The beam as well as the resulting compression arch with tension chord
are shown qualitatively in figure 5.4. Applying the previously described approach a com-
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Figure 5.4.: Beam T10-2-2 and the corresponding compression arch with tension chord

pression arch as depicted in figure 5.4 can be derived. The shape showcases the influence
the T-shaped cross-section and its centre of gravity, leading to it being much flatter in the
area of a positive moment, while being steeper near the clamped support. Another point
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can be taken considering the mentioned fix points. While the arch coincides with the cross-
sections centre of gravity at the location of the 0-moment, it does follow the generally
assumed compression zone at the clamped support, while falling all the way to the moment
free support to allow for a physically sound stress transfer into the support.

In addition the disassembled structural systems, which make up this compression arch with
tension chord are depicted, allowing for a straight forward calculation of the internal forces.
The positioning of the moment couplings are decided to ensure the tension chord, aka the
reinforcement, to be moment free, following their stress distribution and load-carrying part
within the reinforced concrete beam. This is system compliant, since the statical systems
depicted are reduced to their idealised system lines, even so their cross-section at the point
of 0-moment does theoretically conform to the entire beam cross-section. Doing this re-
moves unwanted eccentricities, which would provide unrealistic stress flow, contradicting
the expected flow from a stress fan. Since these systems are merely sub-systems they also
transmit the forces at the section where they are connected within the beam.

With the structural systems the forces within the sub-systems compression arch with ten-
sion chord can be determined with regard to a unified load following the actual loading.
Disregarding the moment which is expected in the unsymmetrical shape, limited by the
beams dimensions, the tension forces in the reinforcement can be calculated directly, lead-
ing to the compression forces along the arch. This follows standard assumptions for subsys-
tems, like the classical truss analogy (section 2.4.1) and can be done due to the theoretical
system actuality being embedded in a larger specimen and its actual load-bearing mecha-
nism being more complex. This also voluntarily induces a degree of conservatism, gener-
ally appreciated in engineering models breaking down complex mechanisms to workable
approximations.

Parallel to the arch’s shape the cross-sectional parameters need to be determined. For
this the moment load-bearing capacity is needed resulting from the amount of longitudinal
reinforcement, from which the compression zone height and the corresponding area can be
gained. Proceeding this step the area can be assumed either constant for each subsection,
or linear changing with the minimum being the area attributed to the compression zone
under moment load-bearing capacity and the support areas either being the complete cross-
section in case of the moment 0-point, or the external contact area of the supports. Table
5.1 provides the determined areas at the arches fix points, while figure 5.5 showcases the
influence between the constant and a varying cross-section approach.

Table 5.1.: Cross-sectional areas at the fix points of the arch (clamp (Aclamp), moment 0-
point (A0M), maximal moment (AmaxM) and moment free support (Asup))

Aclamp A0M AmaxM Asup

[mm2]
1282.5 5400.0 900.0 265.9
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Figure 5.5.: Comparison of deformation of the sub-system compression arch with tension
chord for T10-2-2 with regard to the area subjected to a uniformly distributed
load of 100 kN/m

Figure 5.5 shows the rather small difference of the deformational behaviour as well as the
maximal deformation resulting from the comparison of the different cross-sectional areas
under the same load. Especially considering the difference of less then 3% for the max-
imal deformation highlights its negligible influence. To confirm with the physical model
however the more precise approach of a changing cross-section for the compression arch
is used.

5.3.2. Truss

Theory

Since trusses are considered to only carry normal forces within its members, the stiffness
of a truss girder can be considered to consist purely off of the shear stiffness based on the
diagonals and the verticals of its structure. The following definitions and equations in this
section are in relation with a truss element as seen in figure 5.6. The equations can not be
applied to different truss shapes. If a different truss shape is present, the equations need to
be re-evaluated.

Following [130] the shear-stiffness of the presented truss-segment can be calculated by:

1
GAtruss

=
d3

EAdiagab2 +
b

EAverta
, (5.30)

where the annotations truss, diag and vert are attached to the beam parameters Young’s mod-
ulus E or shear modulus G in combination with the area A to signal the parameters for the
truss equivalent beam, the trusses diagonal beam or vertical beam respectively.
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a

b

d

Figure 5.6.: Truss system on the basis of the truss analogy according to [41]

Using equation 5.30 allows for a truss-segment individual determination of the stiffness,
neglecting the deformation of the belts, since it is already included in the compression arch
with tension chord. This can be used in the case of the truss-model assigned for the shear-
bearing capacity of reinforced concrete beams to account for the varying cross-section of
the concrete compression diagonal, leading to a staggered increase of shear stiffness when
looking at the truss-girder from its support towards the mid-span, when looking at the
discrete systems. Figure 5.7 can be used as an example, where the changing variables are
the cross-section of the diagonals (Adiag) and the cross-section of the vertical (Avert) truss
members, but the cross-section parameters of the compression diagonals are changing. Due
to symmetry only half of the truss is shown.

EAvert = const.
Ediag = const

av

l
2 = n · as

q

1 2 3

t

l
n − 1 n

w1 wnwn−1

Figure 5.7.: Truss with varying section properties

Using equation 5.30, the shear-stiffness of each truss segment can be calculated (equation
5.31) under the assumption that Adiag =

Tn
σdiag

, where Adiag is depending on the shear-force
Tn of the segment and the diagonal compression stress σdiag, which in case of verification
calculations is set to the material strength σdiag = fdiag.
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1
GAn

=

Ä√
a2

s + a2
v

ä3
· σdiag

EdiagTnasa2
v

+
av

EAvertas
(5.31)

As a disclaimer it has to be mentioned, that the above given equation can only be applied
to trusses of the in figure 5.7 portrayed design. The design is chosen due to its applicability
to the truss analogy in accordance with Eurocode 2 [41] and the predominantly vertically
installed transverse reinforcement. For other truss designs, resulting f.e. from angled trans-
verse reinforcements, the necessary supplementary equations can be gained from [130], or
need to be determined individually.

The vertical deformation at the end of a given segment can be calculated as follows:

wn =

n∑
1

1
GAn

. (5.32)

A relation between the compression force in the diagonals and the shear-stiffness can be
established.

Since a plethora of discrete trusses can be formed within a reinforced concrete beam, de-
pending on the compression diagonal angle and the spacing of the shear reinforcement,
all of them need to be accounted for when using them as a sub system for the shear load-
bearing capacity. This can be achieved by either putting this plethora of discrete systems
in parallel and distributing the acting load amongst them with regard to their stiffness, or
by accounting for them more generally as a smeared truss system, which combines their
resistances as it is usually done in standards like the EC2 [41]. It needs to be mentioned,
that one further difference between these two approaches lies in the compression diagonal
angle. While it is gathered out of the geometry for the discrete trusses, it needs to be chosen
in case of the smeared truss. For this a first approximation can be done by following the
recommendations given by EC2.

Example Beam T10-2-2

While the smeared truss is generally well known, the influence of the compression diagonal
angle needs to be visualised, to enable the use of it in tandem with the compression arch
with tension chord (section 5.3.1). Therefore beam T10-2-2 (section 4.5 and annex A.4)
will be used to quantify the influence of the selected angle on the truss’ vertical deforma-
tion. The beam and its reinforcement are shown in figure 5.8 with all relevant measure-
ments.

Including the possible compression diagonals resulting from an angle that ranges between
≈ 25◦ to ≈ 60◦ showcases the large quantity of different discrete trusses, that would needed
to be accounted for if choosing that approach. They coincide with the stress fields as
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Figure 5.8.: Beam T10-2-2 and its possible discrete trusses

discussed in section 2.4.2 with their fan-like shape close to the supports and the parallel
stress fields where the individual trusses are overlapping each other.

Since the proposed approach uses smeared trusses the most important variable can be found
in the angle of the compression diagonal. The variance that results from it is provided in
figure 5.9.
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Figure 5.9.: Comparison of deformation of the sub-system smeared truss for T10-2-2 with
regard to the angle of the compression diagonal

A clear dependency of the deformation on the selected angle of the compression diagonal
can be established by figure 5.9. Originating from the correlation between the angle and

97



5. Mechanical Shear Model for Reinforced and Prestressed Concrete Beams

the corresponding amount of transverse reinforcement Avert, decreasing with an increase
of the angle, this variance in shear stiffness can be explained by equation 5.31. Especially
the areas close to the supports, where the largest shear forces are present lead to this stark
variance in the total deformation. When comparing them to the deformation resulting from
a constant area of the vertical truss elements, the stiffening effect of the area increase de-
pending on the angle can be highlighted. As fixed Avert the area corresponding to the 60◦ is
used, resulting in 257.0 mm2.

5.4. Evaluation

5.4.1. Numerical Database

Quality of a method can be assessed from its ability to reproduce trends from changing
variables, that coincide with the reality, as well as the actual accuracy of the prediction, in
the investigated case this can be found in the critical failure load Fcrit.

To allow an evaluation of the first mentioned behavioural correctness of the method, the
previously introduced effect diagrams derived in section 4.5.2, spotlighting the influences
of span length L, slenderness (λ) and shear-reinforcement ratio (ρt), are normalized (figure
5.10). The mean-result for the mean-value of each variable is used for this normalisation,
hence they define the scale of the effect diagram at a value of 1.0. As discussed in the
evaluation of the numerical test series, beams T20-1-2 and T20-2-2 did fail due to concrete
crushing at the clamped support, while T10-1-1 and T10-1-2 failed due to bending. Hence
these four tests will be excluded in the effect diagrams.

As the pioneered engineering model as well as the smeared truss model of EC2 allow for
an engineer sided selection of the compression strut angle, it will be fixed at 30.0◦ for
the purpose of this evaluation, to ensure an objective comparison. The diagrams featuring
alternative angle selections are provided in annex C section C.1.

Generally speaking it can be seen that trends, that are present for the numerical simulations,
are followed by the models, but with varying degree of accuracy. The two verification
methods, the engineering model and the EC2, do match well with each other, but do show
some differences to the numerical simulations for the investigated case of a shear failure in
a shear and normal strain coinciding cross-section.

Especially the effect diagram showing the influence of the transverse reinforcement ratio
does provide an understanding of the aforementioned overweighting of that variable. Since
this diagram is normalised and therefore does merely provide a trend, it has to be stated that
the numerical simulation does not show any evidence of the reinforcement ratio influencing
the critical failure load in the investigated case of a one-sided clamped single span girder
loaded by a uniformly distributed load, leading to an overlapping of high normal stresses
with high shear stresses. Concerning the other two variables no mentionable deviation can
be observed using the test series data.
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Figure 5.10.: Normalised effect diagrams for the variables span length, slenderness and
reinforcement ratio

While the effect diagram does provide some value in showing similar behaviour of different
methods, an evaluation of the critical load prediction is equally necessary to determine the
quality of the suggested verification model introduced in section 5.3.

Next to the ability of a model to follow trends, the quality of a method is also linked
to the accuracy of its predicted results. At this point it has to be pointed out, that the
values derived by the engineering model use the failure load of the smeared truss system
as its limiting factor. This means, that the critical failure load according to the engineering
model consists of the failure load of the smeared truss subsystem and the added load of
the compression arch, at the point of equal deformation to the smeared truss system. It is
included in figure 5.11 under the tag Model. Figure 5.11 provides a standardised diagram
for the critical failure load Fcrit,n for each beam in the test series, comparing them with the
the EC2 model as well as the CCCM as described in [30] (also mentioned in section 2.4.7)
and the suggested improvement to [125] as provided by [68], further noted as NRR.

Other models sometimes suffer when being applied to this investigated case, due to their
improvements to general shear models, resulting from verification against the shear database
with its over representation of simply supported single span tests. In the case of the model
following [78], one improvement does concern the location of the critical control section,
being defined as the location of the closest crack due to bending to the investigated support,
making it impossible to be applied to a clamped supports.

Further diagrams showcasing alternate angles for the EC2, the NRR, the CCCM and the
engineering model as well as non normalised results can be found in annex C section C.2.

The following evaluation of the engineering model is done in comparison to the model from
EC2. The scientific models are exempt for the further evaluation, but highlight the short
comings of the current standards, as well as possible additions to the engineering model
approach, that can be included in the development of a verification method.
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Since both engineering model in its current theoretical approach as well as the smeared
truss model of the EC2 are unable to account for the complex failure modes of experiments
T10-1-1, T10-1-2, T20-1-2 and T20-2-2 (section 4.5.2), they will be exempt from the fol-
lowing discussion and values provided. However these cases do provide ground to discuss
limits of applicability of the models, following the model evaluation.

While the engineering model provides a fluctuating quality of the failure load when com-
pared to the numerically derived one, it can be stated that it does perform better than the
current standard of the EC2.

Comparing the two verification methods provides on average a failure load of 67.7% and
56.2% compared to the numerical results for the engineering model and the EC2 respec-
tively, which do still follow the same trend when looking at the individual beams. This
similarity is founded in the engineering model merely expending on the smeared truss
model provided in EC2, by introducing another load-bearing system in the compression
arch, by which an increase of 21.7% on average can be noted for the configuration cur-
rently discussed.

Furthermore the engineering model links the quantitative participation of the compressive
arch to the angle of the compression strut by coupling them using their respective stiffness.
In case of the test series, the proportional increase of the critical failure load of the engineer-
ing model in comparison with EC2 does decrease from 33.2% for a 45◦ compression strut
to the afore mentioned 21.7% at 30◦. This effect is linked to the decrease in deformation as
visualised in figure 5.9, leading to a smaller load required to deform the compression arch,
which is independent of the truss, to the same degree.

However the varying accuracy of the prediction that is inherent of the EC2 shear verification
method, especially at small transverse reinforcement ratios (section 4.5.2), is still apparent
for the engineering model. While a considerable increase in the predicted critical failure
load is achieved, it still does fall short when compared to the numerically determined re-
sults. Still the 29.2% relative increase of the predicted loads of the tests with small amounts
of transverse reinforcement compared to 15.6% in case of the large amounts of transverse
reinforcement show a fading influence of the compression arch with an increase in trans-
verse reinforcement. This does highlight the practicability of the engineering model, since
an increase of transverse reinforcement does in fact lead to a diminishing influence of other
factors on the shear-load bearing capacity due to its overshadowing stiffness and strength.

As mentioned the excluded cases of T10-1-1, T10-1-2, T20-1-2 and T20-2-2 provide clues
towards the limits of the model, that need to be defined. For the first case of T10-1-1 and
T10-1-2, failing due to bending, the high normal stresses compensate the tensile stresses,
leading to an inability of a shear crack to form within the web, hence the transverse rein-
forcement can not be activated. For this case a simple verification of the main tensile and
compressive stress can be used as a first point of notion. If the compression zone resulting
from bending does encompass the height of the web at the critical control section, and the
main tensile stress is negligible compared to the tensile strength of the concrete, no failure
due to shear can occur and the shear models discussed can not be applied. The second case
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present at beams T20-1-2 and T20-2-2, where a failure of the compression strut within
the concrete is present can be tackled the same way, but instead of the main tensile stress,
the main compressive stress needs to be evaluated. Hence an investigation into the main
stresses should be part of every evaluation to pinpoint the correct modes of failure and
therefore apply the corresponding verification methods.

5.4.2. Prestressed Cantilever Beams

Looking at more recent physical shear-testing, it becomes clear that the current focus lies
on continuous systems under prestressed conditions [54, 68, 62]. While the presented
shear model focuses on stiffness relations in its ability to distributed the acting loads on
the arch with tension chord and the smeared truss presented in reinforced and prestressed
concrete beams it is vital to have a precise understanding of the system. However in the
attempt to maximise the use of test specimens, by altering parameters between the spans,
like the amount of shear reinforcement [68], and strengthening the section of failure to
continue testing the other span, leads to convoluted stiffness distributions between the spans
as well as prior and post failure of the first span. Remodelling these changes in stiffness
and resulting system behaviour for the presented mechanical shear model could be done
via boundary conditions, but would require thorough data and measurements.

Alternatively cantilever beams, modelled and loaded to confirm with these aforementioned
tests were performed, allowing for precisely controlled boundary conditions [54, 68]. These
tests are used to apply the concept of the presented mechanical shear model to prestressed
beams. The tests further investigated are provided in [54] and focus on the influence of the
longitudinal reinforcement in the shear-bearing capacity of prestressed concrete beams.

By keeping the prestressing force to provide 2.5 MPa of normal stress on the gross cross-
section, varying the amount of longitudinal reinforcement inadvertently results in an alter-
ation of the normal stresses acting on the concrete. This influence can be seen by the beams
T25 and R25 resulting in a reduced failure load when compared to the T18 and R18 beams,
despite of having nearly double the amount of longitudinal reinforcement. This decrease
of the failure load can partially be retraced mathematically. Firstly the main stress can be
calculated following

σI/II =
σx

2
±

…
(
σx

2
)2 + τ2. (5.33)

By substituting σII = fc,t as well as σx = σc,prestress, where fc,t is the tensile strength
of concrete and σc,prestress is the normal stress acting on the concrete, the resulting main
tension stress, that can be linked to the critical shear stress τ in the investigated example,
can be calculated.

The acting normal stress on the concrete for the beams of the test series can be calculated
in accordance with the ideal cross-section, resulting in the case of the T25 and T18 beam
to be 2.21 MPa and 2.36 MPa respectively. Following equation 5.33 the resulting shear

102



5.4. Evaluation

stresses τ can be derived to be 4.15 MPa and 4.48 MPa in accordance with equation 5.33
and provided having in mind, that the splitting tensile strength fct,sp leads to fct by the well
known relation fct = 0.9 · fct,sp. This increase of about 8, 1% of the shear stress bearing
capacity of the concrete without the activation of transverse reinforcement can provide
some reason on the critical load increase of 13, 5% when comparing T18 to T25. Assuming
τ to only act on the concrete net shear cross-section, the qualitative increase of critical
load with the decrease of the amount of longitudinal reinforcement can be calculated to
approximately 9.5%. The calculated critical failure loads resulting from this consideration
of the tensile strength of the concrete, as well as the critical failure loads in accordance to
[54] are provided in table 5.2.

Table 5.2.: Failure loads of prestressed cantilever tests with varying longitudinal reinforce-
ment [54]

Fcrit,calc [kN] Fcrit,test [kN]
T18 577.9 578.8
T25 528.0 509.9
R18 478.7 584.6
R25 462.5 483.9

With the exception of R18, the attempt at predicting the critical failure loads of the can-
tilever tests solely based on the main tensile strength of the concrete performed exception-
ally well. While this does provide valuable insight in the predominant load bearing system,
it also highlights the negligible influence of the transverse reinforcement. Speaking of the
mechanical shear model presented in this work, this showcases the interplay of the sub-
systems working in parallel within their own physical limits regarding individual failure as
well as activation. For these cantilever tests the subsystem direct action, developing as a
compression strut with tension chord as shown in figure 5.12, gets activated right from the
start of loading, and its failure also marks the failure of the beam, since stresses at the point
of failure of this subsystem can not be redistributed onto the smeared truss system, which
instantly exceeds its load bearing capacity. The transverse reinforcement does however
partake in the load bearing system mainly at the point of loading as well as the clamped
support. However the supporting plates used for loading on one site and supporting on the
other of the cantilever, allow the shear stresses to distribute themselves over the height of
the cross-section rather than concentrate on a singular line support as would be the case in
a real world situation with point supports underneath the girder’s web.

Further substantiating this mechanical load-bearing system are the recorded crack patterns,
which suggest the development of a compression strut with a shallow angle of around 20◦

as observed during the experiments. Accounting for stress distribution due to loading and
boundary conditions at the end, that is mainly aided by the transverse reinforcement, as
well as the stress distribution within the compression strut and the resulting cross-section,
this shallow angle compression strut allows for the transfer of the shear forces along the
length of the test specimens.
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Figure 5.12.: Dimensions of the cantilever tests [54] and the superposed theoretical model

Application of the previously introduced shear model to this test scenario consists solely
of this aforementioned compression strut with tension chord, depicted in figure 5.12. The
deformations in accordance to the loading as described in [54] are provided in figures 5.13
and 5.14.
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Figure 5.13.: Comparison of deformation of the cantilever tests for T-cross-section taken
from [54]

The achieved deformation, when applying the simplified compression strut with tension
chord matches exceptionally well with the measured deformations of the test specimens.
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Figure 5.14.: Comparison of deformation of the cantilever tests for R-cross-section taken
from [54]

Especially when taking into account, that at lower loads the Young’s modulus is larger than
the provided value due to testing. The softening at loads beyond 0.4 fcm has been accounted
for to achieve a good match at the point of failure.

Even so only the direct action load-bearing capacity is activated in this case it show-
cases the potential of combining the different load-bearing models, in providing the load-
deformation behaviour of the beam. It also highlights the necessity of accounting for acti-
vation and failure of the load-bearing subsystems, when establishing a shear verification or
shear design model on this concept.

5.5. Conclusion

In summary it can be stated that the proposed engineering model approach reaches beyond
the smeared truss model of the EC2. The wholistic approach of combining global load
bearing mechanisms and linking them via the deformation of the beam does hold potential
in its ability of distributing stresses to different load-bearing mechanisms based on the
specimens deformation.

Especially the investigation of the large clamped test specimens performed in section 5.4.2,
showed the possibility on deriving a sound shear verification model. By accounting for
the subsystems individual limits, the failure load of the direct action model was provided,
as well as the inability of the smeared truss model to compensate for it, at the point of
individual subsystem failure.

The evaluation of the numerical test series in section 5.4.1 on the other hand provided
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insight in the ability of the model approach to account for changing variables and reproduce
the investigated trends. While the model approach was performed solely with focus on its
capability, no design model required definition of failure criteria, accounting for all limiting
factors of the subsystems was made. At a reasonable first approach the limiting factor, taken
as failure criterion, was provided by the load-bearing capacity of the smeared truss.

Both investigations showcase the potential of the presented approach in being implemented
into a shear model grounded on physical behaviour of the concrete beam under load. How-
ever it has to be stated, that, if a shear verification model, based on this approach is to be
developed, the limits of the included subsystems have to be accounted for.
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6.1. Summary

Economical design and sustainable as well as responsible use of resources has always been
a fundamental trait of engineering. This core competence has come under increased focus
of public interests in recent years, coinciding with some major changes in design stan-
dards as well as longevity of our building infrastructure. Facing this constellation, the
economical maintenance and prolongation of the service life of structures can be seen as
a significant contribution factor of civil engineers towards a responsible use of society’s
resources. To fulfil this duty realistic models, mimicking the structural behaviour and load
bearing capacities, are crucial to avoid wasteful design and constructions. At this point,
severe discrepancies between reality and design concerning the shear-bearing capacity of
reinforced or prestressed concrete slender beams for certain real world conditions are noted
by independent researchers. This disagreement forms the basis of this work.

Focusing on the multiple shear models in existence and use, spanning from single standing
approaches like the fracture mechanic based models, attributing failure down to the fracture
energy released in the crack propagation, to the more generally applicable models like the
Compression Field Models, which base their behaviour on a more wholistic stress-strain
relationships within the reinforced concrete members, it becomes clear, that the riddle of
shear is still far from being solved satisfactorily. Enabling this plethora of distinct ap-
proaches is the inhomogeneous material reinforced concrete, providing multiple different
mechanisms counteracting shear loading. Furthering this complexity are secondary influ-
ences deriving from external influences like loading conditions, selection of cross-section
and longitudinal system.

Cutting down the abundance of parameters by focusing on high priority applications of re-
inforced or prestressed concrete slender beams in bridges, the case of a one-sided clamped
single span girder loaded by a distributed load, mimicking internal as well as end supports,
was chosen to be investigated further. Reasoning behind this choice lies in the stress dis-
tribution, allowing for overlapping of high normal stresses and high shear stresses at the
clamped support. Compared to the usual test setup of a single span girder, this allows for
load-bearing interactions to be considered. Highlighting the ability of the design of ex-
periments approach, a numerical test series is designed around the variables slenderness,
span length and transverse reinforcement ratio, consisting of 15 tests. While these tests do
not have physical reference data, the numerical model and approach is validated against
multiple tests from the literature, showing good agreement with the recorded data.

107



6. Summary and Outlook

Evaluation of the numerical test series shows the aforementioned differences between the
expected shear-bearing capacities according to the current design model and the simulated
critical failure loads. Especially the low impact of the transverse reinforcement ratio on the
critical failure load can be noted for the numerical results. They only provide a maximal
increase of the critical failure load by 13% for a doubling of the transverse reinforcement
ratio. In comparison, this difference, according to the EC2 shear design approach should be
200%, assuming the compression diagonal does not fail prior. This further showcases the
shortcoming of the EC2 shear design approach in representing reality, as well as provide
evidence that the reduction of the transverse reinforcement ratio does not compromise the
safety of the structure significantly in case of coinciding normal compression stresses and
shear stresses at the location of the critical control section. Reasoning for this behaviour
influence can be found in the stress interaction of normal stresses, resulting from bending
moments and the shear stresses. They control the allocation of loads and resulting contri-
bution of the individual load-bearing mechanisms.

This stark difference highlights the biased databases, which were used in the development
of the EC2 design approach, being almost purely consisting of single span experiments
under concentrated loading and hence neglecting more complex stress distributions and
interactions. Furthermore the lack of consideration of the shear bearing capacity of the
concrete compression zone can be noted. While the design of reinforced concrete without
transverse reinforcement does acknowledge some shear-bearing capacity of the concrete
cross-section, it is disregarded as soon as transverse reinforcement is included. Hence
the qualitative prediction improvement of the design method with increasing transverse
reinforcement ratio can be fathomed, since the shear-bearing capacity of the concrete has a
diminishing influence with an increase of other shear-bearing mechanisms.

Due to the shortcomings of the current design method to reliably predict the failure load of
the test series’ beams a structural engineering model is derived, focusing on global load-
bearing mechanisms. It incorporates the smeared truss model as well as the compression
arch model as subsystems of the beam, while disregarding localised mechanisms like the
aggregate interlock or dowel action. Since these two models act simultaneously and work
in parallel, coupling them is done via the deformation. This approach accounts for the
possibility of changing stiffness relation and a resulting altering of the load distribution
among them. As by-product this method allows for allocation of the acting load onto the
subsystems in accordance to their stiffness, enabling the calculation of stresses in individual
parts for any loading. Furthermore the coupling of the subsystems allows for redistribution
of the loads in case of failure of a subsystem. However, failure of one subsystem can be
synonymous to failure of the main structure in case of the subsystems being integral to the
overall load-bearing mechanism, as present in this here case.

Using the beams from the numerical test series the design approach of the structural engi-
neering model is showcased. In light of the presented method showcasing the potential of
the approach, rather than it being a fleshed out verification model, the chosen failure crite-
rion is taken to be governed by the smeared truss subsystem, disregarding limiting factors
of the direct action model, presented as the compression arch with tension chord.
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While these loads at coinciding deformation at the point of failure coincide with the trends
of the three investigated variables resulting from the current design method of Eurocode 2,
since the smeared truss model is the main load-bearing system, a qualitative improvement
of the predicted failure loads is achieved. Comparison of the predicted failure loads shows
a relative increase from the EC2 standard ranging from 15.6% for the large transverse
reinforcement ratio to 29.2% for the small one when applying the structural engineering
model instead. Decrease of the relative improvement with increasing transverse reinforce-
ment ratio highlights the diminishing partaking of the concrete compression zone in the
shear-bearing, as previously mentioned in the evaluation of the numerical test series, that
is accounted for in the structural engineering model. Therefore it has to be stated that the
developed and introduced model approach of parallelisation of load bearing mechanisms,
allowing for interaction, does yield the potential of improvement predicted failure loads for
the investigated case of a reinforced concrete one-sided clamped single span girders under
uniformly distributed load.

Applicability and transferability of these results to prestressed concrete beams originates
from the comparable stress situation is showcased by the evaluation of large scale cantilever
tests. Especially the adaptability of the approach, based on the coupling of subsystems with
individual load-bearing behaviour and limits, as well as possible a possible failure criterion
are provided and proofed to yield good results for the investigated tests.

The numerical test series as well as the large scale cantilever tests do highlight the role
of normal stresses at the critical control section. Particularly the normal stresses resulting
from negative bending moments at the clamped support, even at the lack of normal forces
within the beam, contribute significantly to the shear-bearing capacity of reinforced con-
crete beams, which can be accounted for by mechanical models regarding direct action.
This effect is amplified when prestressing forces are present, as seen by the large scale
tests.

6.2. Outlook

Apparent from all the shear models and lasting research in the field, the quest for the final
shear model is far from over. Three major fields can be determined from this work for
which further research is necessary to edge closer to it. Firstly a critical investigation of the
existing shear tests of reinforced concrete slender beams in light of unintended bias seems
necessary. Tools provided by approaches like the Design of Experiments should be applied
retrospectively, as well as forming the foundation of further test series. Especially the
combination of physical tests with numerical simulations needs to be pursued, allowing for
economical design of test series, while not compromising the quality of knowledge gained.
Therefore the evaluation of new models and methods should not be conducted using a
statistical approach spanning a large number of physical tests, but rather on its quality to
predict known and researched trends, leading to a more thorough understanding of strength
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and weaknesses of each method as well as clearly identifying areas with potential of further
investigation, research and improvement.

Secondly shear models as well as design philosophies need to clearly state their simplifica-
tions as well as reasoning behind it to allow for application as well as comparison to other
models. In the case of the EC2 [40] in comparison to its predecessor in Germany DIN 1045
[38] and DIN 4227 [39], does completely neglect the partaking of the concrete compres-
sion zone in the shear bearing mechanisms, but only for transverse reinforced specimens,
while acknowledging it in specimens without it. This not only shows inconsistencies in
the design methodology but also makes a comparison to the previous standards extremely
difficult. Therefore the reevaluation of existing structures using the new standards can not
be quantified in its safety aspects as well as applicability. But most importantly the fact that
a more recent version of a design verification does stray further from the observed physi-
cal behaviour can therefore be caught early on and adjustments can be made, since going
backwards in the understanding of structural behaviour is never advised nor strived for.

Thirdly the introduced structural engineering model, allowing and recognising interactions
of load-bearing mechanisms showed to be an obvious improvement over the current stan-
dard. While the predominant design approaches for concrete, dividing load-bearing mecha-
nisms and viewing them as independent, are conservative, they can not represent the reality,
as recognised by design approaches for different materials. Therefore the acknowledge-
ment of interactions in load-bearing mechanisms can lead to a far more economical design
for reinforced concrete structures, not just limited to shear. One obvious research field,
which should be considered for this approach is the even more obscure load-bearing mech-
anisms concerning torsional moments in reinforced concrete specimens. The ability to
break the load bearing mechanism down to individual subsystems not only allows for clear
cut definition of the subsystems as well as evaluation using streamlined tests for them, but
by coupling them the actual load-bearing capacity can be approached conservatively and
on structural sound foundation.
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Appendix





A. Results of the Numerical Test
Series

This appendix provides the results of the numerical test series. They are split up into the
following sections:

• A.1 Setup and Dimensions: Test setup as well as specimen dimension of the numer-
ical simulation are provided in figures,

• A.2 Tables: Simulation results are provided in tabulated form,

• A.3 Diagrams: Simulation results are provided in diagrams for the test series,

• A.4 Visuals: Simulation results are provided in visual form.
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A. Results of the Numerical Test Series

A.1. Setup and Dimensions

In this section the test setup as well as the specimens cross-sections are provided. They are
divided depending on the beams length into figures A.1 - A.3. Material data as well as the
dimensions of the reinforcement are provided in section 4.5 table 4.8.
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Figure A.1.: Setup of the numerical tests with a beam length of 10 m
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A.1. Setup and Dimensions
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Figure A.2.: Setup of the numerical tests with a beam length of 15 m

III



A. Results of the Numerical Test Series

[cm]

2000 30

Ay,ls

Ay,lw

30

500 20

q

2

2 1

1Ay,t

10.0

150.0

20.0

30.0

1-1 2-2

10.0

10.0

100.0 20.0T20-1-1
T20-1-2

T20-2-1
T20-2-2

T20-0-0

200.0
20.0

133.3 18.9

Figure A.3.: Setup of the numerical tests with a beam length of 20 m
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A.2. Tables

A.2. Tables

In this section the results of the test series are provided in tabulated form. Table A.1 pro-
vides the critical failure force for the tests Fcrit,tot as well as the maximal reaction forces for
the intermediate support (clamped) Fcirt,sc and the end support (moment free) Fcrit,s f .

The explicit solver is responsible that there is a discrepancy between the sum of Fcirt,sc and
Fcrit,s f when being compared to Fcrit,tot. The reason for this lies in the interpolation method
of the solver, resulting in different points of each maximal value. Since they do not coincide
this discrepancy justified and small enough to be neglected in light of other uncertainties.

Table A.1.: Maximal values of the test series for total reaction force Fcrit,tot, clamped sup-
port Fcrit,sc and moment free support Fcrit,s f

Test ID Fcrit,tot [kN] Fcrit,sc [kN] Fcrit,s f [kN]
T10-1-1 850.12 522.24 334.55
T10-1-2 821.96 504.86 326.13
T10-2-1 1655.31 1022.3 676.22
T10-2-2 1637.43 1005.17 668.8
T20-1-1 1122.57 698.62 472.06
T20-1-2 1225.08 750.71 482.88
T20-2-1 2187.71 1364.73 937.79
T20-2-2 2534.2 1502.03 1048.15
T10-0-0 1203.14 733.05 472.16
T20-0-0 1634.68 1003.88 636.99
T15-1-0 1058.0 656.41 429.52
T15-2-0 2066.22 1253.08 861.2
T15-0-1 1392.15 835.32 601.44
T15-0-2 1541.94 943.12 615.99
T15-0-0 1504.63 911.95 599.25
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A. Results of the Numerical Test Series

A.3. Diagrams

In this section the loading of the test beams, as well as their behaviour are provided. Fig-
ures A.4 - A.6 provide the total loading over time as well as the reaction forces for the
intermediate support (clamped) and the end support (moment free).
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Figure A.4.: Diagrams showing the reaction forces of the 10 [m] beams of the numerical
test series
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Figure A.6.: Diagrams showing the reaction forces of the 15 [m] beams of the numerical
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A.4. Visuals

A.4. Visuals

In this section the visual results of the numerical simulations are documented. The four
parameters shown are the crack pattern as provided by the tension damage parameter, the
main stresses given as the van Mises stresses as well as the normal stress within the trans-
verse reinforcement and the longitudinal reinforcement.
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Figure A.7.: Numerical results for T10-1-1 at Fcrit,tot
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Figure A.8.: Numerical results for T10-1-2 at Fcrit,tot
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Figure A.9.: Numerical results for T10-2-1 at Fcrit,tot
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Figure A.10.: Numerical results for T10-2-2 at Fcrit,tot
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Figure A.11.: Numerical results for T20-1-1 at Fcrit,tot
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Figure A.12.: Numerical results for T20-1-2 at Fcrit,tot
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Figure A.13.: Numerical results for T20-2-1 at Fcrit,tot
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Figure A.14.: Numerical results for T20-2-2 at Fcrit,tot
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Figure A.15.: Numerical results for T10-0-0 at Fcrit,tot
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Figure A.16.: Numerical results for T20-0-0 at Fcrit,tot
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Figure A.17.: Numerical results for T15-1-0 at Fcrit,tot
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Figure A.18.: Numerical results for T15-2-0 at Fcrit,tot
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Figure A.19.: Numerical results for T15-0-1 at Fcrit,tot
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Figure A.20.: Numerical results for T15-0-2 at Fcrit,tot
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Figure A.21.: Numerical results for T15-0-0 at Fcrit,tot
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B. Numerical Test Series Equivalent
Cantilever

This appendix provides the set up and results of the cantilever simulations that are equiva-
lent to the numerical test series. They are split up into the following sections:

• B.1 Setup and Dimensions: Test setup as well as specimen dimension of the numer-
ical simulation are provided in figures,

• B.2 Tables: Simulation results are provided in tabulated form,

• B.3 Diagrams: Simulation results are provided in diagrams for the test series,

• B.4 Visuals: Simulation results are provided in visual form.
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B. Numerical Test Series Equivalent Cantilever

B.1. Setup and Dimensions

In this section the test setup as well as the specimens cross-sections are provided. They are
provided in figure B.1. Material data as well as the dimensions of the reinforcement are
provided in section 4.5 table 4.8 for the equivalent one-sided clamped single span beams.

The cantilever tests were only simulated for tests T10-2-1, T10-2-2, T20-2-1 and T20-2-2,
since their results proved to coincide with the full scale tests.
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Figure B.1.: Setup of the numerical cantilever tests, equivalent to the one-sided clamped
single span girders
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B.2. Tables

B.2. Tables

Table B.1 provides the maximal critical failure loads Fcrit,sc for the test series equivalent
cantilever simulations. These are directly comparable to Fcrit,sc from table A.1 for the
respective tests.

Table B.1.: Maximal values of the cantilever tests at the clamped support Fcrit,sc

Test ID Fcrit,sc [kN]
T10-3-1 1067.44
T10-3-2 1106.04
T20-3-1 1607.55
T20-3-2 1623.22

XIX



B. Numerical Test Series Equivalent Cantilever

B.3. Diagrams

In this section the load displacement curves of the cantilever simulations provided. For
reference on their quality, the same curves for the normal tests on the one-sided clamped
single span tests are included. Additional information on the full scale numerical simula-
tions are provided in section 4.5 as well as appendix A.
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Figure B.2.: Diagrams showing the load displacement curves for T10-2-1c and T10-2-2c
in comparison with their full scale counterparts T10-2-1 and T10-2-2
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Figure B.3.: Diagrams showing the load displacement curves for T20-2-1c and T20-2-2c
in comparison with their full scale counterparts T20-2-1 and T20-2-2
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B.4. Visuals

B.4. Visuals

In this section the visual results of the numerical simulations are documented. The four
parameters shown are the crack pattern as provided by the tension damage parameter, the
main stresses given as the van Mises stresses as well as the normal stress within the trans-
verse reinforcement and the longitudinal reinforcement.
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B. Numerical Test Series Equivalent Cantilever
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Figure B.4.: Numerical results for T10-3-1 at Fcrit,tot
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B.4. Visuals
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Figure B.5.: Numerical results for T10-3-2 at Fcrit,tot
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B. Numerical Test Series Equivalent Cantilever
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Figure B.6.: Numerical results for T20-3-1 at Fcrit,tot
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B.4. Visuals
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Figure B.7.: Numerical results for T20-3-2 at Fcrit,tot
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C. Evaluation of the Numerical Test
Series using the Engineering
Model

This appendix provides the set up and results of the cantilever simulations that are equiva-
lent to the numerical test series. They are split up into the following sections:

• C.1 Effect Diagrams: Normalised effect diagrams show differences between trends
resulting from varying variables,

• C.2 Diagrams: Comparison of the critical failure loads.
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C. Evaluation of the Numerical Test Series using the Engineering Model

C.1. Effect Diagrams
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Figure C.1.: Normalised effect diagrams for the variables span length, slenderness and re-
inforcement ratio for a 30◦ angle excluding T20-1-2 and T20-2-2
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Figure C.2.: Normalised effect diagrams for the variables span length, slenderness and re-
inforcement ratio for a 30◦ angle
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C.1. Effect Diagrams
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Figure C.3.: Normalised effect diagrams for the variables span length, slenderness and re-
inforcement ratio for a 45◦ angle excluding T20-1-2 and T20-2-2
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Figure C.4.: Normalised effect diagrams for the variables span length, slenderness and re-
inforcement ratio for a 45◦ angle
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C. Evaluation of the Numerical Test Series using the Engineering Model

C.2. Diagrams
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C. Evaluation of the Numerical Test Series using the Engineering Model
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