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The collision of binary droplets plays a key role in several industrial, chemical and
biological processes. In these processes, the quality of the desired outcome is strongly
dependent on the mixing of the liquid droplets as they collide in mid-air. In this work,
multiphase direct numerical simulations based on the volume-of-fluid method have been
used to investigate the process of mixing and analyse the effects of parameters such as
injection velocity, timing and collision angles. The evolution of mixing due to convection
and irreversible diffusive processes has been quantified by means of the segregation
parameter. To synthesise the outcome of a collision, the impact parameter has been
redefined to account for the collision of non-spherical droplets. It has been found that the
optimal mixing does not occur for symmetric head-on collisions, but rather at moderately
asymmetrical configurations. This behaviour has been explained by analysing the velocity
gradient tensor. It has been demonstrated that by breaking the symmetry, the local topology
of the flow is altered and the resulting convective flows increase the contact area between
the liquids, thereby augmenting the mixing process. However, it was also observed that
lateral misalignment transforms the initial kinetic energy into the spinning of the merged
droplets, thus preventing an enhanced mixing.

Key words: mixing enhancement, coupled diffusion and flow, drops

1. Introduction

Binary droplet collisions have been a research topic for more than a century and continue to
be an active research topic due to their complexity and many applications. In its simplest
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form, the problem consists of two liquid droplets approaching each other at a constant
velocity, headed for a collision. Typically, these droplets are immersed in a fluid, such as
air, with a smaller viscosity than the droplets – for example, aerosol fuel droplets merging
or splashing in combustion chambers (Jiang, Umemura & Law 1992; Chen 2007) in which
the ignition and propagation of the flames depend on the atomisation of the fuel (Ozel-Erol
et al. 2018). Another example concerns the drying of suspensions such as milk (Finotello
et al. 2017), paint pigments or pharmaceutical powders (Mujumdar 2014). In these
applications, large droplets may not dry out completely; on the contrary, if the droplets
are too small, undesirable dust particles are produced. The main objective in the study of
binary droplet collisions can be summarised as predicting the outcome of the collision
for a given set of initial conditions (Ashgriz & Poo 1990). In other words, identifying
the conditions under which the droplets coalesce, bounce or splash, disintegrating into
several small droplets after the collision, remains important. Early studies in binary droplet
collisions can be dated back to Rayleigh (1945), who reported that droplets may coalesce
and break up into several smaller droplets or bounce apart after a collision. Most of
the early experiments were conducted for water droplets (Adam, Lindblad & Hendricks
1968; Brazier-Smith et al. 1972) primarily to model atmospheric phenomena such as cloud
formation. Those experiments suggest that the three main parameters that determine the
outcome of the collision are the Weber number We := ρ(d1 + d2)u2r/2σ and the impact
parameter B := 2b/(d1 + d2), where ρ is the density of the liquids, di (i = 1, 2) is the
diameter of the droplets, σ is the surface tension, b is the separation distance between the
centres of mass of the droplets and ur is the magnitude of the relative velocity. The Weber
number quantifies the relative kinetic energy in proportion to the interfacial energy, and
the impact parameter is a measure of the off-centredness of the collision. It was found
that for small We and B, the droplets undergo a slow coalescence; increasing either We or
B results in the bouncing of the droplets due a layer of air trapped between the droplets.
Coalescence is recovered by further increasing the relative velocity of the droplets (Orme
1997; Qian & Law 1997); however, a head-on separation or fragmentation may follow,
depending on the impact parameter. This is usually summarised by a phase diagram in
the We–B space, also known as the collision map, which indicates the different outcomes
that are expected for a given pair of We and B (Al-Dirawi & Bayly 2019). However, the
collision map is not unique and other parameters, such as the viscosity of the liquids and
surrounding phase and its pressure, also determine the outcome of the collision (Chesters
1991). For example, Willis & Orme (2000) conducted experiments in a vacuum chamber,
thus revealing the effect of the outer phase. Further experimental studies have focused on
the interaction of non-Newtonian (Finotello et al. 2018) or immiscible liquids (Planchette,
Lorenceau & Brenn 2010).
Theoretical and numerical studies have also addressed the main problem of the collision

of binary droplets. Gopinath & Koch (2002) devised a model for a head-on collision
identifying the boundaries between the regions in the collision map. Later, Roisman (2004,
2009) proposed a model giving an approximation of the flow field at early stages of a
head-on collision and successfully predicted the thickness of the liquid lamella and the
outer rim that is formed after coalescence. In the meantime, lattice Boltzmann (Inamuro,
Tajima & Ogino 2004) and level-set (Pan & Kazuhiko 2005) simulations were being
developed. Kuan, Pan & Shyy (2014) conducted a detailed study of droplet splashing using
the interface-tracking method combined with adaptive mesh refinement. The applications
that are based on the precise outcome of the collision of droplets are technologies that
include drop-on-demand manufacturing such as bioprinting processes. The reactive jet
impingement (ReJI) technology (da Conceicao Ribeiro et al. 2018), for example, consists
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of a stream of cell-laden droplets of a gel precursor and a cross-linker that are injected
and collide in mid-air to then mix and react to build the designed living tissue. This novel
technique for bioprinting shows a significant improvement over other techniques in terms
of cell viability and printing speed. In ReJI, as well as several adaptive manufacturing
techniques, the quality of the product and throughput depends on the speed of injection and
size of the droplets (Stringer & Derby 2009). This imposes a limit on theWeber number for
droplet stacking (Son et al. 2008) and mid-air collisions (Barker et al. 2022). Furthermore,
the complexity in the modelling of additive manufacturing processes increases from the
idealised droplet collision. For example, when colliding, the morphology of the droplets
does not relax to a spherical shape, requiring a redefinition of the impact parameter.
Another key aspect in the quality of printing technologies concerns the mixing of the

inks as the droplets collide in mid-air. Although mixing is present in our everyday lives,
quantifying mixing (Rasband 1990; Cornfeld et al. 2012) and controlling and optimising
the mechanisms that affect it remain complex (Lin, Thiffeault & Doering 2011; Lunasin
et al. 2012). Intuitively, one can acknowledge a state where two substances are completely
mixed if the resulting material becomes homogeneous in appearance, therefore, when
the gradients of the concentration of the two substances vanish (Aref 1984; Rom-Kedar,
Leonard & Wiggins 1990; Walters 2000). Mixing can also be partial (Thiffeault 2012),
which would correspond to an intermediate state in which, by some transformation, such
as stirring, the components of the systems are transformed from a heterogeneous state into
a homogeneous one (Foures, Caulfield & Schmid 2014). When the motion of the fluid is
accompanied by diffusion, mixing becomes an irreversible process. In such cases, one can
express the degree of mixing in terms of a passive scalar function (Mathew et al. 2007).
The mixing process in the context of binary droplet collisions has been addressed before;
this includes the work by Anilkumar, Lee &Wang (1991), who investigated experimentally
the quiescent coalescence of drops of the same liquid. Liu et al. (2013), limiting their
study to axisymmetric collisions of spherical droplets, used a front tracking algorithm
combined with a set of Lagrangian particles to monitor the distribution of liquids. Later,
Sun et al. (2015) studied a similar set-up and proposed a way of quantifying partial mixing
of non-Newtonian droplets.
In this work, the mixing process resulting from a binary droplet collision of

non-spherical droplets is studied. This includes identifying the conditions that result in
the most efficient mixing. Most bioprinting techniques employ materials of a wide variety
of properties, e.g. rheology and surface tension. However, to aid the development of such
technologies, the present work is focused on understanding the mechanisms emerging
from the collision of droplets with identical properties. In § 2, the underlying physical
mechanisms that govern mixing in a binary droplet collision are discussed. Then, in § 3,
the numerical methods and the tools for analysing the results are described, and the results
are presented in § 4. Finally, conclusions are summarised in § 5.

2. Governing equations

The fluid components are modelled by three concentration fields αi(x) ∈ [0, 1], i = 1, 2, 3,
where α1 and α2 correspond to liquids L1 and L2, respectively, α3 corresponds to the
surrounding gas phase and x is the position vector. Here, αi = 1 implies the presence of
component i, whereas αi = 0 implies its absence. Additionally, the constraint

α1 + α2 + α3 = 1 (2.1)
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is imposed throughout the volume of the fluid mixture Ω . The region of the liquid is
denoted by Ωl ⊆ Ω , that is, Ωl = {x : α1(x) + α2(x) = 1}.
The concentration fields, αi, follow the transport equation,

∂tαi + ∇ · (αiu) = ∇ · (D∇αi), x ∈ Ωl, (2.2)

for the liquid components i = 1, 2, and

∂tα3 + ∇ · (α3u) = 0 (2.3)

for the gas. In this way, the two liquid components are miscible, but the liquid and gas
phases are immiscible. Here, D is the diffusion coefficient and u is the velocity field that
satisfies the Navier–Stokes equations,

ρ(∂t + u · ∇)u = −∇p + ∇ · (2ρνS) + σκn̂lgδS, (2.4)

in the incompressible limit (∇ · u = 0). Here, ρ := ∑
i ρiαi is the density of the fluid,

and ν := ∑
i νiαi corresponds to the kinematic viscosity, where the constants ρi and νi

correspond to the bulk density and viscosity of the component i. Also, p is the pressure,
S := (∇u + ∇uT)/2 is the strain-rate tensor, σ is the surface tension of the liquid–gas
interface, κ := −∇ · n̂lg is its mean curvature, n̂lg is the orthogonal unitary vector to the
surface and δS represents a Dirac delta function that locates the liquid–gas interface in the
three-dimensional space.
Two types of boundary conditions are imposed: these are the inlets, from which the

droplets are injected, and open boundaries that allow the free movement of the flow in or
out of the simulation domain specified everywhere else. As illustrated in figure 1(a), the
inlets are specified at z = 0 as two nozzles (indicated with subscript nzl in the following)
of circular cross-section of radius Rnzl directed into the domain at the polar and azimuth
angles θ and ϕ, respectively. More formally, to specify the region of the inlets and the open
boundaries, let us define the auxiliary function

G(x; xnzl, θ, ϕ) := 1 − 1
R2
nzl

{[(x − xnzl) cosϕ + y sinϕ]2 cos2 θ

+ [y cosϕ − (x − xnzl) sinϕ]2}, (2.5)

at the plane z = 0. In this way, the inlets are defined as the region where G ≥ 0. The
parameter xnzl corresponds to the location of the centre of the inlet from the origin.
Each droplet is injected into the domain by a pulse of the form

T(t) :=
{
1 − tanh[8 cos(ωt)] for 0 ≤ t ≤ 2π/ω = Tpulse,
0 otherwise,

(2.6)

which models the timing and duration of the pulse that injects the liquids into the
simulation domain, and emulates the smooth opening and closing of a typical micro-valve
used for bioprinting. The orientation of the inflow is specified by the unitary vector

Ĵ (θ, ϕ) := êx cosϕ sin θ + êy sinϕ sin θ + êz cos θ. (2.7)

The velocity profile at the inlets is modelled by a parabolic profile, with average velocity
Unzl := (dV/dt)/πR2

nzl. This assumption is justified by considering that the typical
Reynolds number on a bioprinting micro-valve is small (Re < 500) and the nozzles of
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Figure 1. Simulation set-up of the binary droplet collision. (a) Schematic representation of the inlet
configuration. (b) The simulation domain is a cube meshed with hexahedral cells with an increasing level
of refinement closer to the path drawn by the droplets.

the micro-valves are long (∼ 20Rnzl), thus the flow field relaxes to the Poiseuille profile as
opposed to a plug or a turbulent flow (da Conceicao Ribeiro et al. 2018). By combining
(2.5)–(2.7), we prescribe the boundary condition for the flow field at the inlets, that is,

u(x, t) =

⎧⎪⎨
⎪⎩

(Unzl + ΔUnzl)T(t − Δt0)G(x;−xnzl, θ + Δθ, ϕ + Δϕ)

× Ĵ (θ + Δθ, ϕ + Δϕ)
for L1,

Unzl T(t)G(x;+xnzl, θ, ϕ) Ĵ (θ, ϕ) for L2,
(2.8)

where, without loss of generality, the new parameters introduce asymmetry between the
nozzles: ΔUnzl corresponds to a velocity difference, Δt0 represents a delay in the firing
time, and Δθ and Δϕ result in a misalignment between the nozzles. Table 1 summarises
the values and ranges of the parameters used in the simulations. Note that both liquids have
the same material properties, that is, the density, viscosity and surface tension are equal
for both droplets. As an example, figures 1 and 2 show the set-up and the average velocity
resulting from (2.8).
The concentration fields α1 and α2 take the value 1 at the +xnzl and −xnzl inlets, and

zero everywhere else on the top boundary, respectively. This is prescribed by means of the
auxiliary function G:

α1(x) =
{
1 if G(x;−xnzl, θ + Δθ, ϕ + Δϕ) ≥ 0,
0 otherwise,

(2.9)

and

α2(x) =
{
1 if G(x;+xnzl, θ, ϕ) ≥ 0,
0 otherwise.

(2.10)
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Parameter Value/range Parameter Value/range

ρ1 = ρ2 = 1.0 × 103 kg m−3 ρ3 = 1.0 kg m−3 (for the gas)
ν1 = ν2 = 1.0 × 10−6 m2 s−1 ν3 = 1.48 × 10−5 m2 s−1 (for the gas)

D = 2.0 × 10−7 m2 s−1 σ13 = σ23 = 72.0 mN m−1

Rnzl = 0.25 mm xnzl = 1.125 mm
Unzl = 1.0 m s−1 Tpulse = 2π/ω = 2.5 ms

θ = 30◦ ϕ = 0◦ for L1 and 180◦ for L2
ΔUnzl ∈ [−0.8 m s−1, +0.8 m s−1] Δt0/Tpulse ∈ [−5/16, 5/16]

Δθ ∈ [−10◦, 10◦] Δϕ ∈ [−10◦, 10◦] (for L1)

Table 1. Simulation parameters.

t = –1.25 ms 0 ms

0.4

�t0

�Unzl
Unzl

0.2

V i (
μ

l)
V i/

π
R2 nz
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0

–2 0
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L21
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(b)

(a)

Figure 2. Evolution of the binary droplet collision. (a) Example of a time sequence of a binary droplet collision
and its mixing process. The two liquids, L1 and L2, are shown by the isosurface αi = 1/2, i = 1, 2 in green
and purple, respectively, and the contact surface area is highlighted in grey. (b) Evolution of the volume of
the liquids (top) and their flow rate (bottom). The delay in the injection time and the velocity difference are
indicated by Δt0 and ΔUnzl. The temporal coordinate has been shifted, identifying t = 0 as the time of contact.

3. Methods and analysis

The coupled system of advection–diffusion and momentum conservation equations in
(2.2)–(2.4) is solved in an open-source, finite-volume solver with multiphase capabilities,
OpenFOAM (Weller et al. 1998). We carry out direct numerical simulations using a
second-order scheme for both temporal advancement and spatial discretisation.
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The advection–diffusion equations for the concentration fields, (2.2) and (2.3), were
solved using volume-of-fluid with the MULES algorithm for two sub-cycles with interface
compression coefficient cα = 1.5. The momentum equation (2.4) is solved using the
PISO-SIMPLE algorithm for the coupling of the pressure and velocity fields. The pressure
is solved by an over-relaxation method with relative tolerance 10−7 for the pressure
correction and 10−9 for the final pressure solution.
As can be observed in figure 1(b), the simulation domain consists of a cubic volume

of 8 mm width, meshed with hexahedral cells with four levels of refinement, duplicating
the density of cells approaching the path drawn by the liquids. The largest cell type is
h = 250 μm in width, which corresponds to 1/323 of the domain volume, and the smallest
cell type is h = 15.625 μm in width, or 1/5123 of the total volume. The mesh is refined
progressively such that the Kolmogorov length scale (Pope 2000), η, is maintained above
the local cell size, h, that is, min{η/h} ≈ 2.10 > 1 for all x ∈ Ω and t. The increment for
temporal advancement, ΔT , is adaptive in order to keep the Courant number, Co, below
0.1, which, on average, resulted in ΔT ∼ 0.1 μs.
To ensure that the parasitic currents (Harvie, Davidson & Rudman 2006) do not affect

the simulation results, a different set of simulations was carried out. These consisted
of a three-dimensional liquid droplet of radius Rnzl suspended in air with the material
properties reported in table 1 and a homogeneous mesh resolution h = 15.625 μm to
match the main simulations. The kinetic energy and asphericity of the droplet are evaluated
after the system arrived at a static configuration. It was found that the maximummagnitude
of the parasitic currents reach at most up to 0.05 m s−1, which is two orders of magnitude
smaller compared to the characteristic velocity of the main simulations. Moreover, most
of the analysis of the flows in the present study will be performed at the interface of the
two miscible liquids where the surface tension is zero, thus this manifold does not produce
parasitic currents. The asphericity, measured as the relative variance of the distance of
the points in the isosurface α1 = 1/2 against the ideal droplet radius Rnzl, was found
to be 2.3 × 10−4. In conclusion, the numerical errors, arising from the discretisation of
surface tension force, are negligible. We begin the simulations at t = 0, and they run
until the droplets come out of the simulation domain, which occurs in less than 10 ms.
However, in what follows, we have shifted the time variable such that contact between the
droplets occurs at zero, i.e. t → t − tc, where tc is the instant of first contact, as shown
in figure 2(a).
For the parameters specified in table 1, the typical Weber number We := 2ρRnzlu2r/σ

found in the simulations wasWe < 25, thus we expected a slow coalescence resulting from
the collision at small values of the impact parameter. The choice in the parameter ranges
for the current analysis is influenced by the experimental set-up of da Conceicao Ribeiro
et al. (2018). On the one hand, the range of values for Δt0 and ΔUnzl is unbounded for such
devices. However, we observed that Δt0 ∈ [−5/16, 5/16] and ΔUnzl ∈ [−0.8, 0.8] m s−1

resulted in B � 1, i.e. contact between droplets. On the other hand, the angles for
the alignment of the nozzle, Δθ and Δϕ, are within the degrees of freedom of such
types of bioprinters. These allow for adjustments that compensate for other sources of
misalignment.
We will now focus on the quantification of mixing, but first, let us briefly estimate the

state of turbulence of both the gas and liquid phases. Following Pope (2000), let us define
the Reynolds number in the gas phase as Reg := UgLg/νg, where Ug := maxgas |u| is
the maximum velocity in the gas phase, and Lg := 2U3

g/(νgmaxgas |∇ × u|2) defines the
characteristic length scale. It was found that the typical values for Reg were approximately
103, suggesting a weakly turbulent flow in the gas phase. For the liquid phase, we define
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Rel := k2/νlε, where k := u′ · u′/2 is the turbulence kinetic energy, and ε := 2νl trS′2
is the dissipation; the overbar corresponds to the Reynolds average, u′ := u − ū and
S′ := (∇u′ + ∇u′T)/2. To estimate Rel, we approximate ū by the velocity of the centre
of mass of the liquid phase. This is an asymptotic approximation that, due to the large
dynamic viscosity ratio between the two immiscible phases, is mostly accurate. It was
found that the typical values at the instant of first contact between the droplets reached
Rel ∼ 103, decaying to Rel ∼ 200 shortly after. Therefore, in contrast to the gas phase,
this suggests a quasi-laminar flow. Although not conclusive, this analysis may give us an
idea of the state of turbulence of both phases, and thus the tendency for mixing.

3.1. Quantifying mixing
We are interested in the continuous process in which mixing takes place. Therefore, to
quantify partial mixing, let us define the segregation parameter between liquids L1 and L2
as

χ := 〈α2
i 〉 − 〈αi〉2

〈αi〉 (1 − 〈αi〉) = 1 − V1 + V2

V1V2

∫
Ωl

α1α2 dV, (3.1)

where, without loss of generality, i = 1 or i = 2 can be chosen and using (2.1) leads
to the last equality in (3.1). Here, the operation 〈·〉 computes the volume average in
Ωl, where α3 is zero. Since the concentration is a conserved quantity for passive scalar
mixing, any diffusive flux is assumed to be zero at the liquid–gas interface. It follows that
〈αi〉 = Vi/(V1 + V2), where Vi is the total volume of liquid i injected.
As the name suggests, χ = 0 corresponds to an absence of variance in concentration,

which implies a homogeneous or complete mixture. Conversely, χ = 1 corresponds to a
state in which the regions occupied by the liquids L1 and L2 do not intersect (Doering
& Thiffeault 2006; Foures et al. 2014; Thiffeault 2021). The transport equation of the
segregation parameter can be deduced by taking the material derivative and using (2.2),
which results in

dχ
dt

= −2
V1 + V2

V1V2

∫
Ωl

N dV, (3.2)

where N := D |∇α1|2, the integrand in the right-hand side of (3.2), corresponds to the
scalar dissipation rate.
The scalar dissipation rate N is a positive quantity, proportional to the rate of entropy

production by diffusion, which indicates the irreversibility of a mixing process (Davidson
2015). The transport equation of N is given by (Chakraborty et al. 2011)

dN
dt

= ∇ · (D∇N) − 2D2 |∇∇α1|2 − 2NS : n̂cn̂c, (3.3)

where d/dt := (∂t + u · ∇) is the material derivative and n̂c := ∇α1/|∇α1| is the unit
normal vector of the contact surface. The first term in the right-hand side of (3.3)
corresponds to the contribution by the fluxes driven by gradients of N. The second term
is dubbed the molecular dissipation rate and represents a sink term. The last term in the
right-hand side of (3.3) is called the scalar–turbulence interaction term and models the
contribution by the stretching of the flow; it can be expressed in terms of the eigenvalues
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{λi}i=α,β,γ and eigenvectors {êi}i=α,β,γ of S (Dresselhaus & Tabor 1992):

S : n̂cn̂c =
∑

i=α,β,γ

(n̂c · êi)2λi. (3.4)

Both the segregation parameter and the scalar dissipation rate are mixing measures of
the type 〈|∇mαi|2〉, for m = 0, 1 (Doering & Thiffeault 2006).
To keep track of the region where the mixing takes place, one can define the contact

surface area (Vervisch et al. 1995) between the two liquids,

Sc :=
∫

Ωl

|∇α1| dV. (3.5)

As for any diffusive process, the total mixing rate is proportional to the surface area;
therefore, the higher the Sc, the quicker the segregation parameter will decrease. The
evolution of the contact area is governed by the transport equation

dSc
dt

= −D
∫

Ωl

|∇∇α1|2
|∇α1| dV −

∑
i=α,β,γ

∫
Ωl

(n̂c · êi)2λi |∇α1| dV, (3.6)

which can be deduced using (3.3) and (3.5).

3.2. Analysis of the flow structure
To understand the effect that convective flows have in mixing, and in particular, on the
terms described in (3.4), the flow field will be analysed in the region of contact between
the two liquids. For that, the behaviour of the strain-rate tensor, S, and, more generally, the
velocity gradient tensor, A := ∇u, will be analysed.
To illustrate the meaning of A, consider a virtual swarm of particles at some position y

in a small region around x in the three-dimensional Cartesian space that are advected by
the flow field u. Suppose that the motion of the particles is given by dy/dt = u(y), and
assume that u is continuous around x. Then, dy/dt ≈ u(x) + (y − x) · A(x). This implies
that u(x) corresponds to the background motion of the virtual particles, whilst A describes
their relative motion. Therefore, by means of the velocity gradient tensor, we can analyse
the local flow field at x such as the flow topology and the eigenvectors and eigenvalues of
A (Chong, Perry & Cantwell 1990; Meneveau 2011).
The eigenvalues of A correspond to the roots of the characteristic polynomial det(A −
λ′I) = λ′3 + Pλ′2 + Qλ′ + R. The coefficients P, Q and R are called the first, second and
third invariants of the transformation, and are given by

P = −trA = −
∑
i

λ′i (= 0 due to incompressibility), (3.7)

Q = 1
2 [(tr A)2 − tr A2] = λ′1λ′2 + λ′2λ′3 + λ′3λ′1, (3.8)

R = − detA = −
∏
i

λ′i. (3.9)

We have used the primed notation to emphasise the difference between the eigenvalues
of S and those of A. Since S is a symmetric tensor, the eigenvalues are real and the
eigenvectors are orthogonal, which is not the case for the eigenvalues and eigenvectors
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Flow topology

S1

S1

S4

S4

S3

S3

S2

S2

R

Q

(a) (b)

Figure 3. Flow topology and dynamics in the Q–R phase space. (a) Schematic colour-coded classification of
the flow topology. The solid black lines correspond to streamlines beginning at the empty circles. The brown
and green arrows represent the equal- and opposite-sign manifolds of the vector field, respectively. (b) The
streamlines show the trajectories of the restricted Euler system, and the colours indicate the different flow
topology regions.

of A. To distinguish when the eigenvalues are real-valued or have an imaginary part, let us
define the discriminant

Δ := R2

4
+ Q3

27
. (3.10)

If Δ ≤ 0, then all three eigenvalues are real; however, if Δ > 0, then A has one real
and two complex eigenvalues. If the eigenvalues have an imaginary part, then the nearby
trajectories spiral inwards or outwards from the observation point x. The real part of the
eigenvalues reveals the stability at the observation point. From (3.7), it follows that the
real parts of the eigenvalues cannot have the same sign, i.e. one must be positive, one must
be negative, and an intermediate one can have either sign. A negative eigenvalue indicates
that trajectories are attracted towards the observation point whereas positive indicates that
they are repelled. Consequently, the sign of R determines the number of stable and unstable
manifolds around the observation point, and when R = 0, the linear approximation may
not be enough to determine the local stability at x.
We classify the topology of the flow as follows (Chong et al. 1990).

(i) S1, Δ > 0 and R > 0, consists of a one-dimensional (1-D) compressive manifold
combined with a two-dimensional (2-D) unstable manifold that spirals away from
the focal point.

(ii) S2, Δ ≤ 0 and R > 0, 1-D compressive and 2-D expansive manifolds.
(iii) S3, Δ ≤ 0 and R < 0, 1-D expansive and 2-D compressive manifolds.
(iv) S4, Δ > 0 and R < 0, 1-D stretching and 2-D stable focus manifolds.

Furthermore, the topologies S1 and S4 can be subdivided depending on the sign of Q,
that is, S1+ and S1− (S4+ and S4−) for Q ≥ 0 and Q < 0, respectively. The representative
flows are sketched in figure 3(a) and their corresponding regions in the Q–R space in
figure 3(b).
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The invariants Q and R follow the equations of motion away from the interfaces (Martin
et al. 1998):

dR
dt

= 2
3
Q2 − tr(A2H) − ν tr(A2 ∇2A), (3.11)

dQ
dt

= −3R − tr(AH) − ν tr(A∇2A), (3.12)

where H := −(∇∇p − I ∇2p/3)/ρ is the anisotropic pressure Hessian. The last two terms
in both (3.11) and (3.12) are non-local, thus depend on the boundary conditions and the
capillary forces at the liquid–gas interface. The terms proportional to ν in (3.11) and (3.12)
are derived from the viscous dissipation term in the Navier–Stokes equation, thus act as
sinks.
To understand the dynamics of the system in (3.11) and (3.12), let us first consider the

restricted Euler system that assumes that H + ν ∇2A is negligible. This corresponds to a
state in which the pressure is isotropic and viscous damping is negligible. In this case,
(3.11) and (3.12) are reduced to a closed and autonomous dynamical system whose phase
space portrait is depicted in figure 3(b). At the origin (R = 0 and Q = 0), a half-stable
fixed point is found, and the surrounding trajectories evolve from R < 0 to R > 0 and
points in the Δ = 0 manifold stay in it. This implies that the natural tendency of the
reduced dynamical system is to separate the rotation-dominated from the strain-dominated
regions, and the evolution takes states from R < 0 to R > 0. In other words, the S4 and S3
topologies are turning into the S1 and S2 topologies, respectively (Martin et al. 1998).
Furthermore, far from interfaces, the transport equations of enstrophy and strain-rate

production can be expressed in terms of the invariants

dζ
dt

= 4(RS − R) + νω · ∇2ω, (3.13)

where ζ := |ω|2/2 is the enstrophy and ω := ∇ × u is the vorticity, and

dQS

dt
= −2RS − R − 1

ρ
trS∇∇p − ν trS ∇2S, (3.14)

where QS := −trS2/2 and RS := − detS are the second and third invariants of the strain
rate, respectively. Therefore, for the restricted Euler system, (3.13) and (3.14) can be
combined into

d
dt

( ε

ν

)
= 12R + 2

dζ
dt

, (3.15)

where ε := −4νQS is the instantaneous dissipation rate of kinetic energy.
This concludes the conceptual framework that will support the analysis of our numerical

simulations that will follow. However, before proceeding, these tools will be used for a
similar system where an analytic approximation is available.

3.3. Axisymmetric collision of identical spherical droplets
To illustrate the concepts introduced previously, let us consider the case of an
axisymmetric binary droplet collision of identical droplets. Following Roisman (2004),
after the first contact and during the initial stages of the collision, the droplets undergo
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a deformation in which the flow field in the vicinity of the contact surface is well
approximated by

ux ≈ urx
2l3

(4x2 − 3l2), (3.16)

uξ ≈ 3ur
4l3

ξ(l2 − 4x2), (3.17)

where x is the coordinate that runs parallel to the axis of symmetry, ξ = ( y2 + z2)1/2 is
the distance from the axis, ur is the magnitude of the relative velocity and l is the thickness
of the liquid lamella that forms by radial expansion of the droplets at early stages. Then
the velocity gradient tensor is given by

A = 3ur
4l3

⎛
⎝−2(l2 − 4x2) 0 0

−8xy (l2 − 4x2) 0
−8xz 0 (l2 − 4x2)

⎞
⎠ . (3.18)

At the plane of collision x = 0, A reduces to a diagonal matrix whose second and third
invariants are given by

R(x = 0) = 27u3r
32l3

and Q(x = 0) = −27u2r
16l2

. (3.19a,b)

The evaluation of the discriminant from the characteristic equation (3.10) shows that
Δ = 0, which corresponds to an S2 topology flow.
In this stage of the collision, the contact surface area is increasing due to the stretching

motion of the flow. The scalar–turbulence interaction term evaluates to

− 2S : n̂cn̂c = 3
l
ur ∼ 1

N
dN
dt

, (3.20)

where the last relation is based on (3.3). This estimates an exponential growth rate of the
scalar dissipation rate, and consequently the contact surface area.
The growth of the contact surface area cannot carry on indefinitely due to surface tension

and viscous forces. Surface tension reverses the direction of the flow in a periodic fashion,
leading to oscillations in the contact surface area, whilst viscous stresses dampen the
motion of the flow (Roisman 2009; Roisman, Berberović & Tropea 2009).

4. Results and discussion

The simulation parameters considered for the present analysis are summarised in table 1
and are inspired by a bioprinting set-up (da Conceicao Ribeiro et al. 2018). To investigate
the effects of differences in the configuration of the L1 inlet relative to L2, the simulations
were run in four different batches: (i) varying the injection velocity, ΔUnzl; (ii) varying
the relative injection time, Δt0; (iii) introducing a difference in the polar angle by Δθ ; and
(iv) changing the azimuth angle Δϕ.
Additionally, to illustrate the combined effect of these configuration parameters in the

dynamics of the droplet collision and mixing for an asymmetric collision presented in
figures 2, 8 and 9, we set ΔUnzl = 0.24 m s−1, Δt0 = Tpulse/4, Δθ = −4◦ and Δϕ = 6◦.
This is to contrast against the symmetric collision presented in figures 6 and 7, in which
these configuration parameters are equal to zero (ΔUnzl = Δt0 = Δθ = Δϕ = 0).
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Figure 4. Calculation of the impact parameter. (a) Example of an asymmetric collision between two droplets
at the moment of first contact that illustrates the construction of the dimensionless impact parameter B. (b) The
impact parameter is evaluated at different set-up configurations (symbols) and the fitting of the curve in (4.9)
applied to each case (solid line).

4.1. Impact of non-spherical droplets
It can be observed from figure 2(a) that the droplets do not have a spherical shape,
in contrast to many studies of binary droplet collisions, but are rather elongated in the
direction of motion relative to their respective nozzles. As expected, the contact point of
the droplets would produce different outcomes depending on the shape of the droplet; the
dimensionless impact parameter B, as defined for spherical droplets (Ashgriz & Poo 1990;
Al-Dirawi & Bayly 2019), cannot be used to represent the off-centred collision in this
work.
In the following, we generalise the definition of the dimensionless impact parameter for

droplets that are non-spherical and continuously evolving. We will base our definition on
the underlying concept of the traditional expression as stated in § 1.
Since the shape of the droplets is changing in time, the impact parameter is meaningful

only at t = 0, which corresponds to the moment of first contact. The relative velocity
between the two droplets is ur := U1 − U2, where U i is the velocity of the centre of
mass of droplet i. The vector ur and the first contact point between the two liquids create
the contact plane (see figure 4a). The shape of the droplets is then projected onto the
contact plane, and if their projected images intersect, then the droplets are bound to collide;
otherwise, they pass each other without contact.
The distance between the centre of mass of the droplets on the contact plane, b := |b|,

is defined such that

b := (X 1 − X 2) × ur
|ur| , (4.1)

where X i, i = 1, 2, are the centres of mass of the liquids L1 and L2, respectively. Let Pi,
i = 1, 2, be the projected image of droplet i onto the contact plane. Then, let C = ⋂

i Pi
be the set of points at the intersection. As illustrated in figure 4(a), we measure the depth
of the overlap between the projections, c, by finding the longest line in C that is parallel to
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b, formally,
c := max{c′ : c′b/b = (x2 − x1); x1, x2 ∈ C}, (4.2)

and c = 0 if C = ∅. In this way, the generalised dimensionless impact parameter can be
defined as

B := b
b + c

. (4.3)

Note that b ≥ 0 and c ≥ 0 and if b = 0, then c /= 0; this implies that 0 ≤ B ≤ 1, where
B = 0 corresponds to a head-on collision, and B = 1, which occurs if c = 0, implies that
the droplets do not make contact during their trajectories at any time.
For spherical droplets of diameter di, the depth of the overlap reduces to c = (d1 +

d2)/2 − b and we recover the usual expression B = 2b/(d1 + d2).
Let us anticipate the functional dependence of B after a small deviation from the head-on

collision. This can be done by performing a small deviation around the head-on collision
for the terms b and c in (4.3). Therefore, an expression can be obtained by considering

B ∼ b0 + Δb
b0 + Δb + c0 + Δc

∼ Δb
c0

, (4.4)

where b0 and c0 are the values for the head-on collision, and Δb and Δc represent their
variation from the parameters that introduce the asymmetry (ΔUnzl, Δt0, Δθ and Δϕ)
up to linear order. The last relation in (4.4) is obtained recalling b0 = 0 for the head-on
collision.
The expressions for Δb and c0 can be estimated by assuming that the droplets have the

morphology of a cylindrical rod of radius Rnzl and length �1 = Tpulse(Unzl + ΔUnzl) and
�2 = TpulseUnzl for liquids L1 and L2. Here, c0 corresponds to the overlapping length in
the direction of b. However, in the head-on collision case, c0 is degenerate since b = 0,
thus it can take the two values depending on the source of asymmetry:

c0 ≈
{
2Rnzl if Δϕ /= 0,
UnzlTpulse cos θ otherwise.

(4.5)

To calculate Δb, we can approximate the positions of the centres of mass of the two
droplets as

X 1 ≈ (t − Δt0 − Tpulse/2)(Unzl + ΔUnzl) Ĵ (θ + Δθ, Δϕ) − xnzlêx (4.6)

and
X 2 ≈ (t − Tpulse/2)UnzlĴ (θ, π) + xnzlêx. (4.7)

The relative velocity of the droplets is given by ur = d(X 1 − X 2)/dt. Then, by substituting
(4.6) and (4.7) in (4.1), and keeping terms up to linear order, it can be shown that

Δb
c0

=
[(

Δt0
Tpulse

)2

+
(

xnzl
UnzlTpulse

)2
(

Δθ2

cos2 θ
+ ΔU2

nzl

U2
nzl sin

2 θ

)
+

(
xnzl Δϕ

2Rnzl

)2
]1/2

.

(4.8)

In figure 4, the value of the impact parameter calculated from the simulation results is
presented. Guided by (4.8), we propose an empirical approximation to B that captures its
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Figure 5. Quality of the mixing process after breaking the symmetry of the collision. (a) Evolution of the
segregation parameter (solid line) and scalar dissipation rate (dashed line) for a symmetric and an asymmetric
collision. (b) Evaluation of the segregation parameter after 4 ms after first contact for injection velocity
difference, injection time difference, and polar and azimuthal angles. (c) Segregation as a function of the
impact parameter for all simulations. The solid line is an approximation to the common trend followed by all
the points, except for those corresponding to Δϕ.

general trend by varying each parameter:

B ≈
[
ct tan2

Δt0
btTpulse

+ (cθ Δθ + dθ Δθ2)2 + (cu(ΔUnzl/Unzl)
n − 1)2 + (cϕ Δϕ)2

]1/2
,

(4.9)

where each of the constants is found by least squares optimisation. Varying ΔUnzl, we
find that n = 0.4 and cu = 1.43; varying Δt0, gave the constants bt = 0.26 and ct = 0.12.
Varying the angles Δθ and Δϕ resulted in cθ = 0.018 rad−1 and dθ = 43.2 rad−2, and
cϕ = 2.25 rad−1, respectively.
Figure 5(a) shows the evolution of the segregation parameter χ and the scalar dissipation

rate N. As the droplets collide, the mixing process begins and the segregation parameter
decreases. The scalar dissipation rate shows a fast increase after the first contact between
the droplets. Soon after, it arrives at a local maximum, which is reflected as an inflection
point in χ at t = 1.575 ms and t = 1.425 ms for the symmetric and asymmetric collisions,
respectively. From that instant onwards, χ will decrease at a lower rate. A similar
behaviour was observed in all our simulations.
In figure 5(b), the segregation parameter at t = 4 ms = 1.6Tpulse, the evaluation time,

is shown for all simulation results. The evaluation time is chosen as the maximum time
lapse after the collision that is common to all simulations. In other words, it is the longest
interval of time for the mixing process to take place before the liquids exit the simulation
domain. Since χ is a monotonically decreasing function of time, the results are similar at
any other evaluation time of choice.
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The four plots in figure 5(b) show the influence of the different configuration parameters
in the mixing process. It can be observed from figure 5(b) that decreasing the velocity of
the inlet has a strong effect on χ and reducing the velocity by ∼15% gives a near-optimal
mixing; however, decreasing by∼40% raises B to B = 1, and mixing is absent. In contrast,
increasing the velocity has a smaller effect, where the optimal mixing is found at a ∼32%
increase in the inlet velocity.
The difference in injection time shows a fast improvement in the quality of the mixing,

reaching an optimal mixing at |Δt0| = 0.12Tpulse, which afterwards start deteriorating
until |Δt0| = 0.3Tpulse, when the droplets barely touch each other.
Changes in the polar and azimuthal angles, Δθ and Δϕ, show an improvement in

the mixing quality when breaking the symmetry of the collision. However, varying
the azimuthal angle has a smaller improvement on the mixing even though the impact
parameter is found to increase at a higher rate.
In summary, it can be observed in figure 5(c) that the segregation parameter is strongly

dependent on the impact parameter. Over a finite time, the segregation parameter shows
a high value for the symmetric collision; this is not the exception, but rather the common
trend for different sources of asymmetry. The segregation parameter decreases, reaching a
wide minimum at B = 0.2 ± 0.1 in which optimal mixing occurs. For higher values of the
impact parameter, mixing deteriorates. The overall tendency is captured by the function

χ ≈ aχB ln
B
bχ

+ χ0, (4.10)

where the constants aχ = 2.23 and bχ = 0.551 are found by least squares optimisation,
and χ0 = 0.734 is the value of the segregation parameter for the symmetric collision. The
function in (4.10) has its global minimum at B = bχ/e ≈ 0.203, where e is the base of
the natural logarithm. This is true except for the set of simulations where Δϕ /= 0. As
can be observed, the segregation parameter does not decrease as much as the other cases.
This does not imply that the definition of the impact parameter is inadequate. As will be
discussed later, the system exhibits a deeper-level complexity, which is reflected in the
infeasibility of reaching a near optimal state of mixing.

4.2. Evolution of the topology of the flow and the contact surface
To better understand why optimal mixing occurs for B /= 0, we will explore in more detail
the evolution of the contact surface and the flows in its vicinity.
Figure 6(a) shows the contact surface of a symmetric binary droplet collision. This

corresponds to the isosurface α1 = 1/2 at two different times: t = 0.5 ms and t = 2 ms.
It can be observed from figure 6(a) that the contact surface is flat, which is due to the
reflexive symmetry of the system. The contact surface between the two liquids occurs at
the mirror plane x = 0. This implies that n̂c = êx for all t ≥ 0. The x-component of the
velocity field must vanish at the mirror plane. This implies that u · ∇α1 = 0, which takes
away the convective term in (2.2). Moreover, the velocity gradient tensor at the plane x = 0
becomes a block diagonal matrix of the form

A(sym)|x=0 =
⎛
⎝∂xux 0 0

0 ∂yuy ∂zuy
0 ∂yuz ∂zuz

⎞
⎠ ∀ t > 0. (4.11)

This is because the component ux of the velocity vector is an odd function and the
components uy and uz are even functions of x, thus ∂xuy = ∂xuz = 0, whilst ∂xux may
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Figure 6. Topological analysis of the flow field at the contact surface. (a) Colour map showing the distribution
of the different topological classifications at the isosurface α1 = 1/2 according to the colour code of figure 3(a)
at two instants with the corresponding phase portrait of the Q–R space. The joint p.d.f. is displayed by a
greyscale map in the background and by the thickness of the streamlines. (b) Evolution of the contact surface
area, Sc, broken down into the different types of topologies at the surface.

not. Additionally, since ux = 0 for all y and z, we find that ∂yux = ∂zux = 0 as well. In
consequence, the existence of a real-valued eigenvector and an eigenvalue parallel to n̂c is
guaranteed, and the vorticity can have a non-zero component only in the x direction, i.e.
ωy = ωz = 0.
As shown in figure 6(a), the dominant flow topology at early times corresponds to S2,

which is expected from the flow profile of the initial deformation (Roisman 2004) of the
collision. Two vortical structures of type S1 appear near the centre and also an annular
section with topology S3. Points with topology S4 cover a small area of the contact surface.
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Figure 7. Eigenvector analysis of the flow field at the contact surface and growth rate of a symmetric collision.
(a) Colour map showing the projections of the three eigenvectors against the orthonormal vector to the
isosurface α1 = 1/2 at two different times. (b) Growth rate of the contact surface area and the contribution
of each eigencomponent of the scalar–turbulence interaction terms. (c) Strain production at the contact surface
area broken down into the enstrophy production and third invariant.

In figure 6(b), the evolution of the contact surface area shows an initial increase at early
times, which is slowed down and begins to oscillate. These oscillations are the product of
the interplay between surface tension forces and inertia, and are dampened by viscous
stresses. Additionally, the partition of the contact surface into the different topologies
shows that, at early stages, the most dominant topology of the flow corresponds to S2.
After the contact surface reaches its maximum area, the contributions from S1 and S4 are
greater. Moreover, the decomposition for the different signs inQ reveals that, over time, an
increasing fraction of the contact surface contains strong vortical structures where Q > 0.
Figure 7(a) complements the analysis of the flow structure. An inner region in which

the direction of the most compressive eigenvalue, λγ , is aligned with the normal vector of
the surface can be observed. This region covers most of the area of the contact surface
and, according to (3.6), contributes to its growth. A thin outer region of the contact
surface shows an alignment of the normal vector and the eigenvector êα . This implies
the contraction of the surface, which can be attributed to the action of the capillary forces
slowing down the radial expansion and forming a rim. An intermediate region, where
the eigenvector êβ serves as the transition between the two regions, can also be seen in
figure 7(a). This is further verified by the phase portrait in the Q–R space of figure 6(a) at
t = 0.5 ms, where the streamlines show that points of topology S2 migrate to S3 and back.
At t = 2 ms, it can be observed that although S2 still covers most of the area, there is

more presence of the other flow topologies. However, as can be seen in the Q–R space,
these populations are small and stay close to the Δ = 0 curve from (3.10).
Figure 7(b) shows the growth rate of the contact surface area and the respective

contributions from the eigenvalue decomposition of the scalar–turbulence interaction
term. The initial rise of the contact surface area can be attributed to the contribution of
the most compressive eigenvalue, λγ . However, the contribution from the most expansive
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eigenvalue, λα , is negative (see (3.6)) and has the effect of decreasing the surface area. It
has a slower increase but eventually catches up with the λγ contribution. The contribution
from the intermediate eigenvalue is almost negligible throughout the mixing process.
We now consider the evolution of the strain rate and enstrophy at the contact surface.

For that, we will make use of (3.15) in the following form of the restricted Euler system:

1
νl

dεC
dt

≈ 12RC + 2
dζC
dt

, (4.12)

where the subscript C in all quantities denotes integration over the contact surface, e.g.
εC := ∫

ε |∇α1| dV . Thus εC, RC and ζC are the total instantaneous dissipation of kinetic
energy, third invariant and enstrophy at the contact surface.
Figure 7(c) shows the evolution of the strain-rate production at the contact surface.

Beyond small fluctuations, both the strain-rate production and enstrophy production are
small. In contrast, at early times (0 ≤ t � 2 ms), the third invariant has a significant
contribution. This first stage is related to the stretching of the contact surface and can
be associated with the same event in figure 7(b) where dSC/dt becomes negative.
The evolution of an asymmetric collision shows several differences, as can be seen in

figures 8 and 9. From early stages, it can be observed that the isosurface α1 = 1/2 is no
longer bound to a plane and quickly distorts to a surface with multiple protrusions and
twists.
As shown in figures 8(a) and 9(a), during the early stages of the droplet collision, the

lower part of the contact surface is covered by a vorticity-dominant topology that implies
the twisting of the contact surface area into a pocket-like shape. The streamlines in the
Q–R space show this phenomenon through the migration of points from the S2 topology
to the S4. At later stages (t > 2 ms), a large population of vortical topologies is found in
the Q–R space.
Figure 8(b) shows the fraction of the area of flow topology S4 that increases rapidly

and soon covers most of the contact area. Followed by this, the areas of topology S1 also
begin to dominate as expected from the reduced Euler system in theQ–R space. Compared
to the symmetric collision, the fraction of area with Q > 0 is much larger. This is more
appreciable for the topology S4+, which becomes large in early stages and persistently
throughout the mixing process. This implies that points in the S3 topology are ejected
to S4+, spending a short time in the S4− region of the phase space. Additionally, the
topologies S1+ and S1− have very similar contributions to the surface area, which is a
consequence of the restricted dynamics of the Q–R phase space.
The eigenvalue analysis corroborates such trends, showing that although there is a

superposition of projections of the eigenvectors, the most dominant corresponds to λγ
(see figure 9b) and persists throughout the mixing process. Although the total contribution
of the scalar–turbulence interaction term (i.e. (3.6)) is positive, dSc/dt is negative at late
times, which can be attributed to self-intersections of the contact surface and the effect of
the molecular dissipation rate.
In contrast to the symmetric case, the asymmetry in the collision has a very different

outcome in terms of the enstrophy and strain-rate production, as can be observed in
figure 9(c). In this case, the three quantities have a similar magnitude during the first
stage (0 ≤ t � 1.5 ms). This implies that both the dissipation and vorticity are increasing
at the contact surface area. Similarly, the decrease in dSC/dt shown in figure 9(b) can also
be related to the drop-off of the three quantities. Furthermore, the third invariant becomes
small after t ≈ 2 ms; however, the enstrophy and strain-rate productions are now negative.
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Figure 8. Topological analysis at the contact surface for an asymmetric collision (ΔUnzl = 0.24 m s−1,
Δt0 = Tpulse/4, Δθ = −4◦ and Δϕ = 6◦). See figure 6 for details.

Figure 10 presents a comparison of the system at different injection times Δt0. By
changing Δt0 exclusively, all the droplets in the simulations are guaranteed to have
identical mass, initial kinetic and interfacial energy and total linear momentum, thus
changing only the impact parameter. Figure 10(a) shows the evolution of the segregation
parameter for comparison. The best mixing occurs at B = 0.2, in contrast to the worst
of the four cases that corresponds to B = 0, the symmetric collision, and intermediate
mixing for both B = 0.033 and B = 0.44, which shows a similar trend. As the symmetry
is broken, the distortions to the morphology of the contact surface are more pronounced.
From figure 10(b), it can be observed that the contact surface area detaches from the plane
x = 0 and buckles against the delayed droplet (green isosurface). Figure 10(c) displays the
profile of the scalar–turbulence interaction term at the contact surface, which, according
to (3.6), contributes to the growth rate of its area. Among the four cases, the symmetric
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dSc/dt

0 0.5 1.0 0 0.5 1.0 0 0.5 1.0

t = 0.5 ms1 2

21 1 2

t = 2.0 ms
(a)

(b)

(c)

Figure 9. Eigenvector analysis at the contact surface for an asymmetric collision (ΔUnzl = 0.24 m s−1,
Δt0 = Tpulse/4, Δθ = −4◦ and Δϕ = 6◦). The figure layout is the same as in figure 7.

case shows the largest values of negative growth rate concentrated at the rim of the contact
surface. This implies that the contact surface grows from the inside but is limited by its
periphery. Therefore, as the symmetry is broken, the contact surface can now grow by
buckling. However, if the impact parameter is too high, which implies that the centre of
mass of the droplets is further apart, then the droplets have less interaction and their overall
contact is reduced, therefore resulting in poor mixing.
After these observations, we can comment on theΔϕ /= 0 cases. Breaking the symmetry

of the collision by a lateral misalignment transforms the initial kinetic energy of the
droplets into rotational energy. As a consequence, the rotational energy is unable to
produce the shear motion at the contact surface that is required to enhance mixing.

5. Conclusions

Three-dimensional direct numerical simulations based on the volume of fluid method
have been conducted to analyse the mixing process for binary droplet collisions in a
configuration that is representative of an industrial process such as the ReJI bioprinting
technique. The quality of mixing has been quantified in terms of the segregation parameter
χ , which, for a closed system, is a monotonically decreasing function of time, reflecting
the irreversibility of the process.
The variation of the segregation parameter at different configurations of the set-up

indicates that introducing a small asymmetry with respect to the mirror-symmetric
collision can improve the quality of mixing. In order to quantify the asymmetry, a new
generalised definition of the impact parameter B has been proposed for the analysis of the
collision of non-spherical droplets. It was found that for most cases, the relation between χ

and B follows a master curve. Therefore, the quality of mixing can be predicted by utilising
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Figure 10. Comparison of a binary droplet collision at different injection timesΔt0. (a) Segregation parameter
as a function of time. The dashed line corresponds to t = 0.5 ms. (b) Stills of the binary droplet collision at
t = 0.5 ms, showing the isosurface α1 = 1/2 in grey. (c) Profile of the scalar–turbulence interaction term at
the contact surface.

such a trend. The simulation data have been used to evaluate the parameters of the master
curve indicating the relation between χ and B employing least squares optimisation.
The physical explanation for the improvement of the mixing process resulting from

the breaking of symmetry has been discussed. The topology analysis of the flow and an
eigensystem decomposition of the velocity gradient tensor have been utilised to elucidate
how the convective flows and the stretching and twisting of the contact surface between
the two droplets affect the mixing process.
It was found that for a symmetric collision, the mixing process is hampered by the plane

of symmetry itself, which prohibits convective flows in the region where the diffusive flux
is strongest. Therefore, the mixing process is enhanced by the growth of the contact surface
area. By breaking the symmetry of the collision, vortical structures that appear naturally
now carry matter and stretch the area of contact between the liquids. This can be realised
similarly at different combinations of the configuration parameters, therefore increasing
the quality of mixing to a nearly optimal level by varying different parameters at the same
time. However, if the asymmetry is too large by off-centring the collision, then mixing
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becomes inefficient. It was found that the optimal mixing occurs at a moderate asymmetry
in the system when the impact parameter is B ∼ 0.2.
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MATHEW, G., MEZIĆ, I., GRIVOPOULOS, S., VAIDYA, U. & PETZOLD, L. 2007 Optimal control of mixing
in Stokes fluid flows. J. Fluid Mech. 580, 261–281.

MENEVEAU, C. 2011 Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annu.
Rev. Fluid Mech. 43 (1), 219–245.

MUJUMDAR, A.S. 2014 Handbook of Industrial Drying, 4th edn, vol. 33. CRC Press.
ORME, M. 1997 Experiments on droplet collisions, bounce, coalescence and disruption. Prog. Energy

Combust. Sci. 23 (1), 65–79.
OZEL-EROL, G., HASSLBERGER, J., KLEIN, M. & CHAKRABORTY, N. 2018 A direct numerical simulation

analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of
unity. Phys. Fluids 30 (8), 086104.

PAN, Y. & KAZUHIKO, S. 2005 Numerical simulation of binary liquid droplet collision. Phys. Fluids 17 (8),
082105.

PLANCHETTE, C., LORENCEAU, E. & BRENN, G. 2010 Liquid encapsulation by binary collisions of
immiscible liquid drops. Colloids Surf. A: Physicochem. Engng Aspects 365 (1), 89–94.

POPE, S.B. 2000 Turbulent Flows. Cambridge University Press.
QIAN, J. & LAW, C.K. 1997 Regimes of coalescence and separation in droplet collision. J. Fluid Mech. 331,

59–80.
RASBAND, S.N. 1990 Chaotic Dynamics of Nonlinear Systems. Wiley.
RAYLEIGH, LORD 1945 Theory of Sound, 2nd edn, vol. 1 and 2. Dover.
ROISMAN, I.V. 2004 Dynamics of inertia dominated binary drop collisions. Phys. Fluids 16 (9), 3438–3449.
ROISMAN, I.V. 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes

equations for a spreading viscous film. Phys. Fluids 21 (5), 052104.
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