
Designing Maneuver Automata 
of Motion Primitives for Optimal 
Cooperative Trajectory Planning 

Matheus V. A. Pedrosa, Patrick Scheffe, Bassam Alrifaee, 
and Kathrin Flaßkamp 

Abstract Trajectory planning techniques form a central step to enable autonomous 
driving. The motion primitives method generates an automaton of precomputed 
maneuvers with structure-exploiting properties. Thereby, the trajectory planning 
problem can be reduced to finding an admissible/optimal sequence of motion prim-
itives. In this chapter, we present ways to designing maneuver automata based on 
different system models and on either analytical or data-based approaches for automa-
ton generation. Moreover, numerical methods for computing optimal maneuvers are 
listed and we discuss graph-based planning techniques. A subsequent chapter shows 
the evaluation of motion primitives automata in the Cyber-Physical Mobility Lab. 

1 Introduction 

The task of planning trajectories for multiple vehicles can be solved by many available 
techniques (see, for instance, [ 2, 3, 17]). However, there are still key challenges to be 
tackled for a multi-vehicle trajectories planner: (a) the admissibility of the planned 
trajectories, (b) the real-time capability of the optimization solvers on the respective 
vehicles and (c) the feasibility of the communication overhead between the vehicles. 
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Complemented into two chapters, 1 our work brings new methodologies for solving 
the cooperative trajectory planning problem for autonomous driving. We address the 
challenges mentioned above through graph-based optimal solutions. Before going 
into more detail about which methods we use and how we use them, let us first give 
an overview of how it is contextualized within vehicle automation. 

Automated driving systems basically consist of three modules [ 31]: 

1. Sensing or perception: capture the environment objects and conditions through 
sensors. 

2. Planning: find a feasible trajectory. 
3. Acting or control: track the trajectory by controlling the vehicle’s actuators. 

We place our focus on solving the second step. Motion planning aims to find a 
sequence of control inputs to move a vehicle from an original state to a set of possible 
goal states, while avoiding collisions during the trajectory [ 30]. At first, this task can 
be achieved by solving an optimal control problem (OCP). However, it could be 
computationally costly to get optimal control solutions when dealing with nonlinear 
vehicle models. Complex environments can also make it difficult to properly design 
all the obstacles into the optimization problem, which make the OCP unsuitable for 
many applications [ 14]. As an alternative, discrete planning techniques sample the 
state space, map it as a graph and perform a graph search for a minimum-cost path 
[ 22]. As disadvantages, we can cite the total neglect of the model in the case of the 
most famous graph search, the A*, or the numerically complex and non-time-critical 
solutions for the also well-known Hybrid A* search [ 10, 23, 26]. 

In order to get the best of both worlds, i.e., decreasing the motion planning prob-
lem complexity and avoiding a full discretization over the state space, we use the 
concept of motion primitives, originally proposed by [ 14]. Motion primitives are 
finite-time pieces of trajectories that can be concatenated. They are constructed from 
the dynamical system model. That is, the final path resulting from their interlocks is 
feasible with respect to the selected model. References [ 12, 14, 19] showed that, by 
using them, the highly complex problem of trajectory planning can be transformed 
into a graph search, in which solutions can be found with a suitable difficulty. How-
ever, for this to happen, it is of fundamental importance to have a library of primitives 
at hand that ensures appropriate routes for the desired road scenarios. At the same 
time, it should also have a size that makes the problem as computationally inex-
pensive as possible. Note that all this should also take into account the cooperative 
communication between agents, since it is desirable to have a trajectory planning 
with a sufficiently small communication effort. 

The realization of motion primitives is only possible when the dynamic model has 
the symmetry property. To give an intuition, this property indicates that it is possible 
to perform rotations and translations in mechanical systems—without deformation 
of their path profile under the same sequence of control inputs. In the original work 
[ 14], the symmetry property of systems was exploited to develop two special kinds of

1 Trajectory planning strategies for multiple vehicles are presented in the Chapter “Prioritized 
Trajectory Planning for Networked Vehicles Using Motion Primitives”. 
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Fig. 1 Example of a 
maneuver automaton with 
four trim primitives: 
.{p1, p2, p3, p4} and eight 
maneuvers: 
. {m1,1, m1,2, m1,4,

. m2,3, m3,2, m3,3, m3,4, m4,1}
(figure from [ 24]) 
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motion primitives: the trim primitives and the maneuvers. Trims are steady motions, 
where the control inputs are kept fixed, while the maneuvers are motions transitioning 
between the steady motions. Their rules for concatenation can be translated into a 
directed graph, which we call motion primitive automaton (MPA), also referred in 
[ 14] as maneuver automaton. Figure 1 illustrates an example of an MPA with four 
trims and eight maneuvers. Then, solving the motion planning problem consists 
of using a graph search method to find a sequence of primitives, which can be 
concatenated according to the MPA. 

In this chapter, with the first part of our studies, we present the development of 
methods to architect the motion primitives selection and construction, as well as 
the relationship between them. The second part, written in the chapter “Prioritized 
Trajectory Planning for Networked Vehicles Using Motion Primitives”, is devoted 
to detailing the cooperative trajectory planning algorithms that represent maneuvers 
primitives. The general workflow is given in Fig. 2. 

This chapter is organized as follows. In Sect. 2, we evaluate, from a list of different 
vehicle models, the suitable dynamics for the planning problem and determine the 
symmetry group for a generic class of vehicle models. In Sect. 3, based on previous 
works, e.g., [ 12– 14, 21, 23], we determine a method to analytically select trim 
primitives from a vehicle model and, alternatively, abstract typical trim primitives 
from traffic data. In Sect. 4, we model the computation of maneuvers as an OCP and 
solve the respective OCP to obtain the optimal maneuvers. Automata of different 
configurations with respect to their computational complexity and solution quality 
are analyzed in Sect. 5. It also investigates both time-optimal and maximum comfort 
motion graphs via the analysis of multi-objective maneuvers. In Sect. 6, we briefly 
present possible algorithms to solve the graph-based planning problem. Lastly, we 
give concluding remarks in Sect. 7. 

2 Models and Symmetry 

There are several ways to represent the dynamic system of vehicles, from the simplest 
cases, such as the point-mass model, the Dubins curves [ 11] and the Reeds–Shepp 
curves [ 25], to detailed, vehicle-specific models. Both Dubins and Reeds–Shepp 
curves take into account a kinematic car model consisting only of the pose, i.e., the 
position and orientation. Halfway through, the CommonRoad benchmarks present a
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Fig. 2 Workflow of our methodology 

hierarchical list of models that considers increasingly complex lateral vehicle dynam-
ics and tire models [ 5]. This list includes, among others, the following models: kine-
matic single-track model, single-track model, and a multi-body model. It is assumed 
for these models the existence of controllers that can realize a commanded accel-
eration. The choice of the appropriate model depends on which detail you want to 
capture the physics of motion. In the Appendix, the reader can find the description 
of the equations for the kinematic single-track and the single-track models, as they 
will be used in this chapter. 

All of the CommonRoad models have in common the following generic structure 
of ordinary differential equations: 

.ẋ = f (x, u) :=

⎡
⎢⎢⎣
f1(r, u) cos ( f2(r, u)+ ψ)
f1(r, u) sin ( f2(r, u)+ ψ)

fψ(r, u)
fr (r, u)

⎤
⎥⎥⎦ , (1) 

with the vector of states .x =  sx sy ψ r
 T

belonging to a manifold . X, where .sx and 
.sy are the positions of the center of gravity, .ψ is the vehicle orientation, . r is any 
vector of .n − 3 states, .u ∈ U is the vector of inputs and . f1(r, u), f2(r, u), . fψ(r, u), 
and. fr (r, u) are arbitrary nonlinear functions. For convenience, we omit the notation 
for dependence of .x(t) and .u(t) on time .t ∈ R≥0. We assume the function . f (x, u)
of Eq. (1) as being continuous and locally Lipschitz w.r.t. .x(t). Then, we guarantee 
the existence and uniqueness of solutions given by the flow 

.x(t) = ϕu(x(0), t) (2) 

for a given input function . u on the time interval .t ∈ [0, T ].
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Many mechanical systems, including vehicles, exhibit the symmetry property, 
which acts as state transformations defined by Lie group representations [ 14]. They 
are necessary to build the primitives from the model. To describe them mathemati-
cally, we need to introduce some considerations. 

Let the Lie group be denoted by. G, its identity element by. e, and its left action on 
. X by. : G × X → Xwith. smooth,. (e, x) = x for.x ∈ X, and.  (g,  (h, x)) =
 (gh, x) for all .g, h ∈ G and .x ∈ X. 
Definition 1 (Symmetry) The tuple .(G,  ) is a symmetry for .ẋ = f (x, u) on. X, if  
for any fixed control .u ∈ L∞

loc([0,∞),Rm), 

.ϕu( (g, x0), t) =  (g, ϕu(x0, t)) (3) 

holds for all .g ∈ G, .x0 ∈ X, and .t ≥ 0. 

We can produce a symmetry group that fits the entire set of models described in 
[ 5]. It is given by combined rotations and translations on the pose, which we represent 
by .p =  sx sy ψ

 T ∈ R
2 × S1, in the following form [ 24]: 

Theorem 1 The symmetry group for Eq. (1) is given by 

.G :=
 
g ∈ SE(n) : g := g( x) =

 
R  x
0 1

  
, (4) 

where 

. R =
 
RSO(3) 0
0 I

 
∈ SO(n), (5) 

. x =

⎡
⎢⎢⎣
 sx
 sy
 ψ

0

⎤
⎥⎥⎦ ∈ R

2 × S1 × {0}n−3, (6) 

. RSO(3) =
⎡
⎣
cos( ψ) − sin( ψ) 0
sin( ψ) cos( ψ) 0

0 0 1

⎤
⎦ ∈ SO(3), (7) 

for . I being the identity matrix with appropriate dimension, a vector . x, and . g
given in homogeneous coordinates, such that the affine-linear group action can be 
represented by: 

. g(x) = Rx + x . (8) 

To prove it, we show the equivariance of the system (1) w.r.t. the symmetry action 
(8). We will show the idea of the proof, while details can be found in [ 24]. 

Proof The vector field . f is equivariant w.r.t. the symmetry action . if
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. f ( g(x), u) = d g(x)

dx
· f (x, u). (9) 

Let . p =   sx  sy  ψ
 T
. The group action (8) can be written as 

. g(x) =
 
RSO(3) p + p

r

 
=

⎡
⎢⎢⎣
cos( p)sx − sin( p)sy + sx
sin( p)sx + cos( p)sy + sy

ψ + ψ
r

⎤
⎥⎥⎦ . (10) 

Then, from Eqs. (1), (10) and (5), we get that the left-hand side of Eq. (9) is:  

. f
 
 g(x), u

 = R f (x, u). (11) 

Considering . g(x) = Rx + x as in Eq. (8), 

.
d g(x)

dx
= R, (12) 

which we can replace in Eq. (11), proving the equivariance of the vector field by 
satisfying Eq. (9). 

Given the proper considerations, we can now define motion primitives as equiv-
alence classes of trajectories. 

Definition 2 (Motion primitive) A motion primitive is the equivalence class of a 
representing pair .(x, u) on.[ti , t f ], if for any class member .(x̄, ū) on.[t̄i , t̄ f ], it holds 
that .t f − ti = t̄ f − t̄i and there exists a group element .g ∈ G and a shift . t ∈ R, 
such that 

.(x(t), u(t)) = ( (g, x̄(t − t)), ū(t − t)) ∀t ∈ [ti , t f ]. (13) 

In the next sections, we will introduce the two types of motion primitives: trim 
primitives and maneuvers. 

3 Trim Primitives 

These primitives are characterized by fixed, i.e., trimmed, controls and are symmetry-
induced motions. They were introduced in [ 14], and the authors add that the trims are 
identified with steady-state motions, also known as relative equilibria of the system. 
Formally, they can be defined as follows. 

Definition 3 (Trim Primitive) Following the Definition 1, let. g denote the Lie algebra 
of . G with the exponential map .exp : g → G, and .ū ∈ U a fixed control input. The
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tuple .(x, u) on .[0, T ] with .x(0) = x0 is called a trim primitive if it is a solution to 
the system dynamics expressed, for all .t ∈ [0, T ], by  

.

 
x(t) =  (exp(ξ t), x0),
u(t) ≡ ū,

(14) 

with .ξ ∈ g being a suitable chosen Lie algebra element. 

The duration of a trim primitive is, in principle, not fixed and is called “coast-
ing time”. For the kinematic single-track or the single-track models, the trims are 
characterized by a fixed velocity and a constant curvature 2 (see [ 23, 24]). 

A choice for a finite number of trim primitives has to be taken. The question of 
representation and well-spread trims arises. A “plain vanilla” approach is to uni-
formly grid the Lie algebra up until borders that seem physically plausible [ 19]. 
More sophisticated approaches choose representative trim primitives based on data, 
either the road-geometry of interest or from driving, as detailed in the following two 
subsections. 

3.1 Choice Based on Road-Geometry 

One way to select the trim primitives is to fit them to the geometry of the roads on 
which the vehicle is to drive. As an example, we take the map of the Cyber-Physical 
Mobility Lab (CPM Lab) [ 16] drawn using the CommonRoad interface [ 5], depicted 
in Fig. 3a. From information contained in the CommonRoad scenario file, we can 
decompose the roads into the discrete points taken from the center of each lane, as 
can be seen in the upper left of the Fig. 3b and generate trims by the sequence: 

1. Calculate all the possible curvatures from the map. 
2. Select the most frequent curvatures. 
3. Choose an arbitrary set of speeds within the boundaries interval. 
4. Combine curvatures and speeds in tuples that represent each trim. 

The yaw angles at each point of the decomposed map could be calculated from the 
vectors tangent to the lane’s center (see Fig. 3b). Then, we can get and store the set of 
different curvatures, which might be a large data set. To reduce it, we can cluster the 
data points, for instance via k-means, to get a smaller number of the representative 
curvatures [ 24]. However, we can directly steer the number of different curvatures 
by the considered rounding accuracy, as we can have many similar data points. For 
example, the set of curvatures .{0.0507..., 0.0543..., 0.0539...} could be reduced to 
the values .{0.051, 0.054} when considering three decimal places, or to just to the 
value of.0.05 if two decimal places are considered. See Fig. 4 for checking the number

2 The curvature is calculated by dividing the yaw rate by the velocity. Then, the trims could, alter-
natively, be represented by a constant speed and constant yaw rate. 
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(a) CPM Lab’s map (b) Lane’s centers (upper left) with their discrete decom-
position 

Fig. 3 Road geometry decomposition of the CPM Lab’s map into 208 different points. The axes 
are the coordinates in meters 

Fig. 4 The number of different curvatures computed in the example according to the tolerated 
decimal places 

of different curvatures considered according to the accepted decimal places for this 
example. Having two decimal places, we get 14 classes of curvatures, that can be 
representative for this map. Lastly, a set of arbitrary speeds can be combined with 
these different classes and we get a set of trims to be used in the planning problem. 

3.2 Choice Based on Driving Data 

An automatic generation of data-based automata was proposed in [ 24]. The authors 
assumed that the data represents a dynamical model with symmetries. Also, this 
model is observable such that the full system state could be reconstructed from the 
available states on the data. Then, making an assumption on the model, the following 
sequence of steps was carried out: 

1. Find invariances of trims in data. 
2. Cluster trim primitives.
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(a) Extracted trims (b) Trims clustered 

Fig. 5 Trims clustered using k-means in seven representative points, where the black squares are 
the centers of each cluster (figure from [ 24]) 

3. Evaluate a transition matrix. 

The selected data in [ 24] was taken from the nuScenes data set [ 8], having multiple 
information about the vehicle’s states, including the pose, the velocity, the accelera-
tion, and the rotation rate recorded using an inertial measurement unit during urban 
driving in Singapore (Singapore) and Boston (United States). It is worth mention-
ing that this data set represents the interaction of the car in real traffic with other 
vehicles, including overtaking, braking, waiting on corners, etc. That is, several real 
interactions between vehicles are embedded in the selected primitives, ideal for a 
cooperative planning scenario. 

Consider the data points being represented by the triples .(ti , xi , ui ) for . i =
0, 1, 2, . . . , D, where .D ∈ R is the number of elements in the data set. Consider 
that, for a suitable chosen symmetry .(G,  ), there exist solutions .(x, u) satisfying 
Definition 3 for a model .ẋ = f (x, u). Then, subsequent data points belong to the 
same trim if 

.

 
||ui+1 − ui || <  u, and
|| (exp(ξ(ti+1 − ti )), xi )− xi+1|| <  x (15) 

for a sufficient small positive error margins . x and .  u . 
We can determine a minimum time length . τ for the duration of a trim primitive, 

i.e., a minimal coasting time. Then, a trim will be considered only if, for a sequence of 
.N > 1 points, the conditions (15) hold from. i to .i + N − 1 such that .ti+N − ti ≥ τ . 

However, the number of extracted trims from the data can be huge. Then, we 
need to look for a finite amount of clusters that define the most representative trims 
during a route in real traffic. In [ 24], they worked with the k-means algorithm, an 
unsupervised learning technique that finds clusters in a set of data points, where the 
amount of clusters is given [ 20]. The representative trims will be selected as the 
center points of each cluster. Figure 5 shows an example of trims being clustered 
for the kinematic single-track model (28) from [ 24]. The trims are represented by a 
constant speed (x-axis) and a constant curvature (y-axis).
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At first, we could consider that a vehicle would be able to transit from any relative 
equilibrium to any other. For instance, in a kinematic robot model under nonholo-
nomic constraints, given by 

.

⎡
⎣
ṡx (t)
ṡy(t)
ψ̇(t)

⎤
⎦ =
⎡
⎣
cos(ψ(t))
sin(ψ(t))

0

⎤
⎦ u1(t)+

⎡
⎣
0
0
1

⎤
⎦ u2(t), (16) 

where the states are the pose and the controller manages the linear velocity . u1(t) =
v(t) and the angular velocity.u2(t) = ψ̇(t), trajectories can switch directly from one 
trim to another [ 13]. This is due to this model directly controlling the velocities and, 
thus, allowing discontinuities thereof. In this case, as well as in the (kinematic) single-
track model, every constant control input defines a trim, either going straight with 
constant velocity or going in a circle with constant rotational velocity. However, in 
the (kinematic) single-track model, the control inputs correspond to the longitudinal 
acceleration and the steering angle velocity (see the Appendix for these models’ 
equations). Thus, trims necessarily correspond to uncontrolled, i.e., constant-velocity 
motion. Smooth transitions between trims are then needed for, e.g., accelerating and 
decelerating to a new cruising speed, or for transitioning between straight and circular 
motions. 

We can search and select these transitions according to their occurrence in the data. 
That is, only transitions with a high probability of occurrence will be considered. 
The probabilities are organized in a transition matrix, in which, for each trim cluster, 
the transitions from all points of this cluster to other clusters are counted in the data. 

These transitions are another kind of primitive, called “maneuvers”. The last step 
for the automatic generation of an automaton is the computation of the maneuvers. 
Their formal definition, as well as techniques to compute them, will be given in the 
next section. 

4 Maneuvers 

The second type of motion primitives is the maneuvers. They are responsible for 
smooth transitions in the system from one trim primitive to another. Formally, we 
can define them as follows. 

Definition 4 (Maneuver) A maneuver is a finite-time trajectory that connects two 
trim primitives and is identified by: 

• a time duration . T ; 
• a sequence of control actions .u : [0, T ] → R

m ; 
• and an evolution in the form of (2) such that.(x(0), u(0)) and.(x(T ), u(T )) belong 
to trim primitives characterized by (14).
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In the class of vehicle models, the physics of maneuvers depends on the specific 
choice of the dynamical system model. 

To derive maneuvers for the considered family of vehicle models, we present a 
geometric approach, in which polynomial equations define the transitions from the 
predecessor trim to the successor one. Alternatively, maneuvers can be computed as 
solutions of an OCP. In this case, we can also explore Pareto fronts in a multiobjective 
optimization problem. 

4.1 Polynomial Approach 

The paper [ 23] exemplifies a concrete case of formulating the geometric method 
using the single-track model (30) from [  5]. In this case, a smooth transition needs 
to be made between the velocities . v and steering angles . δ from the predecessor 
trim to the successor one, both having these parameters fixed. Then, for a maneu-
ver with the duration .T > 0, we have the constraints .v(0) = v0 and .v(T ) = vT . A  
jump in acceleration at the beginning or the end of the maneuver would theoretically 
result in infinite jerk, which can be avoided by setting.u(0) = u(T ) =  0 0

 T
. Then, 

the control inputs are continuous, but we have additional constraints on the veloc-
ity .v̇(0) = v̇(T ) = 0. These constraints are met by the following cubic polynomial 
transitions for . 0 ≤ t ≤ T : 

.

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

v(t) = (vT − v0)
 
3 − 2

t

T

  
t

T

 2
+ v0,

δ(t) = (δT − δ0)
 
3 − 2

t

T

  
t

T

 2
+ δ0.

(17) 

Then, the corresponding control signals .u v̇ and .u δ̇(t) are 

.

⎧⎪⎪⎨
⎪⎪⎩

u v̇(t) = 6(vT − v0)
 
1 − t

T

 
t

T 2
,

u δ̇(t) = 6(δT − δ0)
 
1 − t

T

 
t

T 2
.

(18) 

In addition, to ensure the feasibility of the maneuver, constraints on the longitu-
dinal acceleration and the derivative of the steering angle need to be considered. For 
the selected model, there exist the constraints 

.|v̇| ≤
    
3

2

vT − v0
T

    and |δ̇| ≤
    
3

2

δT − δ0
T

    . (19) 

When the maneuvers have positive acceleration (i.e.,.v0 < vT ), another constraint 
needs to be considered:
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.u v̇ ≤ amax
vs

v
, (20) 

with the switching velocity . vs , representing limited engine power, and a maximal 
longitudinal acceleration.amax > 0. Then, the duration of the maneuver can be chosen 
according to 

.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T =max

 
3

2

|vT − v0|
amax

,
3

2

|δT − δ0|
δ̇max

,
3

2

(vT − v0)vT
amaxvs

, Tmin

 
,

for v0 < vT ,

T =max

 
3

2

|vT − v0|
amax

,
3

2

|δT − δ0|
δ̇max

, Tmin

 
, otherwise.

(21) 

where .Tmin is a defined shortest duration, set as a design choice. 

4.2 Optimal and Pareto-Optimal Maneuvers 

Alternatively, the maneuvers can be computed optimally with respect to a cost func-
tional .J (T, x, u), for a duration . T . Then, each maneuver is obtained by solving the 
following OCP: 

. minimize
T,x,u

J (T, x, u) (22a) 

.subject to ẋ(t)= f (x(t), u(t)), 0 < t ≤ T (22b) 

. 0 ≥ g(x(t), u(t)), 0 < t ≤ T (22c) 

. x(0)= x0 (22d) 

. x(T )= xT , (22e) 

with .x0 and .xT as fixed states 3 evaluated at the predecessor and successor trims, 
respectively, and .g(·) as the constraints for the states and inputs. 

In the case of multiple cost functionals to be considered, the problem (22a) 
becomes a multiobjective optimal control problem. Then, we can select a Pareto-
optimal maneuver by computing the so-called Pareto set of optimal compromises 
between the concurrent objectives [ 9] and choosing one of its points (see Fig. 6). 

For instance, consider the kinematic single-track model (28), the costs.J1 = T and 
.J2 =  T0 ||u v̇||22, for a trade-off between fast and comfortable trajectories. The maneu-
ver goes from a trim described by.(v, δ) = (0 km h−1, 0◦) to a trim. (20 km h−1, 15◦)
and it is limited by .5 s. The Pareto front with 25 points is given in Fig. 6 together 
with their respective pose and inputs. Optimal control problems can be solved using 
numerical software tools, for instance CasADi [ 6] or TransWORHP [ 18]. We can

3 Depending on the dynamical system, only part, not all, of the states. x could be considered as fixed 
at the initial and final times of the maneuver. 
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Fig. 6 Example of a Pareto front for a maneuver with.J1 = T and. J2 =  T0 ||uv̇ ||22

select a Pareto-optimal point based on a decision-making, to get the maneuver to be 
considered in the MPA. 

5 Maneuver Automaton Selection 

In [ 14], motion graphs are introduced as “maneuver automata”, in which trims form 
the vertices and maneuvers the edges of the graph. This defines the concatenation 
rules, i.e., any path in the automaton defines a sequence of primitives. Together with 
a choice of coasting times, this sequence can be transformed into an admissible, 
controlled trajectory of the underlying dynamical system. 

As presented in Sect. 3, maneuver automata can be constructed in an automatic 
way by extracting representative primitives from a data set. In [ 24], numerical exam-
ples were solved to compare handcrafted and extracted automata for the kinematic 
single-track model (Eq. (28)). The handcrafted automata consider a usual pragmatic 
way of designing it: a grid covering the entire space of allowed velocities and steering 
angles for the model [ 23]. For comparison, the handcrafted and extracted automata 
had the same quantity of trims and a similar number of maneuvers. A visual com-
parison of these two different ways of constructing an automaton is given in Fig. 7, 
considering the selection of 21 trim primitives. The difference in the trajectory plan-
ning when using each of these automata is replicated in Fig. 8. Note that the extracted 
primitives fit better to the road shape and the final goal position. 

For the planning problem, a starting trim is assumed and an initial condition 
.x(0), i.e., a starting node in the MPA, is given. For a guarantee of the existence of a 
solution from an initial trim to a final trim (or node), it is shown in [ 14] that one of 
the requirements is the strong connectivity of the MPA. However, a priori, an MPA
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Fig. 7 Automata with 21 trim primitives. The dots correspond to trim primitives (axes: velocities 
versus steering angle) and the colored lines represent maneuvers connecting the trims (figures from 
[ 24]) 

Fig. 8 Trajectories for the two different automata with 21 trim primitives (figures from [ 24])
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Fig. 9 Comparison between different graph search methods: the goal regions are denoted in red 
and the yellow area is an optimization region, where the II* will try to optimize the trim’s coasting 
times to lead the vehicle to a goal point inside the goal region 

does not need to be strongly connected. For the cases where there exists more than 
one admissible solution, an optimization problem can be posed. 

6 Planning Algorithms 

With a library of primitives condensed into a graph, path planning can be done using 
different techniques. In this section, we will mention some of the ideas developed. The 
complementary chapter will, however, delve into planning in a cooperative trajectory 
planning scenario. 

6.1 Optimized Primitives (.  *) Search 

The .  * search was developed in [ 23] and it is inspired by the Hybrid A* algorithm 
[ 10], an A*-based search. In the Hybrid A*, continuous states are associated with 
grid cells and the costs of the states, therefore, are the cost of their respective cell. 
However, in.  * search, each state is fully continuous, instead of being associated with 
discrete grid cells. The trims’ coasting times can be adjusted by an online optimization 
problem of reduced complexity. The algorithm encapsulates the method of anytime 
search to deal with time deadlines [ 32]. The search, then, can lead the vehicle to an 
exact goal point in the state space while respecting computation time constraints. 
Figure 9 compares the different graph search methods.
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Fig. 10 The interaction of 
agent and environment in 
reinforcement learning 

6.2 Reinforcement Learning 

Reinforcement learning as a Markov decision process, as described in [ 29], is the 
task of learning from the interaction between an agent and an environment to achieve 
a goal. The agent is the decision-maker and learns which is the best action given the 
current state. A numerical value evaluates an action and it is called “reward”. Thus, 
the action is selected to maximize the rewards. The environment, in turn, responds to 
the agent with a new state and the reward for a given action. A schematic depiction 
of this iterative process can be seen in Fig. 10. 

It is possible to use primitives as the actions of a reinforcement learning agent, 
as opposed to using a discrete or continuous set of control inputs as the action space 
[ 15]. A work in this regard was developed in the Bachelor’s thesis [ 28]. 

6.3 Graph-Based Receding Horizon Control 

Introduced in [ 27], this method aims to transfer the receding horizon control approach 
into graph-search problems, specially made for maneuver automata. Thus, nonlinear, 
nonconvex optimization problems are solved in real-time, in opposite to traditional 
graph-search approaches that keep the search until the goal vertex is found. This 
approach was applied to cooperative planning of multiple networked and autonomous 
vehicles on the CPM Lab [ 16]. Also, it was shown that the solutions are recursively 
feasible by design of the finite state automaton. This method is explained in detail in 
the chapter “Prioritized Trajectory Planning for Networked Vehicles Using Motion 
Primitives”. 

6.4 Motion Graphs as Mixed Logical Dynamical System 

We can model the motion graphs as a mixed logical dynamical (MLD) system to 
transform the graph search into an OCP. MLD systems were introduced by [ 7] and 
describe systems by a combination of continuous variables with Boolean ones. As an 
example of application, an MLD system was modeled to solve collision avoidance 
of collaborative vehicles in [ 4]. The authors did not use primitives, but linearized
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the vehicle model over the operation points and solved mixed-integer linear and 
quadratic programming problems. 

In short, the idea of our proposed MLD system is to formulate the execution of a 
primitive at a discrete-time . k by “enabling” one primitive over all others available, 
given which node of the MPA is active for the vehicle. For that, we can define the 
Boolean variables, for .i = 1, 2, . . . , as  

.mi (k) =
 
1, if the primitive pi is executed at k,

0, otherwise.
(23) 

where the set of available primitives at time. k is .{pi , i ∈ N}. Then, given the current 
automaton state in the MPA and .x(k), the system dynamics can be written as: 

. 

⎧⎪⎪⎨
⎪⎪⎩

x(k + 1) =
 
i

 gi (x(k)) · mi (k), (8.24a)

 
i

mi (k) = 1, (8.24b)

for the continuous times given by 

.tk+1 = tk +
 
i

τimi (25) 

with .τi representing the duration of the primitive . pi . This modeling approach leads 
to a mixed-integer nonlinear programming problem when searching for the optimal 
sequence for a given planning problem within an MPA. 

Thus, it is possible to extend this modeling into a model predictive control (MPC) 
formulation and thus exploit the tools available for MPC, for example, stability, 
robustness, and inclusion of constraints, in the computation of trajectories with 
motion primitives. 

7 Conclusion 

We presented in this chapter a description of methods to design an automaton of 
motion primitives by properly selecting and constructing them. This automaton of 
primitives is implemented in trajectory planning for cooperative vehicles and its 
architecture is essential for efficient paths. We presented a list of vehicle models 
abstracted in a general formulation. Then, we showed how to abstract typical trim 
primitives from traffic data and derived maneuvers by the polynomial method and 
by an OCP. This last one is useful for finding Pareto-optimal maneuvers. We also 
compared different automata and presented possible algorithms to solve the graph-
based planning problem.
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Appendices 

Here, we present two vehicle models from [ 5], the kinematic single-track and the 
single-track model. 

A. The Kinematic Single-Track Model 

The kinematic bicycle model has the state vector 

.x =  sx sy ψ v δ
 T ∈ R

5, (26) 

and the input vector: 
.u =  u v̇ u δ̇

 T ∈ R
2, (27) 

where .sx and .sy are the positions of the rear axis, .ψ is the vehicle orientation, . v is 
the velocity, . δ is the steering angle, .u v̇ is the longitudinal acceleration, and .u δ̇ is the 
velocity of the steering angle. The state space equations are given by: 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡx (t) = v(t) · cos(ψ(t)),
ṡy(t) = v(t) · sin(ψ(t)),
ψ̇(t) = v(t)

L
· tan(δ(t)),

v̇(t) = u v̇(t),

δ̇(t) = u δ̇(t),

(28) 

for . L being the wheelbase of the vehicle. In [ 24], it was used the wheelbase of the 
Renault Zoe, used in obtaining the nuScenes data, with value 2.588 m [ 1]. 

B. The Single-Track Model 

The state vector 
.x =  sx sy ψ ψ̇ v δ β

 T ∈ R
7, (29) 

has the same variables described for Eq. (26) together with the slip angle at the center 
of gravity . β (see Fig. 11). The inputs are the same as in Eq. (27). The state space 
equations are:
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Fig. 11 Single-track model 

.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ṡx (t) = v(t) · cos(ψ(t)+ β(t)),
ṡy(t) = v(t) · sin(ψ(t)+ β(t)),
ψ̇(t) = d

dt
ψ(t),

ψ̈(t) = μM

IzL

 
lf · αf,r · δ(t)+ (lr · αr,f − lf · αf,r)β(t)

− (l2f · αf,r + l2r · αr,f) ψ̇(t)
v(t)

 
,

v̇(t) = u v̇(t),

δ̇(t) = u δ̇(t),

β̇(t) = μ

L · v(t)
 
αf,r · δ(t)− (αr,f + αf,r)β(t)

+ (lr · αr,f − lf · αf,r) ψ̇(t)
v(t)

 
− ψ̇(t),

(30) 

where .αi, j := αi, j (u δ̇(t)) is a function of the input .u δ̇(t) defined as 

.αi, j = Ci (g · l j − h · u δ̇(t)) (31) 

for .i, j ∈ {f, r}, . L given by.L = lf + lr and the parameters described in Table 1 with 
the values used in [ 23].
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Table 1 Single-track model’s parameters 

Parameter Symbol Unit Value 

Distance from the center of gravity to front axle .lf .[m] 0.883 

Distance from the center of gravity to rear axle .lr .[m] 1.508 

Total vehicle mass .M .[kg] 1.225 

Moment of inertia about. z axis .Iz .[kg · m2] 1.538 

Center of gravity height of.M .h .[m] 0.557 

Cornering stiffness coeff. (front, rear) .Cf , .Cr .[1/rad] 20.89 

Friction coefficient .μ .[−] 1.048 
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