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Abstract
The study encompasses an efficient CFD methodology for simulating weapon bay flows,

which results in more than 90% computational efficiency than the commonly-used DES

method and superior accuracy compared to the industry-standard RANS approach. In

particular, several scale-adaptive simulation (SAS) variants are tested for an open cavity

configuration under transonic conditions and compared against DES results and experi-

mental data. The study investigates the efficacy of SAS models in predicting cavity spectra

with high computational efficiency compared to wall-resolved DES models. Combining

SAS with wall functions (SAS-WF) led to over-prediction of modal magnitudes due to

strong vortical structures inside the cavity. In order to address this, a forcing feature was

employed to resolve turbulent structures, yielding results comparable to wall-resolved

SAS and reference DES results. It also explores Rossiter modes under sideslip conditions,

revealing significant interference of waves in highly three-dimensional flow. It is observed

that the skewed shear-layer dynamics primarily influence Mode 1, while higher modes

exhibit fewer skewed shear-layer characteristics and include spanwise reflecting waves.

Besides streamwise waves, there is notable wave interference in the spanwise direction

due to flow impingement on the leeward door.

Furthermore, the study presents a detailed numerical investigation of double- and triple-

delta wing configurations under transonic flow conditions using the k-ω SST and SAS

turbulence models, focusing on leading-edge vortical flows. It investigates the responses

of double-delta and triple-delta wings to vortex breakdown and shock buffet at an angle of

attack of 20 degrees. The double-delta wing experiences shock-induced vortex breakdown,

leading to transient adjustments in the shock position and resulting in a shock buffet.

In contrast, the breakdown in the triple-delta wing is associated with a stationary shock

induced by the wing’s planform kink. Using the SAS model, a quasi-periodic oscillation of

the pitching moment is observed in the triple-delta wing, revealing the evolution of the

lambda shock. Analysis of the enstrophy transport equation suggests that the lambda-

shock drives vortex breakdown in the double-delta wing. These findings highlight the

complex interplay between shock-induced effects and vortex dynamics, providing insights

into the aerodynamic behaviour of these wing planforms.
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Kurzfassung
Die Studie befasst sich mit einer effizienten CFD-Methodik zur Simulation von Strö-

mungsvorgängen in Waffenschächten, die den Bedarf an Rechenaufwand um mehr als

90% reduziert im Vergleich zum DES-Ansatz. Die Studie untersucht die Wirksamkeit

der recheneffizienten skalenadaptiven Simulation-Modelle (SAS) bei der Vorhersage von

Kavitätsspektren im Vergleich zu wandaufgelösten DES-Modellen. Die Kombination

von SAS mit Wandfunktionen führte zu einer Überschätzung bei der Vorhersage der

modalen Größen aufgrund starker Wirbelstrukturen innerhalb der Kavität. Um diese

Problemstellung zu lösen, wurde eine Forcing-Funktion eingesetzt, um turbulente Struk-

turen aufzulösen, was zu Ergebnissen führte, die mit wandaufgelösten SAS und DES-

Referenzdaten vergleichbar sind. Die Studie untersucht zudem Rossiter-Moden unter

Sideslip-Bedingungen und zeigt, dass die erste Mode vorwiegend von der schiefen Sch-

erschichtdynamik beeinflusst wird, während die höheren Moden weniger Merkmale

einer schiefen Scherschicht aufweisen und Wellenreflexionen in Spannweitenrichtung

beinhalten. Neben den Wellen in Strömungsrichtung gibt es eine bemerkenswerte Wellen-

interferenz in Spannweitenrichtung, die durch die Strömungseinwirkung auf die leeseitige

Tür entstehen.

Außerdem wird eine numerische Untersuchung von Doppel- und Dreifach-Delta- Flügelkon-

figurationen unter Verwendung der k-ω SST- und SAS-Turbulenzmodelle vorgestellt,

wobei der Schwerpunkt auf Wirbelströmungen an der Vorderkante liegt. Es werden

die Reaktionen von die Flügeln auf Wirbelzerfall und Stoßwellen bei einem Anstell-

winkel von 20 Grad untersucht. Es wird festgestellt, dass der Doppel-Delta-Flügel einen

schockinduzierten Wirbelabbruch erfährt, der zu vorübergehenden Anpassungen der

Schockposition führt und ein Schockbuffet verursacht. Im Gegensatz dazu ist der Zusam-

menbruch beim Dreifach-Delta-Flügel mit einem stationären Schock verbunden, der durch

den Knick in der Tragflächenform verursacht wird. Mit Hilfe des SAS-Modells wird eine

quasi-periodische Oszillation des Nickmoments im Triple-Delta-Flügel beobachtet, die die

Entwicklung des Lambda-Stoßes aufzeigt. Die Analyse der Enstrophie-Transportgleichung

deutet darauf hin, dass der Lambda-Schock den Wirbelabbruch im Doppel-Delta-Flügel

vorantreibt. Diese Ergebnisse verdeutlichen das komplexe Zusammenspiel zwischen

stoßinduzierten Effekten und Wirbeldynamik und geben Einblicke in das aerodynamische

Verhalten dieser Flügelformen.
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Chapter 1

Introduction

The development of newer aircraft incorporates the latest technological advancements, in-

cluding stealth capabilities, advanced avionics, enhanced manoeuvrability, and increased

range and speed. These developments ensure superiority over older models and potential

adversaries. One significant project is the FCAS (Future Combat Air System) or NGWS

(Next Generation Weapon System). It represents collaborative efforts among European

countries to develop a new generation of fighter aircraft. FCAS aims to create an intercon-

nected system comprising manned and unmanned aerial vehicles, stealth capabilities and

enhanced network-centric warfare capabilities. It responds to the growing complexity of

modern warfare and the need for interconnected, technologically advanced systems.

Predicting unsteady effects in fighter aircraft is essential because of the challenges new-

generation fighter aircraft face. Computational fluid dynamics (CFD) is fundamental in

predicting complex flow phenomena but remains expensive and challenging. The thesis

discusses CFD-based analysis of unsteady effects in fighter aircraft aerodynamics for

two critical applications: weapon bays and leading-edge vortices on hybrid-delta wing

configurations.

1.1 Background

External weapons mounted on hardpoints under the wings or fuselage increase aerody-

namic drag, reducing an aircraft’s speed, manoeuvrability, and fuel efficiency. It leads

to incorporating internal weapon bays, which contribute significantly to an aircraft’s

stealth profile by reducing its radar cross-section. By internally storing weapons, the

aircraft’s external surfaces remain smoother, reducing the number of protruding edges or

surfaces that can reflect radar waves. This stealth capability allows the aircraft to operate

with reduced detectability, enhancing its survivability in modern contested environments.

However, several challenges arise when these bays are opened to release the payload.
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During this process, the environment inside the bay becomes highly unsteady, which

causes unpredictable oscillations in the payload and can lead to potential aero-elastic

coupling issues. Additionally, there are high acoustic loads, with noise levels exceeding

160dB. Resonant tones as high as 140dB can occur, potentially causing acoustic fatigue

and damage to avionics equipment [1]. Furthermore, longitudinal pressure gradients

may induce pitch-up moments on the payload after release. It could alter the payload’s

trajectory and sometimes lead to it colliding with the launching aircraft. The presence of

these pressure fluctuations has been a driving force behind extensive research on cavities

over the past six decades.

These challenges must be addressed or controlled for the safe and effective use of these

weapon bays. It makes managing cavity flow problems a critical aspect of the design of

many contemporary military aircraft. This emphasis on mitigating issues within the bay

environment ensures that the release of stores remains as safe and efficient as possible,

aligning with the stringent requirements of modern combat aircraft design.

Additionally, the development of low radar signature fighter aircraft requires the explo-

ration of innovative airframe concepts to achieve reduced radar cross section (RCS) and

superior flight performance, which delta wings with their swept leading edges are known

to offer. On a delta wing, the vortices are generated over the leading edges, providing the

aircraft with additional lift over a wide range of incidence angles. For instance, a delta

wing with a 70◦ sweep can enhance its lift up to approximately 40◦ of the angle of attack

[2]. In contrast, a steady NACA 0012 airfoil operating in two dimensions will achieve its

peak lift at an angle of attack of approximately 15◦. The balance between the vorticity

generated at the leading edge and the vorticity convection over the wing makes the vortex

stationary, responsible for the additional lift of a delta wing [2].

Two counter-rotating vortices observed on either side of the delta wing originate from

separated shear layers near the leading edge. In the case of a wing with a rounded leading

edge, Earnshaw and Lawford [3] noted that these vortices did not manifest until the angle

of attack exceeded 5◦. However, on a wing with a sharp leading edge, the separation

vortices initiated at a lower angle of attack (as reported by Ericsson and Reding [4]).

These leading-edge vortices, often called LE vortices, possess a transverse dimension

of approximately half the wing’s span. These spiralling vortices generate a substantial

portion of the wing’s lift, resulting in suction patterns on the wing’s upper surface. Pressure

measurements indicate that the regions of maximum suction coincide with the core regions

of these vortices [5]. Fig. 1.1 depicts the open weapon bay of the F-22 Raptor aircraft,

alongside a vortex formation observed over the F-35 aircraft.

Contemporary wing designs often exhibit moderate leading-edge sweep angles with
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FIGURE 1.1: F-22 Raptor shows its weapon bay (left) [6] and a vortex forms
around the body of the F35 aircraft (right) [7]

rounded, possibly spanwise-varying, leading-edge contours. Unlike traditional slender

wings with sharp edges, the leading-edge vortices in these modern configurations are

no longer geometrically fixed, making their characterization and prediction significantly

more challenging.

1.2 Motivation

Weapon bays feature a highly unsteady and turbulent phenomenon related to combat

aircraft configurations. Opening a weapons bay during transonic and supersonic flight

generates a strong acoustic field comprising broadband and tonal noise. Rossiter has

described these modes [8]. This, in consequence, leads to a highly complex, turbulent flow

field with pressure oscillations that may induce fatigue or failure of structure and weapons

[9]. A literature review suggests the following physical picture: As the shear layer hits

the cavity rear wall, pressure waves are reflected inside the cavity. It generates robust

and low-frequency cavity modes, which excite the shear layer motion and vice versa.

Subsequently, the feedback further amplifies the resonance, and the cavity modes lock to

their final frequencies [9]. The numerical simulation of this kind of flow is very complex

and costly due to the inherent unsteady nature of turbulence. Lawson [10] has shown that

Large Eddy Simulation (LES) and Detached Eddy Simulation (DES) can correctly predict

cavity flows. Babu et al. [11] have successfully validated the Scale Adaptive Simulation

(SAS) for square cavities with and without doors and demonstrated at the same time a

significant reduction in CPU time compared to DES.

For engineering applications, even faster estimates of the amplitude and frequency of

the cavity noise field would be an advantage and a few methods are reviewed in [10].

Another early approach is documented in [12], which is based on the Minimized Domain
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CFD method. This method allows the collection of store force and moment data on

a relatively small ‘minimized’ domain, which receives the boundary conditions from

a separate baseline CFD solution of the entire aircraft. In this context, it is also worth

mentioning that the presence of a store in the cavity does not alter the fundamental acoustic

modes [13].

Another highly complex mechanism in delta-wing planforms is the formation and break-

down of vortex systems in sub- and transonic flows. For the flight dynamical stability and

control of combat aircraft, the aerodynamic understanding of this process is fundamental

for a successful aircraft design. The swept leading edges produce leading-edge vortices,

which are highly turbulent and transient. At high angles of attack, vortex breakdown can

occur, which leads to a loss of lift and introduces even more unsteady turbulence effects.

Nowadays, the system of leading-edge vortices on slender delta wings with sharp leading

edges is well understood. However, increased complexity, such as rounded leading edges,

swept trailing edges, or multiple delta planforms, requires detailed simulations to reveal

their flow physics. Individual configurations like the lambda-shaped SACCON within

NATO RTO task group AVT-161 [14] or the diamond-shaped SAGITTA [15] have been

investigated in research consortia and their flow physics are well documented. However,

it is impossible to conclude the flow around new configurations from these individual

configurations. A system of several leading-edge vortices can be produced by geometric

variations, which then interact with each other.

For future aircraft configurations, predicting the system of leading-edge vortices and their

interaction is likely to become very relevant. Control devices on the leading edge can

modify the vortices in a desirable way [16]. Therefore, how the control device influences

the entire vortex system and what its effect on flight dynamics needs to be known in detail

since this prediction depends strongly upon the flow separation on the leading edge and

the propagation of the turbulent vortex, high-fidelity turbulence-resolving approaches are

necessary to capture the underlying flow phenomena accurately.

Understanding and predicting these crucial flow mechanisms of weapon bay and hybrid

delta-wing configurations are vital for the successful design of modern fighter aircraft.

Aiding these two industrially relevant design aspects by numerical simulations forms the

core of this work.
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1.3 Research Objectives

Specific to cavity flow, this thesis addresses the complex unsteady flow and acoustic

field generated when opening weapons bays during transonic and supersonic flight.

The primary goal is to develop a CFD methodology that balances efficiency, accuracy,

and robustness. The scale-adaptive Simulation (SAS) model, known for its improved

computational efficiency compared to DES, will be further studied in the context of cavity

flows. The objective is to establish a more efficient approach for predicting cavity flows

while maintaining accurate results.

The thesis’s contribution to hybrid delta-wing airframes addresses the fundamental anal-

ysis of vortex flow phenomena on generic delta-wing planforms. The wide operating

range of highly agile modern combat aircraft, ranging from sub- to supersonic conditions

and including high angles of attack and side slip, can be ideally met by medium or low-

aspect-ratio wing configurations. In particular, the flow field at transonic flow conditions

is characterized by vortex formation and breakdown, vortex-vortex and vortex-shock

interaction, which may influence longitudinal and lateral stability. This work investi-

gates two different planforms of the ADS-NA2 configuration (DW1 and DW2). Besides

standard analysis methods needed for comparison with experimental data, a variety of

non-standard analysis tools are implemented in the postprocessing software Tecplot and

Python. Examples include budgets of the vorticity transport equation illustrating transport,

production and destruction of vorticity. The final assessment addresses vortices’ effect

on the aircraft’s stability and control. Although the answers depend on the flow regime

and configuration under consideration, the analysis of the whole dataset provides deeper

insights to improve engineering rules to guide the design process.

The research relies on advanced CFD techniques, employing high-fidelity turbulence-

resolving methods for accurate predictions and engineering-oriented models for efficiency.

The methodology involves rigorous simulation studies and comparison with available

experimental data and Airbus-provided information.

This thesis contributes to the aerospace engineering community by providing deeper

insights into modern fighter aircraft design, cavity flow and leading-edge vortices on

a delta wing. Investigating cavity flows will yield an efficient CFD methodology for

predicting unsteady flow and acoustic characteristics, aiding in assessing potential fatigue,

structural failure, and electronic component damage. Analyzing vortex systems on delta

wing planforms will offer comprehensive insights into fighter aircraft stability, control,

and design guidelines. By combining numerical simulations with experimental data, the

thesis will advance the understanding of complex, unsteady aerodynamic phenomena,
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guiding future aircraft design processes.

1.4 Outline of the Thesis

In this introductory overview, the chapters and their content have been outlined in the

following manner.

Chapter 2: Fundamentals of cavity flows and delta-wing aerodynamics - This chapter

is structured into two primary subsections, one dedicated to examining cavity flow and

the other to analyzing Leading-Edge Vortices (LEV) over delta-wing planforms. Section

2.1 reviews various studies on cavity flows and their acoustic field analysis. It introduces

the semi-empirical model introduced by Rossiter [8] and is followed by a list of studies

that improved Rossiter’s model by variation in assumptions from the original model. This

part also describes various CFD methodologies followed in weapon bay flows and their

accuracy and efficiency in predicting the acoustic modes. Section 2.2 introduces the past

studies on leading-edge vortices. It describes the state-of-the-art understanding of the

vortex system under subsonic, transonic and supersonic conditions. It summarises several

studies undertaken to comprehend the vortex breakdown characteristics and its effect on

aerodynamic stability.

Chapter 3: Theoretical background - This chapter introduces the flow governing equations,

the Navier-Stokes equations, turbulence theory, and the Kolmogorov energy spectrum,

followed by the law of the wall.

Chapter 4: Numerical approach - This chapter presents the numerical approach employed

in this work, the Finite-volume method. The discretization procedure and schemes have

been briefly explained. One of the most critical challenges in CFD is the treatment of

turbulence, which is explained using different approaches and models that are employed

in this work. Furthermore, near-wall treatment is explained in this chapter.

Chapter 5: Simulation configurations - This chapter introduces the two flow config-

urations simulated in this study, namely cavity and hybrid delta-wing configurations.

Moreover, the meshing strategy and the simulation setup with the boundary conditions

are shown for both flow configurations.

Chapter 6: Results of cavity flow - This chapter presents and analyses the results from

the simulations of cavity flows. It discusses the implications of different simulation

methodologies for predicting the acoustic field generated by weapons bays. Several

turbulence approaches are compared, and guidelines for efficient turbulence treatments

are summarized to predict cavity spectra.



1.4. Outline of the Thesis 7

Chapter 7: Results of leading-edge vortices on delta wings- This chapter provides insights

into the characteristics of vortex systems for double- and triple-delta wing planforms.

Reynolds Averaged Navier-stokes (RANS) based simulations are performed and validated

with experimental data. Simulations show its ability to identify the vortex behaviour under

various incidence angles. A few specific cases that involve vortex breakdown and vortex-

shock interactions are then reviewed with scale-adaptive simulation, and its unsteady

characteristics, namely vortex-vortex, vortex-shock interactions, and shock-buffet, are

shown in detail. The final assessment of the planforms is addressed to identify the impacts

of physical phenomena on the aerodynamic design considerations.

Chapter 8: Summary and Outlook This chapter summarises the research outcomes,

achievements, and contributions to the design of modern combat aircraft. It discusses the

limitations encountered during the study and proposes directions for future research.

Chapter 9: Publications This section comprehensively compiles all the works produced,

encompassing journal papers, book chapters, and conference publications generated

throughout the project.

Chapter 10: Appendices This chapter includes additional materials that support the

primary content with supplementary simulation results.
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Chapter 2

Fundamentals of cavity flows and
delta-wing aerodynamics

Section 2.1 presents a comprehensive literature review of cavity flows. It shows the studies

undergone to comprehend the physics behind resonance in open cavity configuration,

followed by a series of studies dedicated to numerically predicting the modes with different

turbulence modelling approaches. Section 2.2 reviews prior investigations into leading-

edge vortices within the context of delta wing planforms. These investigations span a wide

range, from modelling and simulation to gaining insights into the intricate flow dynamics

over these planforms.

2.1 Cavity Flows and Acoustic Field Prediction

Cavities can be classified into three main types: closed, open and transitional flow [10].

A closed cavity is associated with shallow cavities, like those found in missile bays of

military aircraft, and is usually defined by length-to-depth (Lc/Dc) ratios greater than

13. In a closed cavity, the incoming airflow separates from the front edge of the cavity

but lacks sufficient energy to bridge the entire cavity. Consequently, the airflow attaches

along the cavity floor at some point. Downstream, it separates from the floor again and

reattaches at the trailing edge. This type of flow does not lead to the formation of acoustic

tones. However, the region near the front wall experiences low pressure. In contrast,

the region near the back wall experiences high pressure, potentially causing a nose-up

pitching moment when a store is released. Open cavities are typically found in bomb

bays, with Lc/Dc ratios less than or equal to 10. The incoming flow separates at the front

edge of the cavity, forming a shear layer between the external flow and the flow within

the cavity. This shear layer extends along the cavity’s length and impinges on the rear

wall. This configuration generates substantial circulation within the cavity, leading to a
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uniform static pressure distribution along the cavity floor, with only a slight rise at the

back wall. This even distribution is advantageous for safe store separation. However, the

impingement of the shear layer on the back wall results in high-intensity acoustic tones,

which can induce vibrations in the store and the surrounding cavity structure [10]. Finally,

transitional flow occurs in the intermediate range between open and closed cavity flow.

As the Lc/Dc ratio decreases from the closed cavity type, impingement and exit shocks

merge into a single shock. However, significant longitudinal pressure gradients along the

cavity persist, which can exert substantial pitching moments on a store.

In 1964, a study by Rossiter [8] was one of the foremost studies that provided a solid

understanding of the physics-based acoustic-flow dynamic interaction for open-cavity

configurations. He performed a series of wind tunnel experiments and found that the

periodic pressure oscillation frequencies could be formulated in the semi-empirical model

(Eq. 2.1). He envisioned that a physical phenomenon, similar to the generation of edge

tones, arises from the periodic shedding of vortices at the front edge of the cavity and

an acoustic source at the rear edge. This phenomenon gives rise to multiple periodic

fluctuations characterized by frequencies within the (m− θ) sequence. When one of these

components aligns closely with the natural frequency of the air volume within the cavity,

resonance is triggered.

f =
U∞

Lc

m− θ

Ma∞ + 1/κc
(2.1)

In Eq. 2.1 f is the frequency, U∞ is the freestream velocity, Lc is the length of the cavity, m
is the mode number, θ is the phase delay constant, Ma∞ is the Mach number and κc is the

proportion of the free-stream speed at which the vortices travel over the cavity, in other

words the ratio of convection velocity of vortical structure to the freestream velocity.

The resonant modes are predominantly longitudinal, and in simple rectangular configu-

rations, their frequencies can be reasonably estimated using the semi-empirical Rossiter

model. The Rossiter model is still widely used to predict the modes, particularly in the

subsonic and transonic flow conditions. However, the model has shown some inaccuracies

in supersonic flow conditions as the model assumes that the propagation speed of sound

waves inside the cavity is equal to the freestream speed of sound. It introduces only a tiny

error at low Mach numbers, but at high Mach numbers, the error is much greater [17].

Heller et al. [17] modified the Rossiter model by assuming that the speed of sound is equal

to the freestream stagnation sound speed, thereby improving the model for a higher Mach

number range (Eq. 2.2).

f =
U∞

Lc

m− θ

Ma∞/(
√

1 + (γ− 1)Ma2
∞/2) + 1/κc

(2.2)
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In general, appropriate values of the empirical parameters θ and κc, along with their

relationship to flow conditions and Lc/Dc, remain unresolved. In particular, κc lacks a

universally agreed-upon value and should depend on a range of variables such as Mach

number Ma∞, Reynolds number Re∞, boundary layer thicknesses δ/Dc, δ/Lc, and other

aspects of the cavity geometry [18].

Numerous investigators have conducted experimental visualizations of the waves propa-

gating within the cavity. Handa et al. [19] conducted a study involving the visualization of

pressure wave generation and propagation in a deep rectangular cavity during supersonic

flow of Ma∞ = 1.7, employing the Schlieren method. The investigation elucidated the

underlying mechanisms responsible for pressure wave generation and tracked the trajec-

tory of these waves. The findings revealed the presence of multiple compression waves

propagating within the cavity, with particular emphasis on two waves directed toward the

leading edge of the cavity. One of these waves originated from the trailing edge due to

shear-layer motion, while the other resulted from the third reflection of the former wave at

the rear wall. These waves, individually or collectively, stimulated the shear layer at the

leading edge, playing a crucial role in the feedback mechanism governing self-sustained

oscillations. The study, thus, provided a comprehensive understanding of the interplay

between shear-layer motion, pressure-wave generation, and pressure oscillations within

the cavity.

Wagner et al. [20] performed Particle image velocimetry (PIV) measurements to identify

the flow structure associated with the cavity resonant tones. Tests were conducted at

Ma∞ = 0.91 within a cavity characterized by Lc/Dc = 5.0 and a square planform. The

incoming turbulent boundary layer with a 99% boundary layer thickness represents

approximately half of the cavity depth. The study showed the correlation of large-scale

flow oscillations to the first Rossiter mode, while higher-order modes were correlated to

the coherent structures generated in the shear layer.

The noteworthy observation in the study by Gloerfelt et al. [21] involves the alternating

sizes of dominant structures within the shear layer. This alternation signifies a transition

between modes I and II, corresponding to lower and higher frequencies in the spectra, re-

spectively. Cattafesta et al. [22] extensively investigated this phenomenon using Schlieren

photographs in a turbulent cavity flow setting (Lc/Dc = 2, Ma∞ = 0.4, Re∞ = 2.5× 106).

Their findings reveal dynamic changes in the size of dominant structures over time, leading

to switches between modes I, II, and III. This mode-switching behaviour is consistent with

the variability in the number of vortices between the cavity corners, known as the Rossiter

mode number. Comparative analyses with Lin and Rockwell’s [23] cinema PIV sequence,

conducted in a water flow with similar conditions (Lc/Dc = 2) and Reynolds number
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based on momentum thickness, demonstrate remarkable similarities. Lin and Rockwell’s

time trace near the impingement corner indicates significant modulation between low

and high-frequency components, further supporting the observed mode-switching phe-

nomenon.

In the literature, there exist several cavity studies discussing the effect of different pa-

rameters on the acoustic spectrum, namely the Lc/Dc, Re∞ and presence of stores from

subsonic to supersonic flow conditions [17, 24, 25].

Woo et al. [24] studied the three-dimensional effects of supersonic cavity flow due to the

variation of cavity aspect and width ratios using the RANS k−ω turbulence model. The

compressible NS equations were solved with the 4th-order Runge-Kutta method and the

FVS method with van Leer’s flux limiter. The study concluded the oscillation mode 2

appeared as a dominant oscillation frequency regardless of the aspect ratio of the cavity in

the two-dimensional flow, and oscillation modes 1 and 2 appeared in three-dimensional

cavities of small aspect ratios. With the increase in the aspect ratio or the width ratios, only

the modes 2 or 3 appeared as a dominant frequency.

Conducting a direct computational analysis of the aerodynamic and acoustic fields by

solving the compressible Navier–Stokes equations provides a means to explore the rela-

tionships among various factors. These factors include changes in flow structure, their

interactions with the downstream edge, the behaviour of the separated shear layer, the

internal recirculating flow, and alterations in flow conditions due to variations in geometry

and flow parameters, all of which influence the generation of substantial radiated noise.

Gloerfelt et al. [21] conducted a Direct Numerical Simulation (DNS) of the two-dimensional

compressible Navier-Stokes equations for a cavity with an aspect ratio of 2.0. Their inves-

tigation revealed the mechanisms behind lower frequency ranges, suggesting evidence

of the possibility of mode-switching and robust coupling between the shear layer at the

leading edge and the recirculation region forming within the cavity. Mode-switching is an

additional complexity in the transient nature of resonating cavity flows. While a specific

cavity flow may be linked to multiple tonal frequencies, these tones may not necessarily

manifest simultaneously [26] .

Rowley et al. [27] conducted numerical analyses that reveal a transition in the behaviour

of supersonic cavity flows. A shear-layer mode dominates for shorter cavities and lower

Mach numbers, while a wake mode becomes prevalent for longer cavities and higher Mach

numbers. The shear-layer mode is notably distinguished by the acoustic feedback process,

as described by Rossiter. Disturbances in the shear layer align closely with predictions

based on a linear stability analysis of the Kelvin-Helmholtz mode. On the other hand, the

wake mode is characterized by large-scale vortex shedding, with the Strouhal number
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remaining independent of the Mach number.

Several attempts have been made to study the cavity flows numerically. Although much of

the cavity research has been experimental, numerical studies have shown to be an effective

tool in understanding the spectra and using the information for flow control devices in

real-world applications, such as modifications of the weapon bay. Numerical studies offer

the advantage of higher temporal and spatial resolutions in data extraction than physical

measurement techniques, and low-resolution wind-tunnel measurements help validate

the numerical simulations.

Many early researchers have performed numerical studies based on the URANS approach

due to its inexpensive nature. Zhang [28] conducted a computational study to analyze

oscillations in compressible flow caused by shear layer instabilities in a cavity with a

Lc/Dc ratio of 3. The analysis was carried out at Mach numbers of 1.5 and 2.5, and it

involved solving the mass-averaged Navier-Stokes equations. Turbulence modelling was

done using a k− ε model with adjustments for compressibility. The results indicated that

self-sustained oscillations occurred. The patterns of interaction between shock waves and

expansion waves, the oscillation modes, sound pressure levels, and the time-averaged

surface pressure were compared to experimental data from previous studies. The study

agreed well with the predictions and experimental results, especially for time-averaged

pressure. It suggested a significant improvement over earlier analyses based on simple

algebraic turbulence closure models.

Shih et al. [29] have obtained results from simulating the unsteady supersonic flow

over an open cavity with a freestream Mach number of 1.5 and a Reynolds number of

1.09× 106 using simultaneous implicit numerical solution of the strongly coupled k− ε and

compressible Navier-Stokes equations. The periodic shedding of vortices from the front

edge and the shear layer’s deflection caused by pressure waves moving both upstream

and downstream were observed throughout the oscillation cycle.

Henderson et al. [25] have performed numerical computations for different cavity flow

types. They performed time-accurate simulations of the Reynolds-averaged form of the

Navier-Stokes equations through the use of the k−ω model for predicting the acoustic

spectra. They reported that the acoustic spectra at positions along the cavity floor pre-

dicted the experimental cavity tones, although RMS pressure levels were over-predicted

compared with the experimental values. However, it has been shown that URANS models

cannot predict the broadband spectra.

It is understood that due to the nature of the URANS formulation, the method is unable to

detect modes accurately. The lower frequencies are usually predicted better than the higher

frequencies. A wide range of scales present in the cavity makes it harder to predict by
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modelling the entire spectra of turbulence. Therefore, several studies have been dedicated

to scale-resolving turbulence models such as LES. The study by Larcheveque et al. [30]

shows the accuracy of employing LES or DES methods for a 3D cavity case where doors

are present and aligned vertically. Using the SA model, Chang et al. [31] studied 3D

incompressible flow past an open cavity. Although the predictions of the mean velocity

field from the URANS and the scale resolving simulation were similar, the study found

that the URANS predictions show poor agreement with LES and experimental results for

the turbulent quantities.

Wang et al. [32] performed numerical investigations to analyze oscillations in supersonic

open cavity flows using a hybrid RANS-LES approach. Subsequently, simulations are

carried out to identify and analyze the different oscillation regimes and feedback mecha-

nisms in the supersonic cavity flows. The characteristics of the oscillations in the flow of

Mach number of 1.75 are captured in the calculation, wherein a mixed shear-layer/wake

oscillation mode is observed to occur alternately.

To characterize both the narrowband and broadband spectra, turbulence resolving methods

such as DES methods based on Spalart-Allmaras (SA) and k−ω Shear Stress Transport

(SST) have been employed and provided better results in predicting the broadband spectra

than the URANS models in the M219 configuration [33].

Nayyar et al. [34] showed the superior performance of the LES and detached eddy

simulation (DES) models in predicting the noise level, frequency content and velocity

profiles inside the cavity with Lc/Dc = 5.0 and Wc/Dc = 1.0 in comparison to the URANS

approach. They showed that over-predicted spectral values are expected for most URANS

computations. To achieve reasonable behaviour with URANS, some studies, such as

Stanek et al. [35], have tried to limit the production of eddy viscosity based on the values

produced along the boundary layer, without which hardly any oscillatory behaviour was

seen.

DES simulations are still expensive, whereas the scale adaptive simulation (SAS) approach

developed by Menter [36] has shown results nearly as good as DES or LES. Girimaji et al.

[37] evaluated the SAS of M219 cavity flows for transonic flow conditions. The SAS results

showed good agreement with the experimental data for the M219 cavity at a tenth of the

time required for DES computations.

Under the scope of cavity flow investigations, an open cavity configuration with opened

doors presented in the work by Mayer et al. [39] has been studied numerically using

the DLR-TAU CFD code [40] for transonic flow conditions using a hybrid RANS-LES

approach based on Spalart-Allmaras based on the improved delayed DES (SA-IDDES)
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model. A scale adaptive simulation was conducted to investigate the feasibility of ef-

ficiently simulating the cavity flows. The numerical simulations have been performed

under the flow conditions of Ma∞ = 0.8 and Re∞ = 12× 106. The numerically computed

RMS values and wall spectra have been validated against the experimental data, which

have been made available for this study by Airbus Defence and Space [39]. This work

shows investigations on the different wall treatments in the framework of SAS towards

reducing the computational cost of simulating cavity flows, maintaining good accuracy

relative to the hybrid RANS-LES results and experimental data. Furthermore, this work

focuses on the detailed investigations of the SAS approach, including the synthetic forcing

technique for predicting spectra for straight flow conditions [41]. The configuration is then

further studied under sideslip flow conditions to understand the directional impact of

flow processes on the resonant modes and their modulations. Investigations into the 3D

visualization of the resonant modes, which have received limited attention, are featured in

this work.

Despite the significant advancements in turbulence modeling, LES and DES approaches

remain computationally prohibitive for large-scale 3D industrial simulations, especially in

capturing the complex resonant modes in weapon-bay flows. As a result, the current thesis

focuses on the more efficient SAS model to reduce computational time while still capturing

key flow characteristics. However, the SAS approach has limitations in quasi-steady

conditions due to its reliance on inherent flow fluctuations. To address this, an enhanced

SAS model with artificial forcing (SAS-F), proposed by Menter et al. [38], introduces flow

perturbations based on modeled turbulence scales to improve turbulence resolution.

While open cavity flows have been extensively studied, very few investigations have

addressed the 3D effects introduced by lateral walls or explored the modulation of reso-

nant modes under asymmetric flow conditions. The present study aims to bridge these

gaps by extending the SAS approach to weapon-bay cavity flows and examining the

influence of lateral wall effects under non-symmetric conditions. This approach not only

contributes to understanding the physical features of resonating cavities but also explores

a more computationally efficient turbulence modeling technique suitable for industrial

applications.

2.2 Delta-wing aerodynamics

Highly agile, high-performance aircraft configurations must encompass various perfor-

mance and manoeuvrability demands. These demands have led to aircraft configurations
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such as double-delta, strake trapezoidal, or canard delta wings. These designs leverage

controlled vortex flows, which develop over the wings, to achieve high lift and manoeu-

vrability [42]. They are predominantly featured in combat aircraft, primarily for their

aerodynamic advantages, which enhance the aircraft’s overall performance and capa-

bilities. Swept leading edges in delta wings can provide better stability at high speeds,

especially during manoeuvres. This stability is critical for combat aircraft to maintain

control. Different types of combat aircraft, such as interceptors, multi-role fighters, and

stealth aircraft, may use slightly different wing sweep angles to optimize their performance

characteristics for their designated roles.

2.2.1 Classification of vortex systems

The flow characteristics of a delta wing are influenced by various geometric parameters

such as wing sweep φw, aspect ratio ∧, relative wing thickness t/Cr, relative leading edge

or nose radius, and the geometry of the trailing edge. Freestream conditions, including

Ma∞, Re∞, angle of attack α, and sideslip angle β, play significant roles in delta wing

aerodynamics. Lee and Ho [43] provide a comprehensive review of the impact of all

these parameters. Among these factors, wing sweep, angle of attack, and Mach number

emerge as the predominant variables governing the flow over delta wings. Stanbrook and

Squire [44] demonstrated that for flat delta wings with high sweep, the flow is primarily

influenced by the angle of attack αN and the Mach number MaN perpendicular to the

leading edge. These parameters are defined as follows:

αN = arctan
tanα

cosφ
(2.3)

MaN = M∞ cosφ

√
1 + sin2α tan2φ (2.4)

Miller and Woods have further expanded this work [45], who distinguished between

six different regimes of attached and separated flow conditions for the lee-side flow of

a flat delta wing: (1) Separation bubble with no shock, (2) Classical vortex system, (3)

Vortex with shock, (4) Separation bubble with shock, (5) Shock-induced separation, and

(6) Shock with separation. These regimes are observed for both subsonic and supersonic

perpendicular Mach numbers MaN.
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2.2.2 Development of leading-edge vortex systems

The primary flow field characteristics are governed by the formation and progression

of two large-scale vortices emanating from the leading edges of the delta wing. Vortex

generation initiates at relatively low angles of attack, originating from the rear portion

of the wing and extending towards the apex. The separating shear layers from both

the upper and lower surfaces of the wing roll up due to self-induction, culminating

in forming a vortex above the wing. This primary vortex attains full maturity when

vorticity is continuously supplied over the leading edge. Within the vortex core, there are

notable characteristics such as high axial velocities, low static pressures, and heightened

dissipation, resulting in reduced total pressures, particularly in the sub-core region due to

steep gradients in cross-flow components. The presence of leading-edge vortices augments

velocities along the wing’s upper surface, generating a substantial suction force evidenced

by local pressure minima marking the trajectory of the vortex axis on the wing’s surface.

Consequently, fully developed and stable leading-edge vortices contribute to enhanced

lift and an expanded maximum angle of attack, thereby significantly improving the

manoeuvrability of highly agile aircraft. Flow attachment lines are discernible inward of

the vortex sheets, indicating that air is drawn over these sheets and directed downward.

This phenomenon precipitates a lift increase at specific angles of attack, commonly referred

to as non-linear or vortex lift [46]. Understanding the behaviour of these vortices during

manoeuvres is pivotal to comprehending airflow dynamics. A spanwise pressure gradient

induces separation of the flow moving outward from the wing surface, just beyond the

primary vortex core, resulting in the formation of secondary and tertiary vortices [47]. The

correlation between wing sweep and angle of attack delineates distinct ranges associated

with the evolution of the primary vortex [48]. Initially, the primary vortex begins evolving

from the rear portion of the wing towards the apex. Within this range, the primary vortex

is confined to the rearward region of the wing and is not yet fully rolled up. In the

second range, the fully developed vortex axis shifts inboard and upward as the angle

of attack increases. The transition from the first to the second range is contingent upon

boundary layer conditions, specifically whether the boundary layer is laminar or turbulent.

For a given wing sweep, a laminar boundary layer results in the fully developed vortex

occurring at a smaller angle of attack compared to the turbulent case. The subsequent range

signifies the presence of a span-wise fixed vortex, where the vortex axis shifts upward

with increasing angle of attack. Similar to the transition between the first two ranges, the

transition from the second to the third range depends on the boundary layer condition.

Notably, the span-wise fixed vortex only develops for wing sweeps larger than a certain



18 Chapter 2. Fundamentals of cavity flows and delta-wing aerodynamics

threshold value. The aerodynamic advantages stemming from leading-edge vortices

become constrained when vortex bursting significantly impacts the flow over the wing. At

moderate wing sweeps, vortex bursting persists over a broad range of angles of attack until

the maximum angle of attack is attained. These delineated ranges of leading-edge vortex

conditions profoundly influence the manoeuvrability of aircraft, particularly at moderate

and high angles of attack. The average axial velocity is approximately symmetrical around

the axis, with a maximum speed of four to five times greater than the free stream velocity.

This behaviour has been attributed to Kelvin-Helmholtz-type instability within the shear

layer. The unsteady Kelvin-Helmholtz instability has been observed through various

methods, including flow visualization, hot-wire velocity measurements, particle image

velocimetry measurements, and numerical simulations [49].

2.2.3 Vortex breakdown

Under subsonic conditions, as the angle of incidence is increased, the vortex undergoes

sudden expansion, known as vortex breakdown, which was first observed during water

tunnel tests of a slender delta wing planform by Werl’e [50]. The vortex breakdown can

be characterized by rapid deceleration of both axial and swirl components of the velocity

field. It results in loss of lift and pitching moment and causes adverse roll at sideslip and

eventual loss of directional stability [51].

Various vortex breakdowns have been identified in vortex tube experiments [52]. The most

common breakdown forms on wings are bubble and spiral. The bubble mode exhibits an

axisymmetric structure with a swirl axis stagnation point and an oval-shaped circulation

bubble. In contrast, the spiral mode involves rapid core flow deceleration, forming a

persistent spiral before transitioning into large-scale turbulence. Vortex tube experiments

show that the spiral type occurs at low swirl speeds, transforming into the bubble form at

a critical swirl speed [53].

The onset and progression of vortex breakdown are influenced by two crucial parameters:

the swirl level and the external pressure gradient along the vortex core. An increase in

either of these factors accelerates the onset of breakdown. In the context of leading-edge

vortices, these parameters are intricately linked to wing geometry, including factors such

as incidence and sweep angle, as discussed by Gursul [49].

The sudden breakdown of the vortex can significantly affect the aerodynamic behaviour

of the wing. In conditions involving sideslip, the vortex breakdown exhibits asymmetry,

with the breakdown point positioned further upstream on the windward side compared

to the leeward side, as discussed in [54]. These characteristics are responsible for typical
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longitudinal, lateral, and directional instabilities, such as pitch-up, roll reversal, and

directional divergence. These instabilities have been observed in generic low-aspect-ratio

wing/body configurations and various high-performance aircraft designs. Addressing or

eliminating these instabilities could potentially expand the operational flight envelope of

such configurations [55].

Several studies have explored the causes of vortex breakdown, including hydrodynamic

instability, wave propagation, and flow stagnation. These factors have been extensively

discussed in the literature and are summarised in various review articles [56, 57, 58, 59].

Numerical studies have helped us further comprehend the cause of the vortex breakdown.

However, predicting vortex flow and its breakdown comes with challenges. The position

of the vortex is significantly influenced by a secondary vortex resulting from the interaction

between the surface boundary layer and the primary vortex. Many turbulence models

produce a disproportionately high level of turbulent viscosity within the core of the

primary vortex, which significantly impacts the flow pattern and, in some instances,

prevents the observed vortex breakdown at high Reynolds numbers [60]. Furthermore, in

transonic flow conditions, shock further complicates the dynamics of the vortex system

and its breakdown characteristics.

The study by Menke et al. [61] demonstrated various unsteady flow phenomena occurring

across a delta wing and categorized non-dimensional frequency ( f Cr/U∞) ranges for

different flow mechanisms. These included:

1. Aerodynamic manoeuvres within the frequency range of 0.001− 0.015.

2. Oscillation of the breakdown location within the frequency range of 0.01− 0.1.

3. Vortex shedding at a frequency of approximately 0.5.

4. Helical mode instability within the frequency range of approximately 1.0.

5. Kelvin-Helmholtz instability is occurring at frequencies higher than 10.0.

Previous experiments [62, 63] have established the instability of vortex breakdown location

in the streamwise direction, acknowledging its transient nature. Primary breakdown

location fluctuations occur at extremely low frequencies. Studying these fluctuations is

vital for improving the stability and control of highly manoeuvrable aircraft, with signifi-

cant implications for wing and tail buffeting. Evidence suggests that breakdown location

oscillations play a crucial role in fin buffeting over a delta wing [64]. Gursul and Yang

[65] investigated the possible link between breakdown location fluctuations and the hy-

drodynamic instability of the "breakdown wake." Contrary to expectations, the helical
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mode instability in the breakdown wake did not influence breakdown location fluctua-

tions. The breakdown location fluctuation spectrum indicated lower frequencies than the

hydrodynamic instability, mainly concentrated below f Cr/U∞ = 0.2. Additionally, the

Kelvin—Helmholtz instability of the shear layer from the leading edge, with a frequency

range of f Cr/U∞ = 6 to 30, was found unrelated to breakdown location fluctuations. It

underscores the distinct nature of breakdown location fluctuations independent of these

hydrodynamic instabilities.

Present engineering methodologies for simulating unsteady fluid flows of delta wing

configurations rely on the solution of the Reynolds-averaged Navier-Stokes (RANS) equa-

tions. Although they can be effective in steady flows, RANS turbulence models struggle

to provide precise predictions for phenomena involving vortex breakdown because the

turbulence models in the RANS approach model the entire spectrum of turbulence.

In response to the limitations of RANS models for predicting flows with substantial

separation, Spalart [66] introduced DES as a numerical technique that combines the

advantages features of both RANS models and LES. This method offers a solution that

can be effectively applied at high Reynolds numbers, similar to RANS while resolving

geometry-dependent and unsteady three-dimensional turbulent motions akin to LES. The

primary strength of DES lies in its capability to predict complex flows accurately, making

it particularly useful in scenarios like vortex breakdown over slender delta wings at high

Reynolds numbers. DES enables the capture of higher turbulent frequencies within the

flow, enhancing the ability to predict complex flow behaviours. While it offers significant

accuracy gains, it is computationally demanding, making it prohibitive for many CFD

users due to its reliance on grid and time-step independence.

One approach to address the aerodynamic instabilities is to manipulate the leading-edge

vortex in creating a system of multiple interconnected leading-edge vortices. It can be

achieved through the design of the wing’s planform. By carefully varying the leading-edge

sweep along the wing’s span, it is possible to stimulate the formation of more than one

leading-edge vortex. The proximity of these vortices leads to their interaction, which, in

turn, affects their characteristics. This interaction is intended to induce a stabilizing influ-

ence on the vortex system, ultimately enhancing overall aerodynamic stability. However,

effectively harnessing vortex interaction necessitates a thorough understanding of the

underlying flow physics. More complex planforms, such as double and triple delta-wing

planforms in subsonic flow conditions, were studied by Pfnür et al. [67], which focused on

investigating the interactions between inboard and mid-board vortex structures, as well

as analyzing the properties and trajectories of these vortices. The study revealed that the

breakdown behaviour associated with distinct vortex types exerted varying effects on the
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stability of the mid-board vortex. Notably, both planforms exhibited significant instabilities

in the medium to high angle-of-attack regimes. However, the onset and magnitude of

instability were notably reduced for the triple-delta wing configuration.

In an attempt to determine the underlying theory behind vortex breakdown, numerous

studies have been undertaken, primarily focusing on simple geometries such as torsionally

driven cylinders and closed pipes. This research investigation has been gaining interest

since Peckham [68] first observed this phenomenon over a delta-wing planform. In the

context of straightforward geometric configurations, the breakdown phenomenon of an

axisymmetric vortex is linked to the localized trapping and amplification of disturbances

within the vortex core. Nevertheless, some researchers have raised doubts about whether

the phenomenon observed in torsionally driven cylinders should be classified in the same

category as that occurring over delta wings, as articulated by Darmofal in 1994 [69].

In transonic flow conditions, the breakdown position suddenly moves toward the apex as

the angle of incidence increases. It was observed by Schiavetta et al. [70] over a 65◦ sharp

edge delta-wing. They determined that the shock/vortex interaction was the cause of the

sudden motion, and the presence and effect of this interaction were studied in terms of

the Rossby number of the vortex and the axial flow properties. Furthermore, they found

that the movement of the breakdown location is sensitive to the balance between vortex

strength, axial flow and shock strength. However, in the context of shock interaction with

the vortex system, there needs to be more emphasis on the unsteady aspects of these

vortical flows, which impact aircraft stability and control [71]. For instance, shock-induced

vortex breakdown is a transient phenomenon. It has a direct impact on the pitching

moment coefficient. Understanding it might serve to control the stability of the aircraft

better and ensure high manoeuvrability.

Despite significant advancements in developing the fundamental theory of vortex break-

down, this understanding has yet to yield effective control measures. Current control

strategies rely on manipulating the vortex swirl ratio or the pressure gradient above the

wing [72]. While these methods exhibit varying degrees of effectiveness, they need to lever-

age an understanding of the breakdown mechanism. A noteworthy contribution by Rusak

and Lamb [73] demonstrated that the swirl ratio (defined as the ratio of the maximum

azimuthal velocity to the maximum axial velocity within the vortex), previously utilized

to indicate the susceptibility of flow to breakdown in open pipes, could be employed to

predict the onset and location of breakdown over slender delta wings.

A study by Jones et al. [74] successfully confirmed the vorticity dynamics linked to vortex

breakdown above a delta wing with less complex geometries. Additionally, the study

demonstrated that the presence of negative azimuthal vorticity serves as an indicator for



22 Chapter 2. Fundamentals of cavity flows and delta-wing aerodynamics

the initiation of vortex breakdown. Moreover, the investigation delved into the mechanism

responsible for generating this negative azimuthal vorticity and highlighted the role of

radial vorticity turning, which opposes the onset of breakdown and the turning of axial

vorticity into the azimuthal direction appears to be the main contributor to the onset of

vortex breakdown.

A research initiative focused on investigating vortex interaction effects was led by Airbus

Defence and Space (ADS), in collaboration with the German Aerospace Center (DLR).

Within this initiative, double and triple-delta wing planforms referred to DW1 and DW2

in this study, were defined. The configuration under examination entails a generic low-

aspect-ratio wing-fuselage setup, with active participation in the NATO AVT-316 task

group titled "Vortex Interaction Effects Relevant to Military Air Vehicle Performance" [75,

76, 77]. Several studies have been undertaken to study these configurations over a range

of subsonic and transonic Mach numbers [78, 79, 80]. These planforms are especially

significant for combat aircraft, as they frequently encounter high angle of attack situations,

requiring designs that ensure stability and control even in extreme flight conditions. The

investigations encompasses alterations in geometry and flow conditions, with distinct

wing sweep angles significantly amplifying flow intricacy. The geometric disparity at the

leading edge results in the generation of vortices, each exhibiting differences in strength,

stability, and characteristics, influenced by the sweep angles of their origin. Moreover,

these vortices interact or combine in diverse manners contingent upon the angles of attack

and side-slip.

Hövelmann et al. [78] conducted a joint experimental and numerical investigation em-

ploying URANS computations to analyze the aerodynamics of a generic triple-delta wing

configuration at transonic velocities. The primary focus was on comprehending vortex

flow phenomena, encompassing vortex development, vortex-vortex, and vortex-shock

interactions. The research outcomes encompassed flow conditions at Mach numbers

of 0.5 and 0.85, encompassing various angles of attack (up to 40◦) and non-symmetric

flows, including non-null side-slip angles. The findings indicate that the experimental and

computational results generally concur at lower to medium angles of attack. However,

discrepancies arise as the angle of attack increases, particularly concerning the prediction

of vortex breakdown effects. These disparities are more evident in lateral motion scenar-

ios, where experimental and numerical results highlight differing predictions of vortex

breakdown effects.

Pfnür et al. [67] studied the double and triple delta-wing planforms in subsonic flow

conditions, focusing on investigating the interactions between inboard and midboard

vortex structures, as well as analyzing the properties and trajectories of these vortices. The
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study revealed that the breakdown behaviour associated with distinct vortex types exerted

varying effects on the stability of the midboard vortex. Notably, both planforms exhibited

significant instabilities in the medium to high angle-of-attack regimes, but their onset and

magnitude were notably reduced for the triple-delta wing configuration.

Previous study by Di Fabbio et al. [81] simulated the triple-delta wing planform and

compared the performance of different turbulence approaches by analyzing different

chord-wise locations and local surface pressure distribution. We showcased the capability

of k−ω SST and SAS models to predict the aerodynamic coefficients more effectively than

RANS models such as SA-negRC.

Under the scope of delta-wing aerodynamics, this study mainly focuses on investigating

the physical aspects of vortex produced over the wing configurations. The flow around

the double-delta wing DW1 is simulated using the k−ω SST RANS model and the SAS

turbulence modeling approach to analyze the transient flow characteristics occurring over

the wing. The simulations are conducted in the transonic regime at Ma∞ = 0.85 and

Re∞ = 12.53× 106 with a sideslip angle of β = 5◦.

While previous studies have explored delta-wing aerodynamics, the current research

addresses specific knowledge gaps:

• Vortex-Vortex and Vortex-Shock Interactions: Although many studies have focused

on delta-wing aerodynamics, there is a lack of comprehensive investigations into the

intricate vortex-vortex and vortex-shock interactions and their impact on the flow

physics over double-delta and triple-delta wings, especially under transonic flow

conditions.

• Shock-Buffet and Its Relation to Vortex Dynamics: Limited attention has been given

to the impact of shock-buffet phenomena on the strength and stability of vortices,

particularly for wings with different leading-edge sweep angles. This study aims

to uncover the physical mechanisms behind vortex strength, shock position, and

orientation, which have critical implications for aircraft design.

• Vorticity Transport Analysis: The use of vorticity transport terms to analyze vortex

dynamics is not extensively covered in current literature. The present work will

provide new insights into how these mechanisms influence vortex behavior over the

delta wing configurations.

In summary, this research contributes to a deeper understanding of the transient flow

physics, such as vortex-vortex and vortex-shock interactions, and highlights their potential

significance in improving aerodynamic design and performance of transonic aircraft.
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Chapter 3

Theoretical background

This chapter presents the governing equations of mass conservation, momentum con-

servation, and energy conservation, followed by an explanation of turbulent flows and

boundary layer theory.

3.1 Flow governing equations

This section introduces the mathematical representation of the fundamental physical

aspects of compressible fluid dynamics. It adopts a continuum approach, assuming a

Knudsen number Kn � 1.0, allowing the study of fluid behaviour using macroscopic

properties like velocity ui, pressure p and density ρ. For practical considerations, air is

treated as a Newtonian fluid characterized by a linear relationship between the viscous

stresses at any given point and the local strain rate. This characteristic simplifies the

mathematical modelling process. The mathematical framework for the fluid flow model is

established by deriving it from the foundational laws of motion applied to infinitesimal

fluid volumes. These laws encompass mass conservation, momentum conservation, and

energy conservation principles. The continuity equation states that the increase of mass in

the infinitesimal finite volume equals the net rate of flow of mass into the fluid element.

This law is established as a differential equation for an unsteady compressible flow as

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 . (3.1)

The momentum equation is derived from Newton’s second law of motion applied to the

infinitesimal finite volume of fluid flow. It states that the rate of increase of momentum of

a fluid particle is balanced by the sum of forces on the fluid particle. There are two types of

forces on fluid particles: surface forces (such as pressure, viscous, and gravity) and body

forces. This law is defined as a non-linear partial differential equation for an unsteady
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compressible flow in the absence of body forces as

∂(ρui)

∂t
+

∂(ρuiuj)

∂xj
= − ∂p

∂xi
+

∂τij

∂xj
. (3.2)

In Eq. 3.2, a fluid element’s stress state is determined in terms of the pressure and the

six viscous stress components τij. The pressure, a normal stress, is denoted by p. Viscous

stresses are denoted by τij. The suffices i and j in τij indicate that the stress component acts

in the j-direction on a surface normal to the i-th direction.

The energy equation is derived from the first law of thermodynamics, which states that

the rate of energy increase of a fluid particle within an infinitesimal control volume equals

the net rate of heat added to the fluid particle and the net rate of work done on the fluid

particle. Eq. 3.3 represents the total energy balance in the control volume for a compressible

Newtonian fluid.

∂(ρE)
∂t

+
∂(ρuiE)

∂xj
= −∂(pui)

∂xi
+

∂(τijui)

∂xj
−

∂qj

∂xj
. (3.3)

In Eq. 3.3, the term E = i + 1
2(uiui) denotes specific energy, representing the combined

internal energy i and mechanical kinetic energy. The heat flux vector, qi, is defined by

Fourier’s law as

qi = κT
∂Tf

∂xi
(3.4)

where κT signifies the thermal conductivity of the fluid and Tf is the temperature of the

fluid. Specific enthalpy, h, and specific total enthalpy, ho, are defined as

h = i +
p
ρ

and ho = h +
1
2
(uiui) . (3.5)

Combining these definitions with that of specific energy, E, yields

ho = i +
p
ρ
+

1
2
(uiui) = E +

p
ρ

. (3.6)

In the set of governing equations for compressible flow, four vital thermodynamic vari-

ables remain unknown: pressure (p), density (ρ), internal energy (i) and temperature

(Tf ). Building connections between these variables is predicated on the assumption of

thermodynamic equilibrium. Equations of state play a pivotal role in linking the energy

equation to mass conservation and momentum equations. This linkage stems from density

alterations arising due to fluctuations in pressure and temperature throughout the flow
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field. When dealing with a perfect gas, the following widely recognized state equations

prove valuable.

p = ρRTf and i = CvTf (3.7)

The momentum equation (Eq. 3.2) introduces additional variables represented by the

viscous stress components τij. In formulating conservation equations for fluid flows,

incorporating a model for these viscous stresses is often advantageous. In many fluid flow

scenarios, expressing viscous stresses as functions of the local deformation rate proves

beneficial. For a Newtonian fluid, the viscous stresses are directly related to the rate of

deformation according to Newton’s law of viscosity

τij = 2µSij −
2
3

δij
∂uk
∂xk

(3.8)

with µ representing the dynamic viscosity, and Sij denotes the viscous strain-rate tensor,

defined as

Sij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
. (3.9)

In Eq. 3.8, the dynamic viscosity is determined by Sutherland’s law, establishing its

dependence on temperature, expressed as

µ

µ0
=
(Tf

T0

)3/2 T0 + 110.4 K
T + 110.4 K

(3.10)

where µ0 = 1.7894× 10−5kg/ms represents the reference viscosity at the reference temper-

ature T0 = 288.16 K.

Speed of sound The freestream Mach number, Ma∞, is a crucial parameter in fluid

dynamics, particularly in situations where fluid compressibility becomes significant. It is

defined as the ratio of the speed of an object moving through a medium to the speed of

sound in that medium. If the Ma∞ is higher than 0.3, the variation in density must be con-

sidered in the flow fields. This variation in density is a consequence of the compressibility

effects and needs to be considered in analyzing the flow fields accurately. Neglecting these

variations can lead to inaccurate predictions and analyses of fluid flow at high speeds.

Ma∞ =
U∞

c
(3.11)
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For a perfect gas, the speed of sound depends only on the temperature of the gas as follows

c =
√

γRTf (3.12)

with γ = 1.4 for air.

3.2 Turbulent flows

The Reynolds number serves as a metric for assessing the importance of inertia forces

relative to viscous forces [82]. Experimental studies of fluid systems have revealed that

below a certain critical Reynolds number, denoted as Recrit, the flow maintains a smooth

character, with neighbouring fluid layers exhibiting an orderly sliding motion past one

another. Under conditions of constant boundary constraints over time, this flow type is

characterized as laminar flow. It is defined as

Re =
ρUL

µ
(3.13)

where U and L represent characteristic velocity and length scales, respectively. As the

Reynolds number exceeds Recrit, a complex sequence of events unfolds, ultimately drasti-

cally altering the flow’s behaviour. The flow becomes inherently unsteady in this regime,

known as turbulent flow. Velocity and other flow properties fluctuate randomly and chaoti-

cally. Turbulent fluctuations manifest in all three dimensions.

FIGURE 3.1: Kolmogorov energy spectrum
[83]

Moreover, visualizations of turbulent flows un-

veil rotational flow structures termed turbu-

lent eddies, which exhibit a broad spectrum of

length scales. The largest eddies engage with

and extract energy from the mean flow through

a phenomenon known as vortex stretching. The

characteristic velocity and characteristic length

of larger eddies align closely with the velocity

scale U and length scale L of the mean flow.

Consequently, forming a ’large eddy’ Reynolds

number by incorporating these eddy scales with

kinematic viscosity results in a significant value

across all turbulent flows, indicating dominance by inertia effects with negligible influence

from viscosity. These large-scale motions progressively fragment into smaller eddies due to
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turbulence’s chaotic and nonlinear interactions. As energy transfers from larger eddies to

smaller ones, kinetic energy redistributes across a spectrum of length scales. Kolmogorov’s

turbulence theory delineates an inertial subrange, where viscosity’s effects pale compared

to inertial forces across a range of length scales. Turbulent kinetic energy cascades down

length scales within this subrange through interactions among turbulent eddies. Larger

eddies transfer energy to smaller ones through stretching, shearing, and rotation inter-

actions. This energy transfer persists until it reaches the Kolmogorov microscale, where

viscous effects dissipate energy into heat. A schematic representation of the Kolmogorov

spectrum [83] is depicted in Fig. 3.1.

3.3 Law of the wall

In this subsection, the near-wall behaviour of the fluid has been explained shortly. The

effect of viscosity at high Reynolds numbers is confined to a very thin layer in the immedi-

ate neighbourhood of the solid wall. Due to the adherence of the fluid to a solid wall, the

flow near the wall is retarded by the frictional forces. In this thin layer, the velocity of the

fluid increases from zero at the wall to its full value away from the wall [84]. Cavity flow

and leading-edge vortices involve flat-plate walls, and viscosity’s effect in the near-wall

regions is paramount. This theory is crucial for the cavity flow because of its importance

in predicting the turbulent spectra. The following non-dimensional scales are used when

dealing with boundary layer theory.

y+ =
yuτ

ν
and u+ =

u
uτ

(3.14)

In Eq. 3.14, y is the distance of the fluid volume away from the solid wall, y+ is the

dimensionless wall coordinate, u+ is the velocity scale defined near the wall region, u is

the mean velocity parallel to the wall and uτ is the friction velocity defined as follows,

u2
τ =

µ

ρ

(∂ui

∂xj
+

∂uj

∂xi

)
njti (3.15)

In Eq. 3.15, nj represents the components of the normal to the surface outward unit vector

and ti represents the components of the unit tangential vector to the surface. According to

Lumley et al., [85], the near-wall region can be virtually split into three regions based on

y+ values.
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1. Viscous sublayer (0 < y+ < 5) In the viscous sublayer, viscous stresses are higher

than inertial ones. In the viscous sublayer, the flow is unsteady, but the velocity

fluctuations do not contribute much to the total stress because of the viscosity.

τw = µ
du
dy

(3.16)

Using the definition of y+ and u+, Eq. 3.16 can be written as

u+ = y+ (3.17)

2. Buffer layer (5 < y+ < 30) The contribution of viscous and inertial forces is even

in the buffer layer. Hence, neither of the forces can be neglected. This layer has

maximum turbulent production and large variations in the turbulence source terms.

This is the layer where the linear velocity in the viscous layer and the logarithmic

velocity profile in the inertial sublayer are linked.

3. Logarithmic layer (30 < y+ < 100 ) In this layer, the inertial forces are higher than

the viscous forces and non-dimensional velocity u+ follows a logarithmic pattern.

u+ =
1
κ

lny+ + B (3.18)

In Eq. 3.18, κ is the von Karman constant equal to 0.41, and B is an empirical constant

equal to 5.1.
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Numerical approach

The Finite Volume Method (FVM) is a numerical approach that discretizes partial dif-

ferential equations representing conservation laws over discrete volumes. Like finite

difference and finite element methods, it begins by discretizing the geometric domain

into non-overlapping volumes. The partial differential equations are then transformed

into algebraic equations by integrating them over each volume. The resulting system of

algebraic equations is solved to determine dependent variable values for each volume.

The FVM exhibits strict conservation due to treating some terms as face fluxes, making it

a preferred method in Computational Fluid Dynamics (CFD). Notably, it accommodates

unstructured polygonal meshes and allows straightforward implementation of boundary

conditions. These attributes make the FVM well-suited for simulating fluid flow, heat,

and mass transfer, evolving from simple physics on structured grids to handling complex

applications in modern CFD.

4.1 General formulation of FVM

In this investigation, numerical simulations were conducted using the DLR-TAU code, a

three-dimensional, parallel, hybrid finite volume code developed by the German Aerospace

Center [40]. If we introduce a general variable φ, the conservative form of all fluid flow

equations can usefully be written as [86]

∂(ρφ)

∂t
+

∂(ρφui)

∂xi
=

∂

∂xi

(
Γ

∂φ

∂xi

)
+ Sφ (4.1)

which signifies that the combined effect of the rate of increase of φ within a fluid element

and the net flow rate of φ out of the fluid element is equivalent to the sum of the rate of

increase of φ due to diffusion and the rate of increase of φ due to sources. This equation

serves as the initial point for computational procedures in the FVM. By setting φ to
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1, ui, ho, the diffusion coefficient Γ, and appropriate source terms Sφ, we derive five

partial differential equations governing mass, momentum, and energy conservation. The

integration of Eq. 4.1 over a three-dimensional control volume V yields

∫
V

∂(ρφ)

∂t
dV +

∫
V

∂(ρφui)

∂xi
dV =

∫
V

∂

∂xi

(
Γ

∂φ

∂xi

)
dV +

∫
V

SφdV . (4.2)

The volume integrals within the second term on the left-hand side (the convective term)

and the first term on the right-hand side (the diffusive term) are reformulated as integrals

across the entire bounding surface of the control volume, employing Gauss’s divergence

theorem as

∂

∂t

( ∫
V
(ρφ)dV

)
+
∫

S
ni · (ρφui)dS =

∫
S

ni · (Γ
∂φ

∂xi
)dS +

∫
V

SφdV . (4.3)

4.2 Application of FVM to NS equations

The Navier-Stokes equations for the three-dimensional case can be written in conservative

form as
∂

∂t

∫∫∫
V
~W dV = −

∫∫
∂V

F ·~n dS (4.4)

where
~W =

(
ρ ρu1 ρu2 ρu3 ρE

)>
(4.5)

is the vector of the conserved quantities. V denotes an arbitrary control volume with the

boundary ∂V and the outer normal~n. The flux density tensor F is composed of the flux

vectors in the three coordinate directions

F = (~Fc
i + ~Fc

v) · ~e1 + (~Gc
i + ~Gc

v) · ~e2 + (~Hc
i + ~Hc

v) · ~e3 (4.6)
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with ~e1, ~e2 and ~e3 being unit vectors in the coordinate directions. The i and ν denote the

inviscid and the viscous contributions, respectively. The viscous and the inviscid fluxes are

~Fi
c
=
(

ρu1 ρu2
1 + p ρu1u2 ρu1u3 ρHu1

)>
(4.7)

~Fv
c
= −

(
0 τ11 τ12 τ13 u1τ11 + u2τ12 + u3τ13 + κl

∂T
∂x1

)>
(4.8)

~Gi
c
=
(

ρu2 ρu1u2 ρu2
2 + p ρu1u3 ρHu2

)>
(4.9)

~Gv
c
= −

(
0 τ12 τ22 τ23 u1τ12 + u2τ22 + u3τ23 + κl

∂T
∂x2

)>
(4.10)

~Hi
c
=
(

ρu3 ρu1u3 ρu2u3 ρu2
3 + p ρHu3

)>
(4.11)

~Hv
c
= −

(
0 τ13 τ23 τ11 u1τ13 + u2τ23 + u3τ33 + κl

∂T
∂x3

)>
. (4.12)

The temporal change of the conservative variables ~W can be derived as

∂

∂t
~W = −

∫∫
∂V F · ndS∫∫∫

V dV
(4.13)

and it can be rewritten as
∂

∂t
~W = − 1

V
· ~QF . (4.14)

Here, ~QF represents the fluxes over the boundaries of the control volume. If the boundary

is divided into n faces, ~QF is given by

~QF =
n

∑
i=1

~Qi
F
=

n

∑
i=1

(~QF,c − Di) (4.15)

where ~Qi
F

denotes the inviscid fluxes over the respective faces and Di represents dissipa-

tive flux. In order to determine the temporal evolution of flow properties within a control

volume, it is crucial to compute the convective fluxes across its boundaries.

4.2.1 Concept of dual grid approach

A dual grid is created by taking the centroids of the elements (cells) in the original or

primary grid and connecting them to form a new set of control volumes. Each cell in

the dual grid is associated with a node in the primary grid. The primary and dual

grids share the same points in physical space, however the dual grid consists of control

volumes surrounding each grid point of the primary grid. The dual mesh defines these
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control volumes in a way that aligns with the nodes of the primary mesh, improving the

accuracy of flux calculations. Furthermore, the concept of dual mesh ensures that the

control volumes are centered around the points where variables are stored. This alignment

helps reduce numerical errors and provides better representation of gradients and fluxes,

especially in complex geometries where unstructured meshes are used [87].

Consider points P(j0) and P(j1) separated by the face F(i) (refer to Fig. 4.1). The convective

fluxes across the face are determined by the flow conditions at points P(j0) and P(j1).
These fluxes are regarded as exchanges between the control volumes enclosing points

P(j0) and P(j1). The dimensions and direction of the face are characterized by the face

normal vector. Consequently, the central fluxes across the face can be calculated as follows

~QF,c
F =

1
2
(
~Fr(i) + ~Fl(i)

)
− 1

2
α̃(~wr − ~wl) (4.16)

where α̃ describes the type of the dissipation, scalar or matrix dissipation. The difference

(~wr − ~wl) = ~D(j1) is computed as

~D(j1) = (~wr − ~wl) = ε(2)(~ur − ~ul)− ε(4)(L(~ur)− L(~ul)) . (4.17)

FIGURE 4.1: Illustration of the points needed for computing the flux over face
Fi for a central scheme in dual control volumes

The vector ~w comprises the conservative variables ρ, ρu, ρv, ρw, and ρE. The subscripts l
and r indicate variables on the left and right sides of the cell face respectively, while ε(2) and

ε(4) act as coefficients controlling the magnitude of second and fourth-order dissipation

introduced into the scheme. The Laplacian, denoted as L(~ui), is computed from adjacent
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points as

L(~ui) = ∑
j=1

(~uj − ~ui) . (4.18)

For instance, in Fig. 4.1, the illustration depicts the points necessary for computing the

flux across face Fi utilizing a central scheme, spanning from point Pj0 to point Pj9. Notably,

the impact of computing the Laplacian (utilizing fourth-order differences) is extensive. At

point Pj0, the neighboring points include Pj1, Pj4, Pj5, Pj6, Pj7, and Pj8, interconnected by

red dashed lines. Conversely, at point Pj1, the adjacent points consist of Pj0, Pj8, Pj9, Pj2,

Pj3, and Pj4, linked by green dash-dot lines.

In the FVM formulation, the partial differential equations encompass various partial

derivative terms that can be substituted with finite differences. This substitution leads to

the formation of a difference equation, which serves as an algebraic expression representing

the original partial differential equation. For illustration, considering the velocity u as

constant and applying a forward difference scheme in time on the continuity equation, Eq.

3.1 takes the typical form of a linear convection equation discretized as

ρn+1
i − ρn

i
∆t

= − u
∆x
(
ρn

i+1/2 − ρn
i−1/2

)
(4.19)

describing the transport of mass ρ by a flow of velocity u. In a first-order upwind scheme,

the flux at i + 1
2 and i − 1

2 is determined based on the sign of the velocity u. For a

positive velocity (u > 0), the fluxes at i + 1
2 and i− 1

2 can be approximated by ρi and ρi−1,

respectively. The discretized equation then reads

ρn+1
i − ρn

i
∆t

= − u
∆x
(
ρn

i − ρn
i−1
)

(4.20)

Using a second order difference formula for the discretization of the spatial derivative of ρ

at mesh point i and again a forward difference formula for the time derivative the discrete

equation reads
ρn+1

i − ρn
i

∆t
= − u

2∆x
(
ρn

i+1 − ρn
i−1
)

(4.21)

which is a second-order central scheme.

Unlike upwind schemes, which introduce numerical dissipation to stabilize solutions,

central schemes utilize a centered stencil to approximate derivatives. They typically

offer second-order accuracy and do not inherently introduce dissipation, making them

advantageous for scenarios where maintaining solution accuracy is crucial.

While central schemes are less dissipative, they can exhibit non-physical oscillations near



36 Chapter 4. Numerical approach

discontinuities (such as shock waves) due to their non-dissipative nature. To stabilize the

solution without excessively smearing out physical features, additional dissipation (artifi-

cial viscosity) needs to be selectively introduced. This dissipation needs to be computed

for each grid point P(i). The approach follows the strategy outlined by Mavriplis and

Jameson [88] to determine an appropriate dissipation scaling for highly stretched cells.

The numerical dissipation associated with central schemes is crucial for maintaining both

accuracy and stability in simulations involving discontinuities such as shock waves. As

described in Eq. 4.17, the dissipation term is composed of two parts: the first part, denoted

as ε(2), is activated in the presence of strong discontinuities to prevent non-physical

oscillations, while the second term, ε(4), is conventionally included to enhance numerical

stability in smooth flow regions. This distinction ensures that the scheme remains robust

across different flow regimes, minimizing excessive dissipation in regions where the flow

is continuous while still effectively handling shocks and other discontinuities. Thus,

the numerical strategy employed strikes a balance between accuracy and stability, as

evidenced by its formulation in Eq. 4.17.

Matrix dissipation method, proposed by Blazek [89], is used in this study, which introduces

dissipation in a controlled manner. It involves computing the eigenvalues and eigenvectors

of the flux Jacobian matrix, which are associated with the wave speeds and modes of the

system. Dissipation is then incorporated based on these eigenvalues, ensuring alignment

with the characteristic waves of the flow. This approach enables dissipation to act more

efficiently and only where necessary, preserving the sharpness of shocks and interfaces.

When employing the matrix dissipation method with central schemes, the initial discretiza-

tion is conducted using a central scheme, after which the matrix-based dissipation is added

to stabilize the solution. The magnitude and direction of dissipation are determined by the

local flow characteristics, as dictated by the Jacobian matrix of the system.

4.2.2 Solution approach for time-accurate computations

As the current study employs transient simulations, the solution approach for time-

accurate computations is presented in this subsection. Consider
[
0, T

]
represent the

time interval, and t0 = 0 < t1 < · · · < tn = T denote a partition of
[
0, T

]
. We examine the

following time-dependent problem. The temporal evolution of the flow variables can be

expressed in a general form for a point P(j1) as

d
dt

~W(j1) + ~R(j1) = 0 (4.22)
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where
~R(j1) =

1
V(j1)

· ~QF(j1) (4.23)

and the notation ~R(j1) indicates that the residual ~R for dual cell j1 was computed using

the vector of conservative variables ~W. In the first step, a backward difference formula

(BDF) for discretizing the time derivative is employed. The TAU code provides BDF of the

first, second, and third order accuracy. For example, the second-order accurate BDF reads

3
2∆t

~W(j1)n+1 − 4
2∆t

~W(j1)n +
1

2∆t
~W(j1)n−1 = −~R(~Wn+1)(j1) (4.24)

where ~W(j1)ν denotes the solution at time tν. We arrive at a sequence of (nonlinear) steady-

state problems. For the iterative solution of an unsteady problem, one commonly used

approach is Dual-Time stepping scheme, proposed by Jameson [90]. In this approach, the

solution at each physical time step is obtained by treating it as a steady-state problem using

an additional fictitious pseudo-time, t∗. Assuming that ~W(j1)n and ~W(j1)n−1 have already

been computed, we seek ~W(j1)n+1 by considering the following equation in fictitious

pseudo time t∗,
d

dt∗
~W(j1)n+1 = −~RDTS(~Wn+1)(j1) (4.25)

with the modified residual

~RDTS(~Wν)(j1) = ~R(~Wν)(j1) +
3

2∆T
~W(j1)ν − 4

2∆T
~W(j1)n +

1
2∆T

~W(j1)n−1 (4.26)

This problem can be integrated using a K-stage Runge-Kutta scheme until a steady state in

the fictitious pseudo-time τ is reached. The convergence of the solution in pseudo-time

ensures that each physical time step has reached a steady-state solution before advancing

to the next time step. Additionally, acceleration techniques for steady-state problems can

be applied to speed up the convergence within each pseudo-time iteration.

4.3 Turbulence modelling

Most practical engineering scenarios and naturally occurring flows exhibit turbulence,

underscoring the significance of turbulence modelling in understanding and analyzing

these phenomena. Turbulence within a flow is marked by rapid mixing and is consid-

ered deterministic chaos. Its effects introduce randomly varying behaviours in the flow

variables. Turbulence inherently possesses a three-dimensional and unsteady nature,

characterized by a broad spectrum of scale motions. Consequently, the principal challenge
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in numerically simulating (as well as measuring) turbulence arises from the vast range of

scales that need to be accurately resolved. Turbulent fluid flow operates across a broad

spectrum of time and length scales, demanding an extensive amount of data to compre-

hensively describe it [91]. While the precise physical characteristics of turbulence still need

to be fully understood, it can be adequately modelled with a satisfactory level of accuracy

in numerical simulations.

The most precise method for simulating turbulent flows is referred to as Direct Numerical

Simulation (DNS), wherein the complete set of Navier–Stokes equations is directly solved

through a finely discretized mesh. This approach captures all scales present in a given

flow, ranging from the smallest to the largest eddies. However, due to its computational

demands, DNS is prohibitively expensive, limiting its application to low Reynolds number

flows over relatively simple geometries. The Kolmogorov scale η, defined by the theory of

turbulence based on energy cascade, is represented by [92]

η =

(
ν3

ε

) 1
4

. (4.27)

In some cases, one is mainly interested in the steady-state fluid flow, and hence, it is

optional to simulate the detailed instantaneous flow, leading to a significant reduction

of computational time. It is the basis for the Reynolds-averaged Navier–Stokes (RANS)

approach in which one solves only for the averaged quantities. At the same time, a turbu-

lence model models the effect of all the scales of instantaneous turbulent motion. Due to

its modest computing requirement, this approach has been the backbone of industrial CFD

applications for the last few decades. Nevertheless, knowledge of the transient behaviour

of the flow is necessary, and the RANS approach is therefore not sufficient in many cases, it

fails to predict the flow behaviour, such as transition. By decomposing instantaneous vari-

ables using Reynolds decomposition, these equations yield time-averaged mean field and

fluctuating field values. The solutions derived from these time-averaged Navier-Stokes

equations elucidate mean flow characteristics incorporating turbulence effects.

4.3.1 Reynolds-averaged Navier-Stokes equations

Turbulence modelling involves the formulation of a set of partial differential equations to

calculate turbulent flow, utilizing approximations of the precise Navier–Stokes equations.

The Reynolds-averaged Navier–Stokes equations (RANS) begin with the Reynolds de-

composition [93] of flow variables into mean and fluctuating components. Inserting these

decomposed variables into the Navier–Stokes equations, followed by equation averaging,
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leads to the emergence of the Reynolds-stress tensor. This tensor represents an unknown

term that necessitates modelling for the successful solution of the RANS equations. The

challenge in closing the system of Navier–Stokes equations essentially revolves around

addressing this operation. Following Reynolds decomposition, any arbitrary field φ could

be decomposed as follows [94]

φ(xi, t) = φ(xi) + φ
′
(xi, t) (4.28)

where φ(xi, t) is the instantaneous field, φ is the time-averaged mean field and φ
′
(xi, t) is

the fluctuating field. The term φ(xi, t) is defined as

φ(xi) = lim
T→∞

1
T

∫ t+T

t
φ(xi, t)dt . (4.29)

By time-averaging the equations governing mass, momentum, and energy, we derive the

Reynolds-Averaged Navier-Stokes (RANS) equations. For incompressible turbulent flows,

the continuity equation remains unchanged as it is linear concerning velocity. However,

additional terms emerge in the momentum and energy equations due to the non-linearity

inherent in the convection term. Assuming incompressible flow with constant viscosity,

the momentum equation after time-averaging adopts the following expression

∂ρui

∂t
+

∂ρuiuj

∂xj
= − ∂p

∂xi
+ µ

∂2ui

∂xj∂xj
+

∂

∂xj

(
τR

ij
)

(4.30)

where the mean value notation (overbar) has been omitted for clarity. A comparable

outcome is achieved for the energy equation (Eq. 3.3). The additional components in Eq.

4.30 are referred to as the Reynolds Stresses, denoted as τR
ij in tensor notation. They are

defined as −ρu′iu
′
j and account for the influence of turbulent motions on average stresses.

The Reynolds-stress tensor displays symmetry, where the diagonal components represent

normal stresses, and the off-diagonal components represent shear stresses. The RANS

equations system is not a closed system for calculating the dependent variables due to the

Reynolds-stress tensor introducing six additional independent unknowns. Addressing the

closure of the Reynolds-averaged Navier–Stokes equations involves primarily expressing

the Reynolds-stress tensor as a function of mean-field and other variables through models.

Experimental evidence showed that turbulence decays unless there is shear in isothermal

incompressible flows [86]. Furthermore, turbulent stresses are found to increase as the

mean rate of deformation increases. Boussinesq [95] proposed that Reynolds stresses
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might be proportional to mean deformation rates as follows

τR
ij = −ρu′iu

′
j = µt

[(
∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
δij

∂uk
∂xk

]
− 2

3
ρkδij (4.31)

where k denotes the turbulent kinetic energy of the fluctuations, defined as

k =
1
2
(u′iu

′
i) . (4.32)

The first term of the right-hand side of Eq. 4.31 is analgous to Eq. 3.8 except for the

appearance of the turbulent eddy viscosity µt. The second term on Eq. 4.31 ensures that

the formula gives the correct result for the normal Reynolds stresses.

On dimensional grounds, kinematic turbulent viscosity, which has dimensions m2/s, can

be expressed as a product of a turbulent velocity scale θt (m/s) and a turbulent length scale

lt (m). If one velocity scale and one length scale suffice to describe the effects of turbulence,

dimensional analysis yields

νt = Cθtlt . (4.33)

Favre-averaging for compressible flows When addressing compressible flows, it is

essential to consider not only fluctuations in velocity and pressure but also variations

in density and temperature. When the governing equations are utilized with density

expressed as the aggregate of its time-average and fluctuating components, the Reynolds

averaging process generates supplementary terms involving correlations with fluctuating

density ρ
′
, thereby demanding more intricate turbulence closure models. For example,

by time averaging the continuity equation and using the Reynolds averaging rules, the

Reynolds-averaged continuity equation for compressible flows is as follows.

∂ρ

∂t
+

∂

∂xi
(ρui + ρ′u′i) = 0 (4.34)

To achieve closure, it is necessary to approximate the correlation between the fluctuating

quantities (ρ′u′i) in some manner. The complexity increases for the momentum and energy

equations, as they involve triple correlations that encompass density fluctuations. There-

fore, to overcome this issue, the density-weighted averaging procedure proposed by Favre

[96] is employed. The mass average for a velocity component ũi, is defined as

ũi =
1
ρ

lim
T→∞

1
T

∫ t+T

t
ρ(~x, t) ui(~x, t)dt =

ρui

ρ
(4.35)
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ρũi = ρui (4.36)

Using Reynolds decomposition and Reynolds averaging rules on RHS of Eq. 4.36 and

substituting in Eq. 4.34 results as

∂ρ

∂t
+

∂

∂xi
(ρũi) = 0 (4.37)

which is the Favre-averaged compressible continuity equation. Similar to Reynolds aver-

aging, the Favre-averaging technique breaks down the instantaneous flow variables into

mass-averaged and fluctuating elements. This approach bears resemblance to Reynolds

averaging in that it enables the decomposition of instantaneous flow variables into mass-

averaged φ̃i and φ′′i as φi = φ̃i + φ′′i , where it is then multiplied by the density and

time-averaged to form the Favre-averaged decomposition.

The Favre average of a fluctuating variable is zero, resulting in the time average of the

density correlation being equivalent to the time-averaged density multiplied by the mass

average of the variable,

ρφ̃i = ρφi (4.38)

Similarly applying Favre averaging to the momentum and energy equations yields

∂ρũi

∂t
+

∂ρũiũj

∂xj
= − ∂p

∂xi
+

∂

∂xj

(
τij + τR

ij
)

(4.39)

∂ρẼ
∂t

+
∂ρũiẼ

∂xj
= −∂pũi

∂xi
+

∂

∂xj

((
τij + τR

ij
)
ũi −

(
qi + qR

i
))

(4.40)

These Favre-averaged equations share similarities with the incompressible RANS equa-

tions but incorporate the Reynolds stress tensor, which is defined as

τR
ij = −ρu′′i u′′j (4.41)

While Favre averaging exhibits similarities to RANS equations, it does not entirely erad-

icate the influence of density fluctuations on turbulence within the flow. Despite being

derived from compressible flow equations, Favre-averaged equations can often be reformu-

lated to resemble the incompressible flow equations for the sake of simplicity and practical

application. This transformation into an incompressible-like form proves beneficial for

practical use and enables the utilization of established turbulence models developed for

incompressible flows.
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SA turbulence model

The Spalart-Allmaras model [97] involves one transport equation for kinematic eddy

viscosity parameter ν̃ and a specification of a length scale using an algebraic formula

and provides economic computations of boundary layers in external aerodynamics. The

turbulent viscosity is related to ν̃ by

νt = ν̃ · fν1 (4.42)

where

fν1 =
χ3

χ3 + c3
ν1

(4.43)

is a damping function, depending on the turbulence Reynolds number represented by the

viscosity ratio

χ =
ν̃

ν
(4.44)

with ν the average kinematic viscosity of the fluid, and cν1 = 7.1.

The transport equation for ν̃ is as follows

∂(ρν̃)

∂t
+

∂(ρν̃ui)

∂xi
= ρPν̃ − ρDν̃ − ρΦν̃ + ρCν̃ + ρTν̃ (4.45)

where ρPν̃ represents production, ρDν̃ represents diffusion and ρΦν̃ represents destruc-

tion. The terms ρDν̃ and ρTν̃ are modifications for compressibility and turbulence onset.

Production, destruction and diffusion are defined as

ρPν̃ = cb1(1− ft2)S̃ρν̃ (4.46)

ρΦν̃ =
(
cw1 fw −

cb1

κ2 ft2
)
ρ
[ ν̃

d
]2 (4.47)

ρDν̃ =
1
σ

( ∂

∂xk

[
ρ(ν + ν̃)

∂ν̃

∂xk

]
+ cb2ρ

∂ν̃

∂xk

∂ν̃

∂xk

)
(4.48)

respectively, where the model coefficients take the following values

cb1 = 0.1355, cb2 = 0.622, σ = 2/3, κ = 0.41, cw1 =
cb1

κ2 +
1 + cb2

σ
. (4.49)
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Furthermore, d is the distance to the closest wall. In the production term, S̃ is a scalar

measure of the velocity gradient, defined as

S̃ = S +
ν̃

κ2d2 fν2 (4.50)

where

S = |~ω| (4.51)

is the absolute value of the vorticity and

fν2 = 1− χ

1 + χ fν1
(4.52)

ensures that ν̃ varies linearly down to the wall. In the destruction term,

fw = g
[ 1 + c6

w3

g6 + c6
w3

]1/6
(4.53)

with

g = r + cw2(r6 − r) (4.54)

controls the decay of ν̃ towards the boundary layer edge. The coefficient values are

cw2 = 0.3, cw3 = 2 . (4.55)

Finally, the term

ft2 = ct3exp(−ct4χ4) (4.56)

appearing in production and destruction has been designed to suppress turbulence in

laminar regions. Its coefficient values are

ct3 = 1.2 and ct4 = 0.5 . (4.57)

and the compressibility term is

ρCν̃ = − 1
σ
(ν + ν̃)

∂ρ

∂xk

∂ν̃

∂xk
(4.58)

SA-neg turbulence model In general, the solution of ν̃ must always be positive, but in

numerical simulations, negative values may occur due to the respective solution algorithm.

The negative SA model (SA-neg) has been advised by Allmaras et al. [98] in order to cope
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with the negative values of ν̃ without degrading the numerics. In regions with negative ν̃,

the definition of the production term, the destruction term and the diffusion term is

ρPν̃ = cb1(1− ct3)Sρν̃ , (4.59)

ρΦν̃ = −cw1ρ
[ ν̃

d
]2 , (4.60)

ρDν̃ =
1
σ

( ∂

∂xk

[
ρ(ν + fnν̃)

∂ν̃

∂xk

]
(4.61)

where

fn =
cn1 + χ3

cn1 − χ3 (4.62)

with cn1 = 16 modifying the diffusion coefficient.

k - ω turbulence model

This model employs transport equations for the specific kinetic turbulence energy k and

the specific dissipation rate ω that can be cast into the following general form [99]:

∂(ρk)
∂t

+
∂(ρkuj)

∂xj
= ρPk − ρε + Dk (4.63)

with the turbulence production term Pk

Pk = τR
ij

∂ui

∂xj
(4.64)

the dissipation term

ρε = βkρωk (4.65)

and the diffusion term

ρDk =
∂

∂xj

[
(µ + σkµt)

∂k
∂xj

]
(4.66)

The transport equation for the specific dissipation rate is [99]

∂(ρω)

∂t
+

∂(ρωuj)

∂xj
= ρPω − ρΦω + ρCDω + ρDω (4.67)

with the production term

ρPω = γωScω ρPk (4.68)
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the dissipation term

ρΦω = βωρω2 (4.69)

the cross-diffusion term

ρCDω = σd
ρ

ω

∂k
∂xk

∂ω

∂xk
(4.70)

and the diffusion term

ρDω =
∂

∂xj

[
(µ + σω1µt)

∂ω

∂xj

]
(4.71)

In these equations, βk, βω, γω, σk, σω and σd are closure coefficients that vary between

the different models. Furthermore, Scω denotes a scaling factor that for most, but not all,

models is given by ω/k.

In the original Wilcox 1988 model, the closure coefficients are given by Wilcox [99] as

βk = 0.09, βω = 0.075, γω = 5
9 , σk = 0.5, σω = 0.5 and σd = 0 and eddy viscosity is defined

by

µt =
ρk
ω

(4.72)

and scaling the ω-production term by

Scω =
ω

k
(4.73)

Menter Baseline model In order to overcome the free-stream sensitivity of the Wilcox

1988 model, Menter [100, 101] suggests to combine the k−ω model near walls with the

standard k− ε model in the free stream. Transforming the corresponding ε-equation into

a transport equation for ω leads to the appearance of the cross-diffusion term CDω , which

is responsible for suppressing the free-stream sensitivity. While the k−ω model provides

better accuracy in near-wall regions, the k− ε model performs better in regions outside

these near-wall regions. Menter [100, 101] achieves the combination of k− ω and k− ε

transport equations by a smooth change of the closure-coefficients values according to

φ = F1φi + (1− F1)φo (4.74)

where φ = βk, βω, γω, σk, σω and σd and the indices i and o represent values near the wall

(inner part, i) and in the free stream (outer part, o), respectively. The blending function is

defined as

F1 = tanh(G4
1) (4.75)
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where

G1 = min[max(Γ1, Γ2), Γ3] (4.76)

with the arguments

Γ1 =

√
k

0.09 ω d
Γ2 =

500µ

ρω d2 and Γ3 =
2σdρk

ρCDω d2 (4.77)

The bounding values of the closure coefficients are given by Wilcox [99] as βk = 0.09,

βω = 0.075, γω = 5
9 , σk = 0.5, σω = 0.5 and σd = 0 for the near-wall coefficients and

βk = 0.09, βω = 0.075, γω = 5
9 , σk = 0.5, σω = 0.5 and σd = 0 for free-stream coefficients.

Menter shear stress transport (SST) model Together with the Baseline model, Menter

[100, 101] published the so-called Shear Stress Transport (SST) model. It is an extension of

the BSL model, improving its sensitivity to positive pressure gradients (separation). It is

achieved by limiting the eddy viscosity according to

µt =
ρa1k

max(a1ω, ΩF2)
=

ρk
ω

1
max(a1ω, ΩF2)

(4.78)

where a1 = 0.31 and

F2 = tanh(G2
2) (4.79)

with

G2 = max(2Γ1, Γ2) (4.80)

is another blending function that takes on a value of F2 = 1 near walls and switches to a

value of F2 = 0 at the boundary layer edge, thus restricting the eddy-viscosity limitation

(SST limitation) to boundary layers. The arguments Γ1 and Γ2 are identical to the ones

used with the F1 function of the BSL model.

4.3.2 Scale-resolving turbulence approach

Scale-resolving approach in CFD is aimed at capturing intricate flow features across a wide

range of scales. Unlike traditional Reynolds-Averaged Navier-Stokes (RANS) methods that

rely on turbulence modeling to resolve turbulent fluctuations, scale-resolving approach

endeavors to directly simulate a significant portion of the turbulent spectrum. By resolving

smaller turbulent structures, the approach offers the potential to provide more accurate

predictions, particularly in regions where flow dynamics are dominated by turbulence.
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Large-Eddy Simulation (LES)

Smagorinsky [102] initially proposed Large-Eddy Simulation (LES) in 1963 for atmo-

spheric flow prediction, with early applications focused on this domain. Its application

to engineering-related flows began in 1970 by Deardoff [103] and in 1975 by Schumann

[104]. Initially progressing slowly until the mid-1980s, primarily applied to simple flows

like homogeneous turbulence and mixing layers, the rapid development of LES acceler-

ated with increased computing power. Particularly after the 1990s, the LES community

witnessed significant growth, expanding applications from simple to complex flows, in-

cluding multi-phase flow, heat transfer, combustion, aeroacoustics, etc. [105]. This surge

in LES development and applications is attributed to increased computing power and

the realization that RANS methods inherently struggle with certain classes of complex

turbulent flow problems.

LES computes large-scale turbulent flow motions directly, modelling only the smaller

scale (sub-grid scale) motions. This results in a significant reduction in computational

cost compared to DNS. LES surpasses the accuracy of RANS as it directly captures the

large, detailed eddies responsible for most of the turbulent energy, momentum transfer,

and mixing. Unlike RANS, LES finds modelling small scales easier due to their greater

isotropy and homogeneity than large scales.

In LES, explicit filtering is applied to the instantaneous conservation equations, formulating

3D unsteady governing equations for large-scale motions. When using the finite volume

method to solve the instantaneous governing equations numerically, implicit filtering

occurs during the integration over control volumes. However, implicit filtering has a

potential shortcoming, as truly mesh-independent results become challenging. With mesh

refinement, smaller-scale motions are resolved, and continuous refinement eventually

leads to DNS rather than LES. It introduces difficulty in distinguishing between numerical

and modelling errors, hindering useful analysis of numerical schemes [105].

Detached-Eddy simulation (DES)

In spite of the potential advantages offered by LES, challenges persist in accurately captur-

ing turbulent stresses near walls due to the significant computational resources needed,

which approach those required for DNS. Another alternative that has gained popularity

over the years involves hybrids of LES and RANS, such as Detached-Eddy Simulation

(DES). The fundamental concept of DES was initially proposed by Spalart et al. [66]. This

approach combines elements of RANS and LES by employing RANS to model near-wall

and boundary layer regions while employing LES outside these areas. DES is named after
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this concept. Spalart et al. [66] adapted the SA model to achieve an equivalent of DES. The

sole adjustment lies in the dissipation term of the transport equation for ν̃

− cw fw1
ν̃

d̃
. (4.81)

In the original one-equation Spalart-Allmaras turbulence model [97], the terms d and d̃,

denoting the distance to the wall, were identical

d̃ = d = distance of the nearest wall . (4.82)

However, in the DES formulation of the Spalart-Allmaras model, these terms differ, with d̃
defined as

d̃ = CDES∆ (4.83)

where CDES is a constant and ∆ represents the grid size metric. Practically, in the DES for-

mulation of the one-equation SA model, the distance to the wall is expressed by comparing

the actual distance to the wall with CDES∆, which essentially evaluates the maximum cell

length

d̃ = min(d, CDES∆) with ∆ = max(∆x, ∆y, ∆z) . (4.84)

When the cell length (CDES∆) is smaller than the actual distance to the nearest wall (d),

LES is activated. Conversely, RANS is triggered when the opposite condition holds.

Therefore, the boundary between LES and RANS depends entirely on the geometry and

computational mesh density. It is noteworthy that alternative metric relations are also

feasible. The primary challenge facing such hybrid RANS/LES methods is the scale

disparity between the LES and RANS regions, unlike wall-layer modelling techniques,

where the scales of the outer layer dictate those of the inner layer, resulting in the presence

of eddies as small as the filter size in the inner layer. Hybrid methods introduce their own

time and length scales in the inner layer, determined by the unsteady RANS equations

applied there, and these scales are generally much more significant than those of the

outer-layer eddies [106].

A notable drawback of the original DES method arises when grids are locally refined in

multiple directions in regions not designated for scale resolution, commonly seen in highly

curved geometric areas or near converging solid surfaces. The DES transition criterion, as

expressed in Eq. 4.84, directly compares the RANS length scale with the maximum grid cell

dimension. This can lead to a significant decrease in eddy viscosity within the boundary
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layer without a mechanism to convert modeled turbulence energy into resolved energy. In

scenarios where the boundary layer’s wall-parallel grid spacing exceeds boundary layer

thickness (δ), Eq. 4.84 ensures DES operates in RANS mode throughout the boundary

layer. However, it may inadvertently trigger LES mode in areas with ambiguous grid

definitions, particularly where ∆ � δ, potentially lacking the necessary refinement to

support resolved turbulence. To remedy this issue, the initial enhancement leading to

Delayed Detached Eddy Simulation (DDES), as introduced by P. R. Spalart et al. [107],

addresses the issue of preventing premature transition from RANS to LES mode within

attached boundary layers solely due to grid design. This is achieved by adjusting the

DES length scale with a flow-dependent delaying function, ensuring persistence of RANS

mode in attached boundary layer regions. DDES aims for accurate simulations in complex

geometries, maintaining RANS mode throughout the boundary layer to avoid early LES

transitions from sub-optimal grids. In DDES, the hybrid length scale d̃DDES is expressed as

d̃DDES = d− fd max (0, d− CDES∆) (4.85)

where the delaying function fd is defined by

fd = 1− tanh([8rd]
3) (4.86)

with

rd =
µ + µt

ρκ2d2
√

∂ui
∂xj

∂ui
∂xj

. (4.87)

The variable rd approximates unity within the boundary layer’s sub-layer and logarithmic

regions, decreasing towards zero near the boundary, causing fd to remain low until encoun-

tering the defect layer, where it rises rapidly towards unity as rd diminishes. Setting fd to

0 yields RANS (d̃ = d), while setting it to 1 gives original DES version (d̃ = min(d, CDES)).

However, as highlighted by Spalart et al. [107], when DDES approach is employed as a wall

model in LES, it offers no advantages over original DES model. Further work in this regard

led to the development of IDDES approach which entails two branches, namely DDES and

wall-modelled LES (WM-LES). DDES branch is responsible for DDES-like functionality

in IDDES, activating only under inflow conditions lacking turbulent content. WM-LES

branch is designed to activate solely under unsteady inflow conditions that introduce

turbulent content and when the grid resolution is sufficient to resolve dominant boundary-

layer eddies. It introduces a novel seamless hybrid RANS-LES model, integrating RANS

and LES methodologies by introducing the following blended RANS-LES length-scale
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lWMLES = fB(1 + fe)lRANS + (1− fB)lLES (4.88)

where, similarly to DDES, lRANS and lLES are the RANS and LES length scales, respectively.

The empirical blending function fe is defined as

fe = min {2 exp(−9α2), 1.0}, α = 0.25− dw/hmax (4.89)

It varies from 0 to 1, providing rapid switching of the model from RANS mode ( fB = 1.0) to

LES mode ( fB = 0) within the range of wall-distance 0.5hmax < dw < hmax. The elevating

function fe is aimed at to prevent the excessive reduction of RANS Reynolds stresses

observed in the interaction between RANS and LES regions near their interface. This

feature plays a crucial role in addressing log-layer mismatch.

Scale-Adaptive simulation (SAS)

Although all RANS models have the potential to be solved in an unsteady manner

(URANS), conventional URANS models are known to lack spectral content, even when

the grid and time step resolutions are adequate. This limitation has been attributed to high

turbulent viscosities that reflect the averaging in the theoretical derivation of the RANS

equations, which effectively removes all turbulence information from the velocity field.

The SAS model can be considered as a URANS model with a scale-resolving capability,

which can show LES-like behaviour. Unlike LES, it also remains well-defined if the mesh

cells become coarser. This makes it attractive in the present application, where the aero-

acoustic effects are mostly affected by larger turbulent scales, which, in turn, need to be

predicted accurately.

The work by Menter et al. [38] suggests a modified turbulence model that adds a source

term QSAS based on the local von Karman length scale LvK into the dissipation rate

transport equation to only resolve turbulence where significant fluctuations exist and

can be resolved by the mesh. This scale-resolving technique with the standard k-ω SST

model [100] as the base model has been used in the present study. The source term QSAS is

added in the transport equation for the turbulence eddy frequency ω which is defined in

Einstein’s notations, as shown in Eq. 4.90.

QSAS = max
[

ρζ2S2
(

Lm

LvK

)2

− FSAS
2ρk
σφ

max
(

1
k2

∂k
∂xj

∂k
∂xj

,
1

ω2
∂ω

∂xj

∂ω

∂xj

)
, 0
]

(4.90)
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with ζ2 = 1.755, σφ = 2/3 and FSAS = 1.25 and

LνK = κ
U′

U′′
, Lm = c−1/4

µ

√
k

ω
, U′′ =

√
∂2ui

∂x2
k

∂2ui

∂x2
j

, U′ =
√

2 · SijSij (4.91)

with cµ = 0.09 and κ = 0.41.

Artificial Forcing In principle, the SAS approach thrives under significant flow fluctu-

ations. Wall functions tend to damp the fluctuations close to the wall, and this results

in the inability of the model to produce enough fluctuations; eventually, the SAS model

becomes dormant when wall functions are used, resulting in a URANS solution with fully

modelled turbulence. Therefore, to increase the resolution capability of the SAS model

in the shear layer, an investigation has been carried out to force fluctuations inside the

cavity based on the modelled length and time scales and activate the SAS model strongly

in the shear layer of the cavity. It is achieved in the SAS-F simulation through the use of

additional terms (Eq. 4.92) to transfer modelled kinetic energy into resolved turbulent

kinetic energy as discussed in the original paper by Menter et al. [38]. The terms Fmom,i are

added to the momentum equations, whereas Fk is subtracted from the turbulent kinetic

energy equation. The fluctuating term u f ,i in Eq. 4.92, which requires as input the local

length scale Lt and time scale τt computed from the underlying RANS turbulence model,

is based on the random flow generator (RFG) by Kraichnan [108].

Fmom,i =
ρu f ,i

∆t
and Fk = −0.5

ρu2
f ,i

∆t
(4.92)

where

u f ,i =

√
2
3

k

√
2
N

N

∑
n=1

[
pn

i · cos(argn) + qn
i · sin(argn)

]
(4.93)

pn
i = εijkηn

j dn
k ; qn

i = εijkξn
j dn

k (4.94)

argn = 2π

(
dn

i xi

Lt
+

ωnt
τt

)
(4.95)

where Lt = CL

√
k

Cµω (CL = 0.5) is the length scale of the turbulence, and τt =
Lt√

k
is the time

scale.

ηn
i = N(0, 1), ξn

i = N(0, 1), dn
i = N(0, 0.5), ωn = N(1, 1) (4.96)
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N(φ, ψ) is a random variable following a normal distribution with a mean φ and standard

deviation ψ. Moreover, finer-scale structures that the grid could not resolve are prevented

with the help of a Nyquist limiter. As a result, only the energy that the underlying grid

can resolve is transferred. Thus, dissipation is shifted from the integral scales in the RANS

mode of the SAS model toward subgrid scales in the scale-resolving mode.

τt

ωn ≥ 2 ∆t;
Lt

|dn| ≥ 2 ∆h (4.97)

where ∆t is the time step size, and ∆h is the maximum of grid spacing in the x1, x2, x3

directions. The forcing can be applied to the whole domain (globally) or to a specific region

(zonally). In the global prescription of forcing, the SAS model damps out the fluctuations in

the steady regions. The zonal prescription of forcing does not require additional treatment

at the interfaces. Furthermore, the forcing term is only significant in the first few timesteps

of the simulation, and its contribution to the momentum equation drops to a negligible

value with time as the field contains more resolved structures and an equilibrium between

forcing and dissipation develops. As a result, the stability and robustness of the method

are similar to the unforced approach.

4.3.3 Wall treatment

In engineering applications, one of the main concerns is to predict the flow phenomena

adjacent to the wall since the phenomena of production and destruction of turbulent energy

are complex near the wall region. The wall shear stress in the momentum equation involves

strong velocity gradients, and the contribution of effective viscous flux is predominantly

high in the near-wall region. The exact computation of the effective viscosity field is

imperative to compute the correct wall shear stress. There are two different approaches to

predicting near-wall flows. One approach is to refine the region using smaller cells and

integrate the low Reynolds number turbulence model equations to the wall. In the FVM

method, the integration over the control volume is performed for each cell close to the wall

in case of low Reynolds turbulence model equations. However, the computational effort

is immensely higher with this approach. Another approach is to employ high Reynolds

number turbulence model equations and use the wall functions to connect the wall and

the first cell adjacent to the wall. The wall functions provide algebraic relations based on

the law of wall concept to set the values for the dependent variables in the near-wall cell.

A hybrid wall function aims to provide a boundary condition at solid walls that enables

flow solutions independent of the location of the first grid node above the wall. The two



4.3. Turbulence modelling 53

classical wall boundary conditions in the TAU code are low-Re and high-Re type boundary

conditions. The low-Re boundary conditions impose no slip at the wall and require a low

Re grid with y+ < 1. The hybrid-Re boundary condition is an improved high-Re boundary

condition, prescribing the wall-shear stress and no-penetration at the wall. The RANS

equations are solved only down to the first grid node above the wall and are matched with

an adaptive wall function solution at the first grid node above the wall.

Due to the matching condition at each first node above the wall that the wall-parallel

components of the RANS solution uRANS and the wall-function uWF are equal at wall

distance yδ and from universal wall law uWF(y) = uτF( yuτ

ν ), we obtain

F
(yδuτ

ν

)
=

uRANS(yδ)

uτ
(4.98)

which can be solved for uτ using Newton’s method and then τw is computed from ρu2
τ.

In the TAU software [40], the following wall function is employed for the k−ω SST model,

which is used in this work for wall function based simulation methods.

Fkω,a = (1− φkω)FSp,3 + φkωFRei,m , φkω = tanh(arg) , arg =
(y+

50
)2 (4.99)

where FSp,3 and FRei,m represent Spalart’s wall law [97] and Reichardt’s wall law [109], re-

spectively, with φkω serving as a blending function that helps transition smoothly between

the wall laws depending on the flow conditions.
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Chapter 5

Simulation configurations

This chapter introduces two simulation configurations simulated in this study, namely

the open-cavity and hybrid delta-wing configurations. Section 5.1 provides details on the

open-cavity geometry and is followed by a description of the meshing strategy employed

for different simulation approaches. Section 5.2 presents the geometric characteristics

of the hybrid delta-wing planforms and their meshing strategy. The simulation setup,

including the boundary and initial conditions, is outlined for both configurations in their

respective sections.

5.1 Cavity Flow

In this section, the open-cavity configuration with doors is introduced. Following that,

the meshing strategy utilized in the work is explained, accompanied by some supporting

plots, such as turbulent spectra and spectral analysis of different meshes. The numerical

simulations have been performed under the flow conditions of Ma∞ = 0.8 and Re∞ =

12× 106.

5.1.1 Geometrical description

A cuboid cavity with a length-to-depth ratio (Lc/Dc) of 5.7 and length-to-width ratio

(Lc/Wc) of 4.16 is cut into a flat side of a test rig at a certain distance from its sharp leading

edge and on the centre line (see Fig. 5.1). The doors connected to the rig plate are placed

on either side of the cavity with a positive Z pointing into the cavity. The experimental

survey conducted by Mayer et al. [39] had probes placed at equidistant locations along

the cavity ceiling, named L1 to L8, with the flow direction from the sharp leading edge of

the rig towards the cavity. The flat plate upstream of the cavity is long enough to obtain a

fully developed turbulent boundary layer before reaching the cavity.
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FIGURE 5.1: Weapon bay model with the position of probes [41]

5.1.2 Mesh

The numerical mesh used for all the turbulence models is of an unstructured type. The

surface of the cavity walls, doors and the plate of the rig where the cavity is cut is composed

of triangles and quadrilaterals. In order to encompass the boundary layer over the flat plate

leading to the cavity, the surface elements follow up to 35 layers of prism and hexahedral

elements in the case of wall-resolved simulation and up to 10 layers in the case of wall-

modelled simulation with 0.012 Lc as the total thickness of the layers for the considered

flow conditions (detailed mesh information is provided in Tab. 5.2). The sharp leading

edge of the rig has been refined to avoid introducing mesh-dependent errors that could

be convected and affect the flow over the cavity. The other regions of the sphere-shaped

computational domain with a diameter as high as 50 Lc are unstructured elements with

tetrahedral and pyramidal cells. The cavity ceiling near the front wall has lower values of

y+ compared to the aft part of the cavity, yet the number of prism layers has been kept the

same. The model has been meshed in half and mirrored about the symmetry axis so that

asymmetric grid effects are effectively avoided. The local regions in and around the cavity

have been meshed based on the integral scale estimates obtained from the k-ω SST model.

Meshing approach in hybrid RANS-LES simulations

During the preliminary stages of the work, the goal was to generate a reference simulation

database, which led to the testing of several meshes with the hybrid RANS-LES approach

using the wall-integrated SA-IDDES model with overall uniform refinement in the cavity.

The finest with a practical limit on the computing hours, led to several mesh nodes as high

as 25× 106. However, the wall-integrated meshes had limitations due to very skewed cells
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FIGURE 5.2: Mesh distribution in DES-WF [110]

near the gaps between cavity doors and walls. In general, there were severe convergence

issues using matrix artificial dissipation schemes explained in the cavity results chapter 6.

The mesh quality, specifically the decrease in cell orthogonality due to the utilization

of coarser cells over cavity walls and in the gaps between the cavity door and walls, is

preferred in the SA-IDDES model using a wall-modelled approach. In this approach, 2− 3

cells per integral length scale are utilized to resolve the shear layer. The resulting local

mesh distribution is depicted in Fig. 5.2, where region I comprises cells with dimensions

approximately 2.6× 10−3 Lc, while region II’s cells are half that size. The mesh resolution

for DES-WF is determined by confirming the presence of a Kolmogorov inertial range

[111], extending roughly over one order of magnitude. This condition has been verified in

the shear layer, which can be seen in Fig. 5.3. The DES-WF mesh is composed of 5.4× 106

grid nodes and 7.2× 105 surface elements. Moreover, it has been observed that refining the

entire shear layer does not provide further benefits for the prediction of resonance spectra.

Meshing approach in SAS simulations

The SAS approach explores three variants: SAS-WR, SAS-WF and SAS-F. SAS-WR im-

plements the k-ω SST model with a wall-resolved technique, while SAS-WF utilizes

a wall-modelled technique. SAS-F, on the other hand, leverages the forcing feature

within SAS. In all the SAS variants, unlike DES-WF, regions I and II have the exact

mesh resolution, and the scale-resolving capability of SAS does not explicitly depend
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TABLE 5.1: Details of Mesh A, B and C for mesh refinement study in SAS-WR
(Ma∞ = 0.8 and Re∞ = 12× 106)

Mesh A Mesh B Mesh C

Number of mesh nodes 20.2× 106 5.1× 106 1.4× 106

y+ of the first element 1.0 1.0 1.0

Number of prism cells 35 35 35

Resolution in Regions I and II 3.12× 10−3L 6.24× 10−3L 12.48× 10−3L

on the cell resolution but on the Lvk scale. In order to achieve sufficiently resolved tur-

bulence in the cavity, the cell size has been chosen based on a mesh convergence study.

FIGURE 5.3: Mesh convergence study based on en-
ergy spectra observed in the shear layer (Ma∞ = 0.8

and Re∞ = 12× 106) [110]

Three meshes A, B and C of increasing

cell sizes by a factor of 2.0 in each di-

rection within the cavity have been cho-

sen, which consist of 20.2× 106, 5.1× 106

and 1.4 × 106 nodes, respectively (see

Tab. 5.1). The wall-normal resolution

has been the same for all the meshes

with y+ values of the first cell less than

1.0. The SPL spectra are very sensitive

to global mesh characteristics and reso-

lution of the shear layer near the front

edge and, therefore, are chosen for illus-

trating mesh convergence. The result-

ing spectra from SAS-WR on the three

meshes are shown in Fig. 5.3. According

to the results, mesh B has been chosen

to perform the SAS-WR simulation. The

SAS-WR mesh with prism cells contains

around 5.1× 106 grid nodes. In SAS-WF

and SAS-F, the resolution in the cavity is the same as in SAS-WR with y+ of the first

element greater than 100, whereby the resulting mesh has the advantage of using only

50% of the prism cells compared to the SAS-WR mesh with 2.5× 106 grid nodes. Tab. 5.2

summarizes the mesh parameters used for all the simulation method variants in the study

for the cavity configuration.
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TABLE 5.2: Details of the meshes used for the cavity simulation (Ma∞ = 0.8
and Re∞ = 12× 106)

DES-WF SAS-WR SAS-WF SAS-F

Number of mesh nodes 12.5× 106 5.1× 106 2.5× 106 2.5× 106

y+ of the first element > 100.0 < 1.0 > 100.0 > 100.0

Number of prism cells 10 35 10 10

Resolution in Region I 3.23× 10−3Lc 6.24× 10−3Lc 6.24× 10−3Lc 6.24× 10−3Lc

Resolution in Region II 1.28× 10−3Lc 6.24× 10−3Lc 6.24× 10−3Lc 6.24× 10−3Lc

5.1.3 Simulation setup

This subsection provides an overview of high-level control parameters utilized in the nu-

merical computations. These parameters have demonstrated consistent accuracy following

rigorous testing conducted throughout this study.

Numerical schemes

The simulations employed a second-order central scheme for spatial discretization with

artificial dissipation schemes. Specifically, the convective mean-flow terms were treated

with a skew-symmetric central scheme according to Kok [112]. In contrast, the convective

terms of the turbulence equations were discretized with the central average of the analytic

flux on each side of the face. A matrix artificial dissipation of 70% and a scalar artificial

dissipation of 30% were set in the computations. The temporal discretization has been

achieved through a dual-time stepping approach, which follows the approach of Jameson

[113]. A second-order implicit backward method with the LUSGS algorithm is employed

for discretizing the time-derivative to generate a sequence of (non-linear) steady-state

problems, which make use of the singly diagonally implicit Runge-Kutta method (SDIRK)

until a steady state in fictitious pseudo time is reached. The convective Courant-Friedrichs-

Lewy number (CFL) has been kept around 1.0 for the DES simulations and 2.0− 3.0 for

the SAS variants. The convergence criteria are based on Cauchy convergence control of

the variables’ volume-averaged turbulent kinetic energy, maximum eddy viscosity, total

vorticity and maximum Mach number with tolerance values of 1× 10−6 each. Further

details regarding the DLR-TAU solver can be found in Galle et al. [114]. Moreover, in

SAS-F simulation, the dimensions of the forcing zone have been chosen based on the

shear-layer prediction from the URANS computations, as shown in Fig. 5.4, roughly

extending 50% of the cavity length and 30% of the cavity depth. The highest levels of

turbulent kinetic energy in URANS have been identified and enclosed by the forcing zone,
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FIGURE 5.4: Forcing zone in SAS-F simulation [41]

as the contribution of the forcing term is directly proportional to the modeled turbulent

kinetic energy as seen in Eq. 4.92.

Initial & Boundary conditions

In line with the measurements conducted at the transonic wind-tunnel facility in Göttingen

(TWG) by Airbus Defense and Space (ADS), the flow conditions of Ma∞ = 0.8 and

Re∞ = 12× 106 at α = 0◦ and β = 0◦/8◦ were chosen for the numerical analysis. The

speed of sound is a function of T∞ and has a simple relationship

a∞ =
√

γRT∞ (5.1)

and the dynamic viscosity is a function of T∞, and ρ∞ is a function of p∞ and T∞ through a

thermodynamic equation of state. In order to match these non-dimensional numbers (Ma∞

and Re∞), the T∞ is prescribed based on wind-tunnel data. Following this, the dynamic

viscosity is computed from Sutherland’s law [115] shown in Eq. 3.10, and p∞ is computed

through the ideal gas law

p∞ = ρ∞RT∞ (5.2)

where R, the specific gas constant equals to 286.9J/kgK.

Ma∞, Re∞ and T∞ were set as input conditions for the CFD calculations. The walls of

the cavity were defined with no-slip velocity conditions. The farfield spherical surface is

equipped with "farfield" boundary conditions, which are implemented in TAU, represent-

ing an inflow/outflow boundary located far from the analyzed configuration in external

flow. The presence of the configuration hardly impacts the flow variables at the farfield

boundary, where all gradients are assumed to be negligible, and consequently, no viscous

effects are considered.
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FIGURE 5.5: y+ distance over the cavity walls in the DES-WF simulation at an
instant of time (Ma∞ = 0.8 and Re∞ = 12× 106) [41]

5.1.4 Wall Treatment

In this study, wall functions based on the universal law of the wall are employed for the

DES-WF, SAS-WF and SAS-F simulations, whereas the low-Re boundary condition is used

for the SAS-WR simulation. Grid-independent wall functions aim to provide a boundary

condition at solid walls that enable flow solutions independently of the location of the

first grid node above the wall. As discussed in section 4.3.3, the RANS equations are

solved only down to the first grid node above the wall and matched with an adaptive

wall function solution. The matching condition (Eq. 5.3) makes sure that the wall-parallel

components of the RANS solution and the wall function are equal at the wall distance yδ,

which is then solved for the friction velocity uτ using Newton’s method. The shear stress

τω is then prescribed at the wall node. Fig. 5.5 shows the instantaneous non-dimensional

wall distance y+ distribution in the case of the DES-WF simulation.

uRANS(yδ) = uWF(yδ) (5.3)

5.2 Hybrid delta-wing planforms

In this section, the hybrid delta-wing planforms DW1 and DW2 are introduced. Follow-

ing that, the meshing strategy utilized in the work is explained, accompanied by the

presentation of mesh convergence plots based on aerodynamic coefficients.
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FIGURE 5.6: Geometric features of DW1 and DW2 planforms

5.2.1 Geometrical description: DW1 & DW2

Fig. 5.6 shows planform sketches of DW1 and DW2 configurations, which are 1:30-scaled

versions composed of a generic fuselage and a generic flat-plate wing with a sharp leading

edge. DW1 is characterized by a double-delta wing planform with two different leading-

edge sections, whereas DW2 features a triple-delta wing planform with three different

leading-edge sections [116]. The wing thickness of the planforms is around 0.014L, and

the wing configuration is equipped with different flat-plate wing planforms, including

sharp leading edges and sets of corresponding control surfaces such as levcon, slat and

flaps. The leading-edge sweep angle of the outer main wing section of both the planforms

is φ3 = 52.5◦. The strake section in DW1 exhibits one highly-swept strake with a leading-

edge sweep angle of φ2 = 75◦, whereas DW2 exhibits two different leading-edge sweep

angles of φ1 = 52.5◦ and φ2 = 75◦. The nautical labelling is used: leeward starboard

(y > 0) and windward portside (y < 0). The geometrical parameters of the planforms

have been listed in Tab. 5.3
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TABLE 5.3: Geometrical parameters of DW1 and DW2

DW1 DW2

l1/cr - 0.125

l2/cr 0.475 0.350

l3/cr 0.350 0.350

φ1 - 52.5◦

φ2 75◦ 75◦

φ3 52.5◦ 52.5◦

5.2.2 Mesh

Meshing strategy for DW1 is followed based on previous studies by Di Fabbio et al.

[116] for DW2 configuration. The numerical mesh used for both the planforms is of

unstructured type. The surface of the walls is composed of triangles. Tetrahedral grids used

in boundary layers frequently exhibit high aspect ratios and pronounced non-orthogonality,

which can complicate the computation of the gradient divergence, as noted by [117]. In

contrast, prism grids are characterized by more excellent orthogonality and impose a

lighter computational load on the solver. Therefore, to resolve the boundary layer over

the flat-plate planforms, up to 35 layers of structured triangular prism elements are used

for the surface elements, with the first cell having y+ ≈ 1. The height of the prismatic

layer has been kept constant over the entire planform and not locally adjusted to the actual

height of the local boundary layer. As a result, flow features like the shear layer and the

resulting vortices extend in and out of the boundary between structured and unstructured

mesh elements. The sharp leading edges have been refined to prevent the introduction

of mesh-dependent errors that might be convected and affect the flow over the wings.

The other regions of the sphere-shaped computational domain with a diameter as high

as 50Cr are composed of unstructured elements with tetrahedral and pyramid cells. The

model has been meshed in half and mirrored about the symmetry axis so that asymmetric

grid effects are effectively avoided. Isotropic mesh refinement has been applied in the

vortex regions. A mesh convergence study was performed, and the resulting mesh was

used for the RANS simulation. In the case of SAS simulations, local regions within and

around the configuration have been refined based on integral scale estimates obtained

from the k-ω SST model. 2− 3 cells per integral length scale have been used to resolve the

vortex and surrounding regions. Fig. 5.7 shows the resulting surface and volume mesh

distribution for the SAS simulation, with cells clustered in the boundary layer and around

the vortex region. The configurations feature viscous no-slip walls, and the domain has
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(a) Surface mesh distribution

(b) Volume cells distribution at x/Cr = 0.4

FIGURE 5.7: DW1 mesh topology in SAS showing local refinement regions

farfield flow conditions of an undisturbed flow within the surrounding sphere. Five

meshes (labelled A to E) were chosen for the study, featuring progressively finer resolution

in each direction within the vortex regions, with a growth factor of 1.5. These meshes have

sizes of 2.8× 106, 4.8× 106, 10.4× 106, 27.3× 106, and 82.2× 106 nodes, respectively (see

Tab. 5.4). The wall-normal resolution was consistent across all meshes, ensuring that the

first cell’s y+ value remained below 1.0. The resulting aerodynamic coefficients obtained

from these meshes are depicted in Fig. 5.8. It is seen that the meshes D and E converge to

similar values of lift and moment coefficients. The oscillation frequency of the coefficients

diminishes as mesh resolution increases. Based on these results, mesh D with 27.3× 106

nodes were selected for the RANS simulation. In the SAS simulations, the vortex-core

regions have been made sure that 2− 3 cells are placed to resolve integral length scales,

resulting in a similar mesh as that of mesh D with around 30× 106.
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TABLE 5.4: Details of Mesh A to E for mesh refinement study (Ma∞ = 0.85
and Re∞ = 12.53× 106)

Mesh A Mesh B Mesh C Mesh D Mesh E
Number of
mesh nodes

2.8× 106 4.8× 106 10.4× 106 27.3× 106 82.2× 106

y+ of the first
element

1.0 1.0 1.0 1.0 1.0

Number of
prism cells

35 35 35 35 35

Resolution in
vortex
regions

0.0006Cr 0.0042Cr 0.0025Cr 0.0018Cr 0.0012Cr

FIGURE 5.8: Mesh convergence study at α = 20◦ and β = 5◦ in DW1 using
URANS k−ω SST model (Ma∞ = 0.85 and Re∞ = 12.53× 106)
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5.2.3 Simulation setup

This subsection explains the numerical settings and boundary conditions used in the

delta-wing simulations.

Numerical schemes and boundary conditions

Similar to the cavity flow simulations, delta-wing simulations also employ a second-order

central scheme for spatial discretization with matrix dissipation schemes. The temporal

discretization has been achieved through a dual-time stepping approach, which uses

a second-order implicit method. One order of reduction in density residuals has been

achieved between the time steps in the computations. The initial and boundary conditions

for delta-wing flows are set similar to the procedure explained in section 5.1.3. The surfaces

of the delta-wing configurations are treated as no-slip walls.
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Chapter 6

Results of cavity flow

This chapter is organized into the following sections: Section 6.1 emphasizes the acceptable

tolerance range for the simulation results from analyzing the experimental data. Section

6.2 delves into examining the open-cavity configuration utilizing the SA-IDDES model.

The investigations of the SAS approach are detailed in section 6.3, which explores various

near-wall and turbulence treatments as part of an efficient turbulence-resolving approach

for cavity flows. The results are then compared with the results of the SA-IDDES model.

Having tested different simulation approaches on the configuration, section 6.4 focuses

on simulating the cavity under asymmetric flow conditions with the SAS-WR model to

examine the directional effects on resonant modes. The outcomes of these simulations are

presented and discussed. The results presented in this chapter include the flow conditions

of Ma∞ = 0.8 and Re∞ = 12× 106 and are published in articles [118, 110, 119].

6.1 FFT analysis of experimental data

Before conducting the simulations, data sampling effects to understand the impact of

signal length on FFT and RMS statistics are sought. In order to estimate this impact, a fun-

damental analysis of the raw data is performed. A total of 20.0s of pressure measurement

data is available for validating simulation results, which was divided into two groups:

one with 160 samples of 0.125s each and the other with 40 samples of 0.5s each. Fig. 6.1

illustrates the RMS pressure for both sample groups. In the 0.125s case, RMS deviation is

approximately 350 Pa near the front edge of the cavity (x/Lc = 0 to x/Lc = 0.2), increasing

to around 500 Pa near x/Lc = 0.9. Conversely, in the 0.5s case, RMS deviation is around

100 Pa near x/Lc = 0.2, rising to 350 Pa near x/Lc = 0.9. The FFT analysis of the two

sample groups reveals significant differences in amplitude levels. For the 0.125s sample

duration, amplitude levels vary by approximately 8− 9 dB/Hz, while for the 0.5s duration,

the variation reduces to around 4− 5 dB/Hz. This analysis highlights the importance
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(a) RMS pressure over the cavity ceiling for sample
groups 0.125s and 0.5s

(b) Pressure spectra for sample groups 0.125s and 0.5s

FIGURE 6.1: Data sampling effects showing the effect of signal length on RMS
pressure and pressure spectra in experimental data at Ma∞ = 0.8 [118]

of selecting signal sample sizes for validating simulation data. It underscores how the

choice of sample length directly impacts the accuracy of simulation results and offers

insights into the realistic accuracy levels achievable in simulations by acknowledging

the inherent uncertainty in experimental data. Allen et al. [33] conducted simulations

on the M219 cavity with an Lc/Dc ratio of 5.0 at a freestream Mach number (Ma∞) of

0.85, recommending a minimum sample length of 0.5s. Following the assessment of data

sampling effects, and given the similarity between the open-cavity configuration used in

this study and the M219 configuration, this recommendation of 0.5s sample duration is

aimed in the simulations, except in DES-WR simulation.

6.2 Investigations using the hybrid RANS-LES approach

In RANS simulations, using artificial dissipation in the central scheme is essential for

stabilizing the simulation. However, when dealing with scale-resolving simulations like

hybrid RANS/LES, it becomes crucial to minimize artificial dissipation to avoid excessive

damping of resolved turbulent structures. In addition to adopting low-dissipation settings,

employing a low-dispersive reconstruction in the skew-symmetric convective fluxes, as

described in [120], results in the LD2 (low-dissipation low-dispersion) scheme. This

approach can further improve the accuracy of scale-resolving simulations. In using such

a low-dissipation, low-dispersion scheme, a matrix artificial scheme was chosen for the

SA-IDDES model employing a wall-integrated approach, referred to as DES-WR in this

study, which has shown stability issues with potentially skewed cells near the door hinges

causing the trouble. In order to overcome stability issues, scalar dissipation has been

chosen in the wall-integrated SA-IDDES model. Subsequently, greater computational
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FIGURE 6.2: Time-averaged streamwise velocity contour at mid-plane y=0:
Ma∞ = 0.8 (top); Ma∞ = 1.2 (bottom) averaged over 0.125s [119]

robustness was achieved with a scalar dissipation scheme and their results under Mach

numbers Ma∞ = 0.8 and Ma∞ = 1.2 are shown in the article by Rajkumar et al. [119].

Fig. 6.2 shows the time-averaged streamwise velocity contours at midplane y=0 for

Ma∞ = 0.8 and Ma∞ = 1.2. It can be seen that the shear layer develops from the front

edge of the cavity wall and it impinges directly on the rear wall, which is an expected

behavior from the open cavity configuration. Flow structures which impinge on the

edge of the rear wall get either redirected inside the cavity or travel further downstream

depending on the angle of flow impingement on the rear wall edge. The flow structures

redirected inside the cavity form a large recirculation region. The negative contour levels

have been marked with dotted lines for better visibility of upstream traveling components.

The shear layer in Ma∞ = 1.2 deflects by a little margin into the cavity near the front edge.

In contrast, the shear layer in Ma∞ = 0.8 shows no such visible deflection, which makes

the recirculation region in the cavity of Ma∞ = 1.2 more slender than in Ma∞ = 0.8.

Fig. 6.3 shows the plot of root mean square (RMS) of pressure along the centerline of the

ceiling of the cavity compared with the measured data. The simulated RMS data fit the

experimental data reasonably well with a slight underprediction of values near 80% of

the cavity length. It is evident from the surface RMS pressure distribution on the right
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FIGURE 6.3: Comparison of the RMS pressure in Ma∞ = 0.8 and Ma∞ =
1.2 using DES-WR calculated with 0.125s of simulated time compared with

experiment along the ceiling at y = 0 [119]

TABLE 6.1: Frequencies of Rossiter modes in theory, experiment and DES-WR
at Ma∞ = 0.8 [119]

Ma∞ = 0.8 Ma∞ = 1.2

Mode Theory (Hz) Exp. DES-WR Theory Exp. DES-WR
1 263 272 266 352 352 345
2 670 755 752 896 888 856
3 1076 1160 1144 1440 1464 1444
4 1484 1600 1622 1985 2640 2533

of Fig. 6.3 that the pressure fluctuations are substantially higher in the second half of the

cavity than in the first half with maximum RMS values on the rear wall due to complex

interactions of shedding vortices with it.

Power spectral density (PSD) measures energy contained in the pressure signal as a

function of frequencies. Fig. 6.4 and 6.5 show the PSD spectra for some of the probe

locations along the cavity ceiling for Ma∞ = 0.8 and Ma∞ = 1.2, respectively. Tab. 6.1

shows the frequencies of the modes computed from the modified Rossiter model (Eq. 2.2),

measured data together with the simulation results. A Fast Fourier Transform (FFT) has

been performed based on Welch’s method to decompose the pressure fluctuations into

their frequency components. In DES-WR simulations, 0.125s of physical time has been

collected and processed for the FFT analysis using the Hamming window function with the

maximum offset length of FFT windows corresponding to the integral time scale computed
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FIGURE 6.4: SPL at probes L1 and L8 in Ma∞ = 0.8 using DES-WF processed
with 0.125s of sample data in comparison with measurement data

FIGURE 6.5: SPL at probes L1 and L8 in Ma∞ = 1.2 using DES-WF processed
with 0.125s of sample data in comparison with measurement data

through the autocorrelation function. For comparison with the experimental data, results

of the numerical simulations have been plotted together in Fig. 6.4 and 6.5. The lowest

frequency the simulated data can resolve is kept around 30Hz. The numerical simulations

agree with the modes and frequencies of the experimental results. At probe location L1,

the mode 1 has been captured well, with higher modes showing slight underprediction.

However, the frequencies have been predicted quite well in all the modes. At probe

location L8, which has higher modal amplitudes than L1, all the modes have been captured

well with moderate under-prediction in the spectral magnitudes. However, the relative

magnitudes between the modes are correctly captured. In Ma∞ = 1.2, the modal shapes

are captured quite well in the probe locations. It is evident from Tab. 6.1 that the increase

in Mach number has shifted the frequencies of the modes to higher frequencies, and the

numerical simulation has effectively captured this behavior. In particular, the distinct

modes appearing in the experimental data have been captured better than in Ma∞ = 0.8

case. As the frequencies increase, the Rossiter modes computed in the simulations slightly

shift to the left relative to the experimental data. The results are highly accurate since the

0.125s has an uncertainty range of 8− 9db/Hz in data sampling investigations (see section

6.1).
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6.2.1 Results of SA-IDDES model using wall function (DES-WF)

The wall-function technique helps mitigate skewed cells near door hinges and between

doors and cavity walls, improving simulation stability with the matrix dissipation scheme

and enhancing accuracy. The results obtained with these refined numerical settings are

compared with other simulation approaches in this study, notably different variants of the

SAS method. It also allows for a longer sample length of 0.5s, following recommendations

from prior open cavity-flow studies like Allen et al. [33]. Henceforth, we refer to the

simulation based on SA-IDDES using a wall-function approach as ’DES-WF’. Moreover,

the case of Ma∞ = 0.8 has been considered to investigate the DES-WF approach and

further approaches in the following sections.

Instantaneous and time-averaged features of flow field

The resolution of vortical structures is crucial to obtain the acoustic spectra reasonably.

At an instant, vortical structures in the shear layer and inside the cavity are shown in Fig.

6.6(a) for Ma∞ = 0.8. The ability to resolve those vortical structures is attributed to using

the SA-IDDES turbulence model. Due to proprietary reasons, only the relative magnitude

levels of contour values are presented, and the same is followed for all the results shown.

It can be seen that the vortical structures have a high magnitude of vorticity on the doors of

the cavity near the front wall. The evolution of a typical vortex structure in the shear layer

with time is that it develops from the front edge of the cavity and combines with other

turbulent structures as they are convected downstream and dissipate after impinging on

the rear wall of the cavity. On the impingement of the vortex structure on the rear wall, a

transverse traveling pressure wave is generated and travels upstream to reflect off on other

cavity walls [121]. Highly turbulent behavior is apparent on the downstream corner of the

cavity near the rear wall, with the redirected flow stream interacting with the oncoming

shear flow components (see Fig. 6.6(b)). A RANS model would not be able to capture these

behaviors in the cavity, which are the typical underlying physics of open-cavity flows.

Fig. 6.7(a) shows the RMS pressure distribution over the cavity walls and doors in Ma∞ =

0.8. Since the flow condition is symmetric, only half of the model is shown. It can be

observed that the pressure fluctuations increase gradually along the cavity length, with

significantly higher levels observed in the rear part of the cavity where the shear layer

impacts the cavity walls. A similar pattern is observed on the cavity doors. A line data

has been extracted along the centerline of the ceiling of the cavity and they have been

compared with the measured data (see Fig. 6.7(b)). Similar to the RMS pressure profile

of Ma∞ = 0.8 in DES-WR results shown in Fig. 6.3, the simulated RMS pressure fit the
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(a) Turbulent flow structures observed through Q-Criterion coloured by vorticity
magnitude

(b) Vorticity magnitude in plane y = 0 showing vortex shedding

FIGURE 6.6: Instantaneous features in Ma∞ = 0.8 using DES-WF

experimental data reasonably well with a slight underprediction of values near 80% of the

cavity length.

Fig. 6.8 shows the dynamics of the shear layer observed at the central plane y = 0 in

Ma∞ = 0.8. The extent and width of the shear layer have been observed through time-

averaged du/dz (see Fig. 6.8(a)). It is observed that the shear layer extends up to 50% of

the cavity length, which then loses its energy before it impinges on the rear wall. The

width of the shear layer is about 50% of the cavity depth. The resolved fluctuations u′w′ as

seen in Fig. 6.8(b) start to develop at the lip of the cavity and grow into the cavity, showing

increased levels of intensity in the second half of the cavity length. Along y = 0 and about

the height of the cavity lip, some turbulent spectral analyses have been carried out, and

one of them has been explained in Fig. 5.3.

Spectral analysis

In DES-WF, unsteady pressure data were collected in the probe locations L1− L8 for a

physical time of 0.5s corresponding to over 500 convective time units (CTU). A fast Fourier

transform (FFT) has been performed on the collected data based on Welch’s method
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(a) RMS pressure surface distribution over the cavity walls

(b) RMS surface pressure validation along the cavity ceiling ex-
tracted at y = 0

FIGURE 6.7: Comparison of RMS pressure predicted by experiment and DES-
WF in Ma∞ = 0.8
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(a) Width of shear layer visualised by the streamwise wall-normal velocity
gradient

(b) Resolved fluctuations along the shear layer observed through the
Reynolds stress u′w′

FIGURE 6.8: Shear layer dynamics observed at y = 0 in Ma∞ = 0.8 using
DES-WF

TABLE 6.2: Resonant modes prediction by Rossiter model, experiment and
DES-WF at Ma∞ = 0.8

Mode Theory Exp. DES-WF

1 263 272 278
2 670 755 722
3 1076 1160 1167
4 1484 1600 1611

to decompose the pressure data into its frequency components. The data have been

processed for the FFT analysis using the Hamming window function with the maximum

offset length of FFT windows corresponding to the integral time scale computed through

the autocorrelation function. The lowest frequency the simulated data can resolve is

around 40 Hz. The first four modal frequencies are listed in Tab. 6.2 for theoretically

computed modes from the modified Rossiter model (Eq. 2.2), measurement and DES-WF

simulation for Ma∞ = 0.8. It is observed that frequency prediction from DES-WF agrees

well with both the theoretical and measured frequencies, with a slight difference in mode

2 frequency.

The spectral comparison between measurement and simulation data at probe locations

L1 to L8 is depicted in Fig. 6.9. The comparison at L5 is omitted due to insufficient
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experimental data at that specific location. Overall, the spectral prediction aligns quite

well, although there are instances of mode 2 being over-predicted at probe locations in the

first half of the cavity.

In addition to the probe locations L1− L8 on the cavity ceiling, unsteady pressure data

have also been collected in plane y = 0 of the cavity at locations with a spatial resolution

of 0.02Lc in the streamwise direction and 0.04Dc in the transverse direction. FFT analysis

has been performed on all the data locations over the centre plane, and on each of the

locations, the amplitude of the first four resonance modes was identified and interpolated

to visualise the shape of the modes shown in Fig. 6.10. Rossiter mode 1 has a node in the

centre of the cavity, anti-nodes on both ends, and the front part is significantly overlayed

by the shear layer, which suppresses the mode with its broadband frequency ranging

between 150− 450 Hz. The higher-order Rossiter modes 2, 3 and 4 correspond to the

standing waves resulting from the organized vortical structures between the front and

rear walls of the cavity. It is also observed that the shear layer overlays the lip of the cavity

in all the modes. This result is consistent with the experimental findings by Wagner et

al. [20], which explains the relationship between the acoustic tones and flow structure in

transonic open cavity flow.

6.3 Investigations using the SAS approach

This subsection presents the performance of the different SAS variants, namely SAS-

WR, SAS-WF and SAS-F. SAS-WR implements the k-ω SST model with a wall-resolved

technique, while SAS-WF utilizes a wall-modelled technique. SAS-F, on the other hand,

leverages the forcing feature within SAS. Additionally, some of the flow details of the

cavity, such as the turbulent kinetic energy, vorticity magnitude and Reynolds stress, will

be presented, as well as the resolution capability of the turbulent structures of the different

simulation methods.

6.3.1 Prediction of SPL

Fig. 6.11 shows the FFT data of the experiment, DES-WF, SAS-WR, SAS-WF and SAS-F

simulations for the probe locations L2 and L8. 20.0s of experimental sample data have

been divided into 40 samples each containing 0.5 s. Each sample has been processed, and

its average FFT result is shown in Fig. 6.11 in black colour, with which the simulation

results are compared for validation. The Rossiter frequencies are captured extremely

well by the DES-WF, SAS-WR, and SAS-F simulations, while SAS-WF shows a trend in
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FIGURE 6.9: Comparison of cavity spectra at probe locations L1 − L8 in
Ma∞ = 0.8 using DES-WF with experiment
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FIGURE 6.10: SPL of the Rossiter modes in plane y = 0 in Ma∞ = 0.8 using
DES-WF with left-to-right flow and probe locations marked on the ceiling

(lack of data shown as white at the end of the cavity) [110]
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(a) Probe location L2 (b) Probe location L8

FIGURE 6.11: Comparion of SPL at probe location L2 and L8 in Ma∞ = 0.8
using DES-WF, SAS-WR, SAS-WF and SAS-F with measurement data [110]

mispredicting the higher modal frequencies. Regarding magnitude, at the probe location

L2, the mode 1 is predicted well by the DES-WF, SAS-WR and SAS-F simulations. Mode

2 is over-predicted significantly by the SAS-WF simulation, whereas mode 3 has been

captured well by all the simulations. In general, the SAS-WF simulation mispredicts the

modal amplitudes but shows the tendency to capture the frequencies and the DES-WF and

SAS-WR simulations. Modes 2, 3 and 4 are captured adequately well by SAS-WR, SAS-WF

and SAS-F simulations.

To summarize the spectral results, it is observed that the overall behavior of the simulations

is excellent in terms of frequency prediction. However, the magnitudes between the

simulations show noticeable differences. In particular, the SAS-WR and SAS-F simulations

fit the magnitude levels and the DES-WF simulations. The SAS-WF simulation shows

some promising trends in predicting the spectral distribution with scope for improvement

in its magnitude prediction capability, which has been achieved by applying the artificial

forcing method (i.e., SAS-F).

6.3.2 Prediction of RMS Pressure

Fig. 6.12 shows the plot of the RMS pressure along the centerline of the cavity ceiling

compared with the measured data. The predicted RMS pressure fits the experimental

data extremely well in the DES-WF and SAS-F simulations. In the SAS-WR simulation,

the predicted values fit the experimental data within the first third of the cavity length,

overpredict in the middle region and capture reasonably well towards the rear portion. In

the SAS-WF simulation, the RMS profile follows the trend of the DES-WF simulation quite

well but significantly overpredicts the values towards the regions of higher pressure RMS.

The overpredicting behavior of SAS-WF is also perceivable from the distribution of the
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FIGURE 6.12: Comparison of the RMS pressure in Ma∞ = 0.8 using DES-WF,
SAS-WR, SAS-WF and SAS-F with measurement data [110]

FIGURE 6.13: Comparison of resolved turbulent kinetic energy in Ma∞ = 0.8
using DES-WF, SAS-WR, SAS-WF and SAS-F [110]

resolved turbulent kinetic energy, as shown in Fig. 6.13. The reason for the over-prediction

in the SAS-WF simulation is related to the delayed production of resolved structures in the

shear layer. The activation of the QSAS term has been delayed, and, thereby, the shear-layer

breakup prediction shows a different behavior than the DES-WF simulation. This delayed

prediction of the shear layer has a consequent effect of higher fluctuation intensity over

the midsection of the cavity. The shear-layer breakup is considerably delayed compared

to both the DES-WF and SAS-WR simulations, and clearly, this has increased the scale

of the fluctuations by a significant margin in the second half of the cavity. In the SAS-F

simulation, the forced fluctuations near the lip of the cavity have led to a better prediction

capability of the resolved turbulence, and consequently, a better prediction of the RMS

pressure is achieved.
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FIGURE 6.14: Instantaneous vorticity magnitude in Ma∞ = 0.8 using DES-WF,
SAS-WR, SAS-WF and SAS-F [110]

6.3.3 Prediction of the turbulent Flow Field

Fig. 6.14 shows the characteristics of open cavity flows captured by all the simulations.

Vortices evolve in the shear layer and combine with other turbulent structures as they

are convected downstream. Then, they break into smaller structures after impinging on

the rear wall of the cavity. In SAS-F, the shear layer breaks down sooner, leading to a

vortex-shedding process due to the applied artificial forcing technique, an improvement

compared to the SAS-WF simulation. The flow structures shed from the front edge and

grow in size without abrupt changes outside the forcing zone as they move toward the rear

edge. Fig. 6.14 also shows the turbulence-resolving capability inside the cavity from the

DES-WF, SAS-WR, SAS-WF and SAS-F simulations. One can see the acceptable flow field

resolution from the DES-WF simulation, which is used as a reference to investigate the

capability of the other turbulence models. The SAS variants clearly do not show all of the

resolved scales seen in the DES-WF simulation since the scale-resolving ability of the SAS

model only becomes active when there are enough fluctuations. Therefore, the structures

are resolved in the shear layer and near the rear wall, where the shear layer impinges and

flows upstream. The fine-scale structures are less pronounced in the SAS-WF simulation

than in the SAS-WR simulation. The wall functions upstream of the wall do not produce

resolved structures, leading to visible differences. By enforcing fluctuations in the SAS-F

simulation, one can see a better prediction of the vorticity field in the shear layer, which is

closer to the DES-WF results.

The effect of the forcing term on the resolved turbulence in the SAS approach is also

visualized in Fig. 6.15. The profile of the resolved Reynolds stress from the DES-WF

simulation appears as a triangular region starting from the lip with the base of the cone

at the rear wall. The SAS-WR and SAS-WF simulations show the triangle’s apex delayed
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FIGURE 6.15: Distribution of the Reynolds stress u′w′ in Ma∞ = 0.8 using
DES-WF, SAS-WR, SAS-WF and SAS-F [110]

and extending less upstream than in the DES-WF simulation. Activation of the forced

fluctuation results in converting the model into resolved turbulent kinetic energy, and,

eventually, this aids in predicting the resolved fluctuations near the lip of the cavity as

well as the DES-WF simulation. Moreover, as a consequence of this process, one can see

the profiles of the Reynolds stress components downstream of the forcing zone closer to

those of the DES-WF simulation.

6.3.4 Investigation of QSAS and boundary-layer thicknesses

The contribution of QSAS has been studied to investigate the differences between the SAS

variants further. The only difference between the SAS-WR and SAS-WF (or SAS-F) meshes

is the number of prism layers close to the wall. The SAS-WR mesh has 35 prism layers

with a y+ value less than 1.0 for the first element, whereas the SAS-WF mesh has ten prism

layers with a y+ value greater than 100. It is noteworthy to investigate the source term of

the SAS model, QSAS, present in the different SAS variants. The QSAS represents a critical

element of triggering the model to allow the generation of resolved turbulence in SAS

simulations. As seen in Fig. 6.16, QSAS is generated strongly over a larger region in the

SAS-WR simulation, whereas, in the SAS-WF simulation, the region of QSAS presence is

limited. The most significant difference appears near the upstream wall of the cavity. The

usage of wall functions has rendered the SAS model to operate in URANS mode near the

upstream wall of the cavity, which has led to the differences in the resolved structures

inside the cavity. By contrast, the SAS-F model operates in resolving mode close to the front

edge of the cavity due to forcing-induced structures, which leads to a better prediction

of the shear-layer growth and its breakdown. Since the boundary-layer flow upstream of

the cavity is crucial in cavity flows, it has been analyzed at a distance 0.1Lc upstream of
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FIGURE 6.16: Source term QSAS in Ma∞ = 0.8 using SAS-WR, SAS-WF and
SAS-F [110]

FIGURE 6.17: Asymptotic near-wall profile (99% U∞) at a distance 0.1Lc
upstream of the cavity at plane y = 0 in Ma∞ = 0.8 using DES-WF, SAS-WR

and SAS-WF [110]

the cavity, and the shape factor (i.e., the ratio of displacement to momentum thickness)

has been determined as 1.24 in the case of DES-WF simulation, with the local Reynolds

number, Rex = 2.8× 106. The 99% thickness for the DES-WF reference case has been

found to be 0.06 Lx, which coincides with the SAS-WR prediction, with Lx representing

the distance of the local point from the leading edge of the cavity rig. Relative to the

DES-WF case, there is an overprediction of 5− 10% in the displacement and momentum

thicknesses in the SAS-WR simulation. The SAS-WF and SAS-F simulations predicted

20% more in the thicknesses, showing deviations of the shape factor as low as 3%. In

Fig. 6.17, the asymptotic near-wall flow profile at 0.1Lc distance upstream of the cavity

has been shown. It is noticed that as a result of RANS behavior close to the wall without

resolved structures, the thickness of the boundary layer based on the 99% U∞ measure in
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TABLE 6.3: Computational requirements relative to DES-WR [110] for Ma∞ =
0.8

DES-WF SAS-WR SAS-WF SAS-F
Number of outer iterations per time step 200 200 200 200
Physical time step size 1.5 × 10−6 7 × 10−6 7 × 10−6 7 × 10−6

Drop in ρ residual within one time step ∼O (102) ∼O (102) ∼O (102) ∼O (102)
Comp. cost reduction relative to DES-WR 50% 90% 95% 95%

SAS-WF simulation is larger than the thickness predicted by the DES-WF and SAS-WR

simulations. The boundary layer developed upstream of the cavity has an essential effect

on the growth of the shear layer. Most, if not all, of the eddy viscosity contained in the

boundary layer is transferred to the shear layer, making it more stable than in the DES-WF

and SAS-WR simulations. As seen in the SAS-WR simulation, this thicker shear layer with

higher turbulent energy content cannot break down sooner. The process of shear layer

breakdown is thereby delayed, as the shear layer contains most of the energy-carrying

eddies, and they do not dissipate enough energy. It leads to overprediction of energy

levels inside the cavity, as seen in Fig. 6.12.

6.3.5 Computational Time Requirements

Tab. 6.3 shows the time step size and computational cost reduction relative to the wall-

integrated SA-IDDES results (DES-WR). The number of outer iterations per time step

has been set to 200, which ensures a reduction in the density residual by two orders of

magnitude within a time step. It has been observed that time step size plays a major role

in the improvement of computational efficiency within the SAS variants, which allows for

a larger time step size due to the underlying RANS nature of the SAS model. The DES-WR

and DES-WF simulations are stringent regarding the time step size, and a higher CFL

number leads to the misprediction of spectral results.

6.4 Impact of Asymmetric Flow Conditions

A case of the sideslip study with β = 8◦ was simulated in order to study the effect of

asymmetric flow conditions on the presence of resonant modes. This subsection will show

the modulation effect of the sideslip angles on the measured spectral modes, including

the reliability of the SAS method under different flow conditions and the investigation

of lateral wall effects on the cavity flow features. The flow under sideslip conditions
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naturally involves more turbulent fluctuations than symmetric flow conditions, which aid

in activating the SAS mode. Therefore, the SAS-WR approach is a sufficient method for

the considered case. Since the forcing zone approach does not require additional interface

treatment, one could also use the SAS-F method for sideslip conditions without special

requirements for the case. It should be noted that the mesh created for the baseline case

of β = 0◦, which was optimized for flow aligned with the cavity walls, is also used for

the sideslip case. At β = 8◦, the change in flow direction may result in misalignment

between the flow features (such as vortices, shear layers, and recirculation zones) and the

mesh. This misalignment can affect the accuracy in capturing key flow characteristics,

especially in regions with high gradients, such as near the cavity lips and along the shear

layer. Additionally, the change in flow angle may cause cells to become skewed relative to

the incoming flow, particularly near the leading edge of the cavity. While mesh adaptation

techniques could be employed to mitigate these issues, the focus of this section is also to

test the generality of the original mesh under varying flow conditions. Therefore, the mesh

remains unchanged from that used for the straight flow case.

Fig. 6.18 shows the FFT spectrum of four probe locations along the cavity ceiling. The

general shape of the spectra occurring in all the probe locations has been predicted to

be in good agreement with the experimental data. The relative magnitudes between the

modes have also been predicted well. Mode 2 has been slightly under-predicted by the

simulation for all the probe locations. As the sideslip angle increases, the frequencies at

which the resonant modes occur decrease, and the modal amplitudes increase, which is

well captured by the simulation results. It has been shown in Section 6.3 that using wall

functions leads to stronger vortices in the shear layer and subsequent overprediction of

spectral amplitudes, although the spectral frequencies fit the experimental data well. It

suggests that the resonant frequencies are correlated to the interaction time scale between

the aerodynamic disturbances from the shear layer and upstream-traveling acoustic waves.

This interaction time scale is a direct consequence of the cavity length, as seen in the

Rossiter model for frequency estimation (Eq. 2.1). As the sideslip angle increases, the

interaction time scale between them also increases due to the skewed shear-layer flow

inside the cavity, and the frequencies at which the peaks occur decrease.

In addition to the flow structures shed from the front edge of the cavity, there are additional

structures from the edge of the windward-side door added to the shear layer marked by

the dashed circle in Fig. 6.19(a). The structures merge, and they enlarge in size while being

convected in the shear layer before impinging on the end of the leeward-side door and the

rear wall of the cavity. On impingement, the flow is redirected spanwise, flows upstream

and interacts with the oncoming shear layer. The spanwise recirculation can be seen with
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FIGURE 6.18: Measurement data and SPL predictions by SAS-WR at L1, L2,
L7 and L8 (from top left to right bottom) at Ma∞ = 0.8 with AoS = 0◦ and

AoS = 8◦[110]

the negative u-velocity marked with dotted lines in Fig. 6.19(b). The activation of the

resolving mode in the model is presented in Fig. 6.19(c), which shows the distribution of

the SAS source term QSAS. In the regions of higher values, the eddy viscosity is reduced,

and subsequently, the turbulence is resolved down to the underlying cell size.

The amplitudes of the first four resonance modes were determined, and their isosurfaces

are shown in Fig. 6.20 to identify the nature of the modes. It is observed that there is

a dominant longitudinal propagation of waves inside the cavity. In addition, there is a

contribution from spanwise propagating waves in the higher modes. Basically, mode

1 is governed by the bulk flow processes in the cavity, namely the shear layer and the

recirculation process. It is to be noted that the shear layer is skewed due to the presence of

the windward door. The resonance between these two large-scale mechanisms correlates

to mode 1 in the cavity. The contribution of skewed components of the shear layer

decreases as the mode number increases. Higher modes 2, 3 and 4 comprise gradually

less skewed shear-layer components that encounter the leeward wall, leading to spanwise

standing waves. Furthermore, in the streamwise direction, more nodes with shorter

wavelengths exist with an increasing mode number, or the wavenumber of the modes

becomes smaller with an increasing mode number. To summarize, mode 1 encompasses

the large-scale skewed dynamics of the shear layer. In contrast, the higher modes correlate
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(a) Flow structures observed through Q-criterion coloured by streamwise velocity

(b) Mean streamwise velocity in plane Z = 0.1 Dc

(c) Contribution of QSAS in plane Z = 0.1 Dc

FIGURE 6.19: Flow visualization at Ma∞ = 0.8 with AoS = 8◦ using SAS-WR
[110]
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to the shedding flow structures from the unskewed parts of the shear layer and have a

contribution from spanwise components initiated by the flow interaction on the leeward

side. This contribution results in an increase in modal amplitudes for asymmetric flow

conditions.
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FIGURE 6.20: Visualization of modes at Ma∞ = 0.8 with AoS = 8◦ using
SAS-WR observed through iso-surfaces of modes [110]
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Chapter 7

Results of leading-edge vortex on delta
wings

The flow conditions are characterized by Ma∞ = 0.85 and Re∞ = 12.53 × 106, along

with a side slip angle of β = 5°. The reader is directed to the work by Di Fabbio et

al. [81], which examines the simulation of the DW2 planform using various turbulence

models, comparing their performance across different chord-wise locations and local

surface pressure distributions. The study highlights the effectiveness of models like k−ω

SST and SAS in predicting aerodynamic coefficients compared to RANS models such

as SA-negRC. Building upon the insights gained from the modelling endeavors in the

study, this chapter explores the underlying physical dynamics within the flow fields,

particularly emphasizing vortex and shock behaviour and their transient characteristics,

responsible for the observed local surface pressure. The chapter is organized in that section

7.1 discusses the efficacy of simulation methods in terms of aerodynamic coefficients of

both the planforms, followed by preliminary visualizations of the flow field in section 7.2.

Subsequently, section 7.3 delves into physical phenomena such as shock-vortex interaction,

vortex-vortex interaction, and shock-buffet observed in the delta-wing planforms DW1

and DW2. Section 7.4 analyses the flow fields based on the entrophy transport equation,

which is then followed by detailed investigation of shock buffet at α = 20◦ in section 7.5.

7.1 Performance of simulation methods

The computations have been performed for various incidence angles, as shown in Fig.

7.1. The lift coefficients are well-predicted for both planforms. However, the simulation

for the DW2 planform does not predict the drop in lift by 18% between α = 20◦ and

α = 24◦. Due to the asymmetric flow and vortex breakdown at high incidence angles, the
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FIGURE 7.1: Aerodynamic coefficients of DW1 and DW2 - Experiment and
simulation models, namely the k−ω SST and SAS model at Ma∞ = 0.85 and

Re = 12.53× 106 with AoS = 5◦

moment coefficients exhibit more significant variations than the lift coefficient, making it

challenging to discuss them to validate the simulation results.

The rolling moment plot demonstrates the accuracy of the simulation results for both

planforms, which is in good agreement with the measurement data. Notably, the pre-

diction for the DW1 planform is highly accurate. The simulation captures an increase

of approximately 1.3 times the coefficient in DW2. The simulation results capture the

general trend of the pitching moment, although the absolute values slightly differ from

the experimental data.

At α = 20◦, both planforms show significant differences in the aerodynamic characteristics

due to shock and vortex breakdown. Therefore, this specific case has been analysed in

detail with SAS. It is important to note that, in general, SAS results at these incidence

angles exhibit better accuracy compared to the k−ω SST model for both planforms.

7.2 Visualization of the vortex system

The vortex system in the planforms has been discerned using the Q-Criterion, which serves

as the second invariant of ∂ui
∂xj

. It identifies vortices by prioritizing the vorticity magnitude
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over the strain-rate magnitude [122]. Mathematically, it is expressed as

Q =
1
2

(
‖Ω‖2 − ‖S‖2

)
> 0 . (7.1)

Here, Ω represents the vorticity tensor, derived as the anti-symmetric part of ∂ui
∂xj

, and the

strain-rate tensor Sij represents the symmetric part

Ωij =
1
2
(∂ui

∂xj
−

∂uj

∂xi

)
(7.2)

Sij =
1
2
(∂ui

∂xj
+

∂uj

∂xi

)
. (7.3)

Fig. 7.2 offers a detailed insight into the flow fields of DW1 and DW2, presenting transpar-

ent slices showcasing Q at varying angles of attack: 16◦ and 20◦. At α = 16◦ in DW1, the

inboard vortex (IBV) originates on both sides of the wing from the highly-swept leading-

edge section and progresses downstream. The IBV’s trajectory straightens and diverges

from the leading edge as the wing transitions to the medium-swept section. Concurrently,

the shear layer separates from the medium-swept leading edge, forming an additional

leading-edge vortex known as the midboard vortex (MBV). Both the IBV and MBV interact

downstream, moving towards the trailing edge. In DW2, IBVs on either side develop from

the levcon and highly-swept leading edge. Generally, on the windward side, the fusion

of the outboard vortex (OBV) with the MBV results in the MBV’s dissolution, while on

the leeward side, MBVs and OBVs interact and strengthen. At α = 20◦ in DW1, both

windward and leeward IBVs enlarge compared to their counterparts at α = 16◦. On the

windward side, the MBV exhibits significant spanwise motion, eventually rolling over the

IBV, whereas on the leeward side, the MBV interacts with the IBV, supporting its existence.

Notably, the windward IBV experiences breakdown, indicated by black dotted lines. In

DW2, the IBV expands considerably upstream compared to DW1 due to shocks generated

by the kink in its triple-delta wing planform. As a result of the IBV’s burst, the subsequent

MBV is diverted, preventing it from rolling over the IBV as observed in DW1. Generally, on

the windward side, the MBV surpasses the IBV without interaction, while on the leeward

side, the MBV interacts with the IBV, forming a stronger vortex system. The interaction

between MBVs and outboard vortices OBVs is more noticeable at low-incidence angles.

Conversely, the interaction between MBVs and inboard vortices (IBVs) becomes more

pronounced at high-incidence angles.

Fig. 7.3 showcases the vortex system at higher angles of attack, specifically 24◦ and 28◦. At

α = 24◦ in DW1, the windward IBV experiences upstream breakdown compared to the
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20◦ case, with no presence of MBV and OBV observed, while the leeward MBV rises and

expands in diameter. The OBV merges and interacts downstream with the IBV. No vortex

is generated in DW2 on the windward side. Generally, a distinct unwrapping pattern

becomes evident in the vortices, accompanied by increased vortex-core diameter as the

incidence angle rises. Moreover, vortices produced over the main wing (MBV and OBVs)

show diminishing presence in these high-incidence cases. Additionally, the flow field

reveals the formation of two prominent fuselage vortices, particularly at 20◦, 24◦, and 28◦.

Distribution of mean-Cp Development of vortex system in DW1 and DW2 discussed in

section 7.2 create suction pressure on their planforms, which helps in inducing additional

lift and moments. The mean-Cp coefficient at different incidence angles is presented in

Fig. 7.4. At α = 16◦, the suction footprint of both DW1 and DW2 look similar, with the

additional suction pressure region present over levcon in DW2. The formation of IBV is

fundamentally different between the planforms, which as a result, DW2 could show a

lesser suction effect than DW1. At α = 20◦, on the windward side, the suction footprints

significantly differ between DW1 and DW2 due to their difference in the vortex breakdown

characteristics, the cause of which will be discussed in section 7.3. DW1 shows a longer

suction profile compared to DW2. The suction effect due to the levcon surface is higher on

either side of the wings in α = 20◦ compared to α = 16◦. Moreover, on the leeward side,

the merged IBV and MBV create a higher suction pressure in α = 20◦ compared to α = 16◦

in DW1 and DW2 due to increase in vortex diameter as seen in Fig. 7.2. At α = 24◦ and

α = 28◦, DW1 displays a shortened suction footprint on the windward side compared to

lower incidence ranges due to the upstream presence of shock (see section 7.3), whereas

DW2 shows no suction pressure distribution on the windward side due to no production

of vortices as seen in Fig. 7.3. Reader is directed to the study conducted by Di Fabbio et

al. [81] for a comprehensive comparison of surface mean-Cp values predicted by various

turbulence models, including the k−ω SST and SAS models, against pressure-sensitive

paint (PSP) measurement data.

Formation of secondary vortices Strength of IBV affects the generation of secondary

vortices, which are formed outboard and underneath the IBV. At α = 16◦, the IBV of

DW1 exhibits twice the mach number compared to DW2 as presented in Fig. 7.5, which

shows 10 equidistant chord-wise slices. However, the levcon part of DW2 shows higher

axial velocity, which then drops considerably when the shear layer from the strake region

feeds and eventually forms an unstable IBV. The α = 16◦ case shows, in general, a "well-

organized" IBV generation in DW1 compared to DW2. The IBV leads to a secondary vortex
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FIGURE 7.2: Vortex system at α = 16◦ and 20◦ observed through volume
visualization of Q in DW1 (left) and DW2 (right) at Ma∞ = 0.85 and Re =

12.53× 106 with AoS = 5◦ using k−ω SST model
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FIGURE 7.3: Vortex system at α = 24◦ and 28◦ observed through volume
visualization of Q in DW1 (left) and DW2 (right) at Ma∞ = 0.85 and Re∞ =

12.53× 106 with AoS = 5◦ using k−ω SST model
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FIGURE 7.4: Mean-Cp at α = 16◦, 20◦, 24◦ and 28◦ from top to bottom in DW1
(left) and DW2 (right) at Ma∞ = 0.85 and Re∞ = 12.53× 106 with AoS = 5◦

using k−ω SST model
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FIGURE 7.5: Mach number and helicity at α = 16◦ in DW1 (left) and DW2
(right) at Ma∞ = 0.85 and Re∞ = 12.53× 106 with AoS = 5◦ using k−ω SST

model

outboard on both sides of the wings. The trajectory of the secondary vortex is marked by

a dotted line in Fig. 7.5. The secondary vortex sustains longer in DW1 than DW2 due to

stronger IBV in DW1, where it dissipates after the primary vortex is stopped to be fed by

the leading-edge shear layer. In general, the continued feeding of the shear layer to the IBV

and the proximity of IBV and MBV sustain the secondary vortex. Meanwhile, weak IBV

and the far proximity of the vortices could not sustain the secondary vortex and dissipate

quickly, as seen in DW2.
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7.3 Investigation of shock-vortex interaction

As the freestream conditions are transonic, local supersonic regions are produced over

the wing, which affects the vortex system. The occurrence of shocks at different incidence

angles in DW1 and DW2 are presented in Fig. 7.6. In DW1, at α = 16◦, normal shocks are

present in the rear section of the wing. The shock is seen to be interacting with the vortex

system, which does not show any breakdown. In the case of DW2, two normal shocks are

produced due to planforms, one in the front portion of the wing caused by the kink in the

planform and the other in the rear portion of the wing. In the shock near the front portion,

the shock protrudes in the front are marked in white dotted circles due to the higher local

vorticity and axial velocity in the vortex core. Despite the interaction with the shock, the

vortex systems in DW2 could also show a sustained presence over the wing without any

breakdown pattern. At α = 20◦, both the planforms show a fundamental change in the

cause of their respective vortex system. DW1 shows a transient case of IBV interacting

with the shock, causing its buffet and eventual breakdown of IBV, which will be discussed

in section 7.5. In DW2, the stationary kink-induced shock at the front part of the wing

causes the breakdown of windward-IBV. At α = 24◦, DW1 shows shocks are present more

upstream relative to α = 20◦. Meanwhile, in DW2, there is no shock on the windward

side due to the local subsonic regime, and shock is present only on the leeward side. At

α = 28◦, the shock system is more or less similar to the α = 24◦ case with a slight upstream

location of the shocks and VB’s position.

Variations in Shock strength For incompressible flows, at very low incidence angles,

FIGURE 7.7: Pressure ratio through IBV core
for α = 16◦, 20◦ and 24◦ in DW1 at Ma∞ =
0.85 and Re∞ = 12.53× 106 with AoS = 5◦

using k−ω SST model

the vortex-vortex interaction is weak, and an

increase of the incidence angle makes the inter-

action stronger before it becomes unstable at

very high angles of attack [67]. As the angle

of attack increases, the vortex starts to break

down because of the stronger adverse pressure

behind its core. As the angle of attack keeps

getting higher, the point where this breakdown

happens moves further towards the front of the

wing as shown in Fig. 7.2. In transonic flow con-

ditions, the flow field shows sudden changes

due to the presence of the shock. Moreover, the

interactions of the two vortices depend not only
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FIGURE 7.6: Vortex-shock interaction at α = 16◦, 20◦, 24◦ and 28◦ from top to
bottom observed by iso-surfaces ∂ρ/∂x and Q− Criterion and coloured by
Ma in DW1 (left) and DW2 (right) at Ma∞ = 0.85 and Re∞ = 12.53× 106 with

AoS = 5◦ using k−ω SST model
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on the state of the vortices but also on the posi-

tion and orientation of the shocks in the transonic case. At an angle of α = 20◦ and α = 24◦,

the vortex-breakdown point shifts further upstream compared to the α = 16◦ case. Fig. 7.7

shows the pressure ratio through the vortex-core for the angle of incidences 16◦, 20◦ and

24◦, where the values in text box represent pressure ratio through the shock. The study

has considered the shock strength based on the pressure ratio, and it is observed that as

the Mach number increases, the pressure ratio jumps across the shock waves increase.

Criteria for vortex breakdown In an extensive examination conducted by Deléry [57], the

study illustrates the relevance of various parameters in the context of vortex breakdown

caused by the interaction of shockwaves and vortices. These parameters include the swirl

and axial velocities of the vortex core. Deléry [57] suggests that the swirl ratio or the

Rossby number could indicate the vortex’s intensity and, consequently, its susceptibility

to shock-induced breakdown. The Rossby number, a dimensionless parameter, is the

axial to circumferential momentum ratio within a vortex. This investigation employs

both the maximum axial velocity at the vortex core, denoted as Uaxial, and the simplified

maximum in-plane y-velocity, denoted as UYmax, of the vortex. The relation defines the

Rossby number:

Ro =
Uaxial
UYmax

(7.4)

When a vortex encounters a normal shock, the swirl velocity remains relatively constant

while the axial velocity decreases, decreasing the Rossby number [123]. It corresponds

to an increase in vortex intensity, consequently raising the susceptibility of the vortex to

breakdown. Researchers, such as Spall et al. [124], and Robinson et al. [125], have explored

using the Rossby number as a criterion for breakdown. They have applied this criterion

to computational data from flow around slender delta wings and found that the critical

Rossby number falls between 0.9 and 1.4 in most cases. A stable vortex core is typically

observed for Rossby numbers above 1.4. The Rossby number was computed to address

this specific criterion. Fig. 7.8 shows the distribution of Rossby numbers for the IBV in

DW1 and DW2. On the leeward side, where the shock has a comparatively weak influence

on axial velocity, the Rossby number remains at elevated levels, indicating a stable range.

Consequently, the vortex displays a relatively low susceptibility to disturbances. In con-

trast, the shock system significantly affects axial velocity on the windward side, resulting

in a pronounced reduction of the Rossby number. It, in turn, amplifies the susceptibility of

the vortex to breakdown.
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FIGURE 7.8: Rossby number of IBV in DW1 and DW2 at α = 20◦ at Ma∞ =
0.85 and Re∞ = 12.53× 106 with AoS = 5◦ using k−ω SST model

7.4 Enstrophy transport equation

Eq. 7.5 represents the vorticity transport equation for the RANS averaged velocities,

illustrating the evolution of vorticity within a fluid flow. This equation is derived from

the modelled momentum equation and features effective viscosities. It showcases various

contributing factors influencing the vorticity field and consequent alterations in the velocity

field.

∂ωi

∂t
+ uk

∂ωi

∂xk
= ωk

∂ui

∂xk
− εijk

1
ρ2

∂ρ

∂xj

∂τkl
∂xl

+
εijk

ρ

∂2τkl
∂xjxl

−ωi
∂uk
∂xk

+
εijk

ρ2
∂ρ

∂xj

∂p
∂xk

(7.5)

In order to analyze the impact of different mechanisms on the strength of the vorticity

field and its influence on velocity changes, the enstrophy equation is derived from the

vorticity transport equation. The enstrophy equation, derived by multiplying both sides of

the vorticity transport equation by vorticity ωi, is expressed as follows [126]:
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= ωiωk
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1
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T2

+
εijkωi

ρ

∂2τkl
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−2
∂uk
∂xk
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+ εijk
ωi

ρ2
∂ρ

∂xj

∂p
∂xk︸ ︷︷ ︸

T5

.

(7.6)

Eq. 7.6 describes the enstrophy transport equation for the RANS averaged velocities.

The temporal derivative term on the left-hand side represents the local rate of change of

enstrophy concerning time. In contrast, the spatial derivative term represents the advection

of enstrophy by the velocity field. The terms on the right-hand side represent the changes

of enstrophy due to production from vortex stretching due to flow gradients (T1). T2

represents the cross product of two vectors, the vorticity and the viscosity torque. T3
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represents the joint influence of molecular diffusion and dissipation. T4 contributes to

enstrophy dissipation by accounting for the impact of dilatation. Meanwhile, T5 represents

the baroclinic torque resulting from the misalignment between pressure and density

gradients.

Fig. 7.9 illustrates enstrophy and its various contributing components in DW1 at α = 16◦

and α = 20◦ at equidistant chord-wise slices. Among the transport terms shown on the

right-hand side of Eq. 7.6, T2 and T3 contribute the least and thus are not shown. The

T1 contour values are displayed alongside the streamlines, depicting the regions with

the most negative T1 values. It indicates that at angles of α = 16◦ and α = 20◦, the

secondary vortices and MBV effectively dissipate enstrophy through vortex stretching on

the windward side.

However, there is a difference between the two incidence cases on the leeward side.

α = 20◦ features significant destruction due to the intersection of MBV and IBV, whereas

α = 16◦ shows no such effect. At α = 16◦, the magnitude of T4 observed in the IBV is

similar on both sides of the wing. However, the interaction between MBV and OBV on

the windward side shows high negative values marked by a dotted circle. It indicates that

MBV and OBV reduce vorticity strength through a dilatation process.

At α = 20◦ on the windward side, a shock causes the breakdown of the vortex, shown by

the most negative values in T4 marked by a dotted circle. Baroclinic effects are observed

on the MBV on the windward side for both incidence angles.

7.5 Detailed investigations of DW1 and DW2 at α = 20◦

The position of vortex breakdown displays oscillations, underscoring the transient nature

of aerodynamic behaviours in transonic conditions. Fig. 7.10 shows the Q-criterion

contours at different chord locations in DW1 and DW2. It reveals the location of the

breakdown position at α = 20◦. On the windward side, the flow rolls up at the start of

the leading edges. The breakdown of the vortex is far more downstream in DW1 than

in DW2. The vortices roll up and merge downstream on the leeward side of the wing.

Due to the broader spanwise width in W1, the vortex has more distance to flow spanwise

than in W2. In W2, the fuselage controls the spanwise flow, making the vortex more

concentrated. Whereas in W1, the vortex behavior is chaotic. It could lead to less swirl

strength of the vortex, making it more susceptible to vortex breakdown. In W2, shock

occurrence is delayed due to the stronger vortex development.
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FIGURE 7.9: Enstrophy transport terms for α = 16◦ (left) and α = 20◦ (right)
in DW1 at Ma∞ = 0.85 and Re∞ = 12.53× 106 with AoS = 5◦ using k− ω

SST model
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FIGURE 7.10: Vortex topology at α = 20◦ in DW1 (left) and DW2 (right)
Ma∞ = 0.85 and Re∞ = 12.53× 106 with AoS = 5◦ using k−ω SST model

The trajectories of IBV and MBV on the planforms, shown in Fig. 7.11 have been identified

with the maximum x-vorticity. In DW2, the IBV develops close to the fuselage on the

windward side, whereas MBV starts from the third-leading edge. On the leeward side,

the IBV develops close to the fuselage and continues until the IBV merges with the MBV.

The IBV on the windward side of DW2 undergoes deformation due to the shock, which

significantly deteriorates the vortex strength. Downstream of the deformation, the unstable

vortex could still be fed by the shear layer from the second leading edge. In DW1, such

deformation is not present and continues to grow stronger with the downstream convection

of the vortex. The vortex breakdown is characterized by a sudden drop in the vortex-core

axis before the merging could happen on the windward side of DW1. On the leeward side,

the merging of IBV and MBV happens on both the planforms, although the spiraling of

IBV over MBV is more evident in DW2 than DW1.

Mach number and pressure coefficient have been plotted in the vortex cores in Fig. 7.12 for

α = 20◦. DW1 features a steady Ma of 1.5 in the vortex core, whereas DW2, after showing

the highest values in Ma of 3.0 over levcon, drops to 1.0 downstream. A similar trend is

observed in the leeward sides, where a steady Ma of 1.5 is observed in DW1 and 1.0 in

DW2 after the initial highest values of 2.5 over the levcon. The vortex breakdown positions

are accompanied by a decrease in Ma and an increase in pressure coefficient, which is

observed in the windward IBVs.
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FIGURE 7.11: Trajectories of MBV and IBV at α = 20◦ in DW1 (left) and DW2
(right) Ma∞ = 0.85 and Re∞ = 12.53× 106 with AoS = 5◦ using k− ω SST

model

FIGURE 7.12: Vortex-core properties at α = 20 in DW1 and DW2 Ma∞ = 0.85
and Re∞ = 12.53× 106 with AoS = 5◦ using k−ω SST model



7.5. Detailed investigations of DW1 and DW2 at α = 20◦ 107

(a) 3D visualization of the lambda-shock: Iso-surfaces
of Q− criterion and ∂ρ/dx colored by Ma

(b) Visualization of the Lambda-shock by ∂ρ/dx on a
slice plane normal to span

FIGURE 7.13: Time-averaged lambda-shock in DW1 at α = 20◦ Ma∞ = 0.85
and Re∞ = 12.53× 106 with AoS = 5◦ using k−ω SST model

Shock bifurcation and buffeting Fig. 7.13 presents a visual representation of the lambda-

shock phenomenon observed over DW1 at α = 20◦. After reaching supersonic conditions

over the wing, a normal shock A is created above a certain distance from the vortex region.

However, close to the wing’s surface, where the IBV interacts with the normal shock, the

shock bulges upstream and manifests as an oblique shock B within the bulged portion of

the shockwave. A similar bulging of a normal shock near the vortex core was observed

in reference [127], which numerically investigates the interaction of a longitudinal vortex

with a shock wave. Unlike normal shocks, oblique shock B does not bring the supersonic

flow state back to a subsonic state immediately. Instead, it alters the flow’s direction while

retaining its supersonic state. The shock D finally brings the flow back to a subsonic

state. There is a weak shock C in the supersonic regime between shocks B and D. Fig.

7.13(b) represents the observed lambda-shock at an inclined plane parallel to the local flow

velocity. The visualization plane has been chosen accordingly to observe the lambda shock,

which interacts with the vortex core of the IBV.

The non-dimensional frequency (St = f Cr/U∞) of the shock and vortex breakdown

oscillation is approximately 0.14. Fig. 7.14 illustrates the oscillation of the pitching moment

due to the buffet for over 25 cycles due to the presence of a shock-buffet over the wing.

During the buffet, the bulged portion of the shock (oblique part) oscillates between the

chord positions x/L = 0.4 and 0.5. The buffet phenomenon may occur from the oscillation

of vortex breakdown itself, whose non-dimensional frequency is observed to be around

St = 0.1 by Menke et al. [61] or when the shock interacts with the surface, deflecting the

boundary layer and altering the flow downstream of the shock. This alteration prompts

the shock to readjust by moving upstream.
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Selected flow states of the oscillation are shown in Fig. 7.15 to illustrate the evolution of

the lambda-shock, with the corresponding instances marked in Fig. 7.14. One can observe

a multitude of shocks over the wing. At state 1, a normal shock is created, recovering the

flow to a subsonic state. At state 2, as the normal shock moves downstream, it weakens,

with higher downstream velocity than state 1. At state 3, this normal shock undergoes

bifurcation, indicating the creation of an oblique shock. Also, at this state, the shock-

affected boundary layer starts to shed vortices downstream close to the wing’s surface. At

state 4, one can observe the presence of multiple weak shocks in the supersonic region.

Until state 6, the shedding of shock-induced boundary layer vortices leads to the high-

frequency oscillation of the lambda-shock, whose lifetime is longer than the low-frequency

buffet of the normal shock prior to the formation of the lambda-shock in state 1. It needs

to be noted that the shock-induced boundary layer vortices appear from state 3 onwards,

indicating that the lambda shock causes them. Additionally, the transient aspect of the VB

indicates that the lambda-shock could adapt to the VB’s dynamics, leading to its buffeting.

We note that the shock triggers the breakdown of IBV, yet the shifting position of the VB

induces an adjustment in the shock, causing a buffeting mechanism.

In DW2, shock buffeting does not occur, and the shock induced by the kink causes the

breakdown of the IBV further upstream, as observed in section 7.2. However, as the

IBV undergoes breakdown, the airflow over the strake contributes to sustaining the IBV

undergoing breakdown for slightly longer (see Fig. 7.16(a)). Notably, the lambda shock

near the apex of the wing in DW2 remains stationary, as visualized in Fig. 7.16(b).

It appears that the position of vortex breakdown is determined by the balance between

vorticity strength and shock strength [127]. Fig. 7.17 shows the x-vorticity and y-vorticity

in the plane of the vortex core for both planforms. In both planforms, vortex breakdown

is characterized by a vortex-core expansion. The shock in DW2 distorts the vortex axis,

triggering vortex breakdown due to this distortion. As expected, the shock effect on y-

vorticity is more substantial than on x-vorticity, causing significant changes in the pre-and

post-shock regions.
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FIGURE 7.14: Quasi-periodic oscillation of Cmy in DW1 at Ma∞ = 0.85 and
Re∞ = 12.53× 106 with AoS = 5◦ using SAS model

FIGURE 7.15: Evolution of lambda-shock observed through quasi-periodic
states of shock buffet in DW1 Ma∞ = 0.85 and Re∞ = 12.53 × 106 with

AoS = 5◦ using SAS model
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(a) Weakening and recovery of IBV

(b) Position of lambda-shock

FIGURE 7.16: Influence of lambda-shock at α = 20◦ in DW2 at Ma∞ = 0.85
and Re∞ = 12.53× 106 with AoS = 5◦ using k−ω SST model

FIGURE 7.17: Mean x and y vorticity at α = 20◦ in DW1 (left) and DW2 (right)
at Ma∞ = 0.85 and Re∞ = 12.53× 106 with AoS = 5◦ using k−ω SST model
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Chapter 8

Summary and Outlook

8.1 Cavity flows

The effect of choosing different window lengths to quantify the uncertainty in the res-

onating cavity flows is studied in the experimental data. This quantification is considered

necessary to validate the simulation cases (see section. 6.1). Upon quantifying the uncer-

tainty, the open-cavity configuration with sidewise doors has been studied numerically

with various simulation methodologies and turbulence models. These include the SA-

IDDES model with the integrated wall (DES-WR), SA-IDDDES model employing wall

functions (DES-WF), and SAS with wall-resolved (SAS-WR), using wall functions (SAS-

WF), and applying forcing (SAS-F) under transonic flow conditions at Ma∞ = 0.8 and

Re∞ = 12× 106.

Initially, the objective was to find a reference solution to judge the performance of the

SAS model. Therefore, as a preliminary study, DES-WR was employed for the cavity

flows, where 0.125s of sample length was used to perform FFT analysis. It showed that

the model can predict the modes quite well, although costly and noisy (see section 6.2). It

was observed that the DES-WR encountered stability problems due to potentially skewed

cells near door hinges. In order to fix these stability issues, scalar dissipation, which is

generally more dissipative, was employed.

Another strategy is the adoption of the wall-function technique in DES-WF as illustrated

in section 6.2.1, which aids in alleviating issues arising from skewed cells near door hinges

and between doors and cavity walls, thereby enhancing simulation stability when using

the matrix dissipation scheme. Additionally, the wall-function technique enables a longer

sample length of 0.5s, which is generally suggested in the transonic cavity flows, such as

in the study by Allen et al. [33]. Therefore, the current study uses the results of DES-WF as

a reference and compares results obtained with these refined numerical settings to those
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from various simulation approaches, notably different variants of the SAS method. DES-

WF reduced the computational cost by almost 50% compared to DES-WR. The visualisation

of the cavity modes helped identify the correlation of the Rossiter modes with the flow

processes in detail. The streamwise dominant modes were observed under straight flow

conditions. Mode 1 correlates to the oscillation of the shear layer, whereas higher modes

correlate to the coherent flow structures of the cavity. It is also observed generally that

under higher spatial and time-step sizes, the magnitudes of the modes are over-predicted,

while the frequency prediction remains accurate.

Investigations into SAS models were successful as they could predict the cavity spectra

with 95% computational efficiency compared to the wall-resolved DES model, as explained

in section 6.3. A mesh convergence study was conducted to find an appropriate mesh

for the SAS-WR model. The boundary layer profile upstream of the cavity has been

compared with the DES-WF results, and simulation data have been collected along the

probe locations. Due to high unsteady fluctuations in the shear layer, the structures were

resolved through the source term QSAS and this led to good prediction of the spectral

magnitudes. When WF is combined with the SAS model, the modal magnitudes are

over-predicted due to very strong vortical structures inside the cavity. Wall function had

made the flow quasi-steady in the near-wall regions upstream of the cavity, which resulted

in larger eddies with higher eddy viscosity levels that were too strong to break down

flowing into the cavity.

To overcome the issue with SAS-WF, a forcing feature has been used instead to force

fluctuations to convert modelled turbulent kinetic energy to resolved turbulent kinetic

energy. It resulted in better prediction of the modal magnitudes as good as the SAS-WR

and DES-WF models. In addition, the shear layer, vorticity levels, and Reynolds stresses

predicted were good and in agreement with the DES-WF results.

Furthermore, the mechanism behind the Rossiter modes under sideslip conditions and

their modulations has been discussed in section 6.4. It has been shown using isosurfaces

of the modes that a significantly higher interference of waves occurs in a highly three-

dimensional manner between the walls of the cavity. Mode 1 results from the skewed

shear-layer dynamics, and higher modes contain less skewed shear-layer contents along

with spanwise reflecting waves. In addition to the streamwise waves, a significant wave

interference occurs in the spanwise direction due to the flow impingement on the leeward

door. It is beyond the scope of this work to show the performance of SAS-F for sideslip

conditions. However, it would be worth investigating its performance under skewed flow

behaviour concerning the front edge of the cavity. Moreover, additional flow cases with

asymmetric flow conditions would reveal more significant 3D effects in the cavity.
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Overall, it has been proven that all three SAS variants can capture the Rossiter frequen-

cies well, except for a marginal overprediction of spectral magnitudes by the SAS-WF

simulation. The reason for the overprediction behaviour in the SAS-WF simulation has

been investigated with the boundary layer profile and the resolved fluctuations inside the

cavity. The commonalities and differences between SAS and SAS-WF simulations were

investigated and outlined using the QSAS and vorticity fields. The overprediction has

been investigated and identified as caused by the lack of resolved turbulence inside the

cavity. The artificial forcing technique has been employed to overcome the problem of the

URANS regions in the SAS-WF simulation. Regarding computational requirements, the

DES-WF and SAS-WR simulations are estimated to be around 50% and 90% cheaper than

DES-WR, respectively. In contrast, the SAS-WF and SAS-F simulations are almost twice as

fast as the SAS-WR simulation.

It is important to highlight that SAS-F necessitates meticulous numerical configuration, as

it involves making engineering judgments regarding the dimensions of the forcing zone.

In this research, half the cavity length was employed as the length of the forcing zone.

Furthermore, initial experimentation involving variations in the dimensions of the forcing

zone showed no notable deviation concerning cavity spectra. However, these variations

could affect the RMS pressure distribution of the cavity walls where the forcing zone ends

spanwise.

8.2 Leading-edge vortex on delta wings

Regarding leading-edge vortices on delta wings, article presents a comprehensive numeri-

cal study of double- and triple-delta wing planforms under transonic flow conditions in

leading-edge vortical flows. The flow characteristics include a Mach number (Ma∞) of

0.85 and a Reynolds number (Re∞) of 12.53× 106, accompanied by a sideslip angle (β) of

5°. The turbulence models, namely the k−ω SST and SAS model accurately predict the

lift, with the pitching moment being more sensitive to the location of vortex breakdown.

It underscores the challenges in precisely capturing vortex breakdown in transonic flow

conditions (see section 7.1).

The vortex topology of the planforms under different angles of attack has been observed

in section 7.2. Typically, the MBV tends to roll over the IBV without any significant

interaction on the windward side. However, on the leeward side, a noticeable interaction

between the MBV and the IBV forms a more robust vortex system. At low angles of

incidence (α = 16◦ and 20◦), the interaction between MBVs and outboard vortices (OBVs)
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is more pronounced. Conversely, at high angles of incidence (α = 24◦ and 28◦), the

interaction between MBVs and IBVs becomes more evident, as seen in Fig. 7.2 and 7.3.

Typically, a noticeable unwrapping pattern emerges within the vortices, coupled with an

enlargement of the vortex core diameter as the angle of incidence increases. Furthermore,

vortices generated over the main wing (MBV and OBVs) exhibit reduced prominence in

high-incidence cases.

On the double-delta wing, at a low incidence angle of 16◦, the IBV and MBV develop

and sustain the shock without breaking down due to very strong concentrated vortex

development. At higher incidence angles of 20◦, strong interaction between the IBV

and MBV on the windward side and the shock leads to subsequent breakdown. At this

incidence angle, the triple-delta wing features a shock, causing IBV to break down more

upstream due to its less stable character.

The enstrophy analysis (see section 7.4) of DW1 at α = 16◦ and α = 20◦ reveals distinct

characteristics in vortex dynamics. At α = 16◦, the interaction between the secondary

vortices and MBV dissipates enstrophy through vortex stretching on the windward side,

with minimal impact on the leeward side. Conversely, at α = 20◦, significant destruction

occurs on the leeward side due to the intersection of MBV and IBV. The dilatation process,

mainly observed through the dilation term of the enstrophy transport equation, highlights

the reduction of vorticity strength in the MBV and OBV on the windward side. Addi-

tionally, at α = 20◦, the shock induces vortex breakdown primarily in the MBV on the

windward side, and baroclinic effects are observed in the MBV on the windward side for

both incidence angles.

Furthermore, a fundamental difference arises between the double-delta and triple-delta

wings in their response to vortex breakdown and shock buffet at α = 20◦, which is

illustrated in section 7.5. The analysis highlights that the double-delta wing undergoes

shock-induced vortex breakdown, and the transient nature of this breakdown prompts

adjustments in the shock position, resulting in a shock buffet. Conversely, the breakdown

in the triple-delta wing is associated with a stationary shock induced by the kink in the

planform. The SAS model reveals a quasi-periodic oscillation of the pitching moment,

offering a detailed visualisation of the lambda-shock evolution. This observation unveils

the causal relationship between shock buffet and vortex breakdown. Examining the

dilatation term in the enstrophy transport equation clarifies that the lambda-shock drives

vortex breakdown in the double-delta wing. These findings underscore the intricate

interplay between shock-induced effects and vortex dynamics, shedding light on the

complex aerodynamic behaviour of the planforms. It is observed that the orientation of the

lambda-shock in triple-delta wing planforms is determined by the sweep angle φ1 of the
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levcon surface (see Fig. 5.6). This angle directly influences the strength of the shock over

the wing apex, consequently affecting the inboard boundary vortex (IBV) and subsequent

vortices. A parametric study focusing on swirl strength and φ1 as an initial step could help

reduce IBV susceptibility to breakdown.
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Chapter 9

Publications

This chapter provides a comprehensive list of articles and contributions published during

the course of this work.

9.1 Journals

• K. Rajkumar, E. Tangermann, M. Klein, S. Ketterl and A. Winkler. "Time-efficient

Simulations of Fighter Aircraft Weapon Bay." CEAS Aeronautical Journal, January

2023.

• K. Rajkumar, E. Tangermann and M. Klein. "Efficient Scale-Resolving Simulations of

Open Cavity Flows for Straight and Sideslip Conditions." Fluids, Vol. 8, August 2023.

• K. Rajkumar, T. Di Fabbio, E. Tangermann and M. Klein. "Physical Aspects of

Vortex-Shock Dynamics in Delta-Wing Configurations." Physics of fluids, 2024.

• T. Di Fabbio, K. Rajkumar, E. Tangermann and M. Klein. "Towards the Under-

standing of Vortex Breakdown for Improved RANS Turbulence Modeling." Aerospace
Science and Technology, 2024.

9.2 Book Chapter

• K. Rajkumar, E. Tangermann and M. Klein. "DES of Weapon Bay in Fighter Aircraft

Under High-Subsonic and Supersonic Conditions." In: Notes on Numerical Fluid
Mechanics and Multidisciplinary Design, Vol. 151, 2021.
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9.3 Conferences

• K. Rajkumar, E. Tangermann, M. Klein, S. Ketterl and A. Winkler. "Time-efficient

Simulations of Fighter Aircraft Weapon Bay." Presented at Aerospace Europe Conference,

Poland, 2021.

• K. Rajkumar, E. Tangermann and M. Klein. "Towards High Fidelity Weapon Bay

Simulations at Affordable Computational Cost." Presented at AIAA Aviation Forum,

Chicago, 2022.

• K. Rajkumar, E. Tangermann, J. Radtke and M. Klein. "Open Cavity Simulations

Under Sideslip Conditions." Presented at Congress of the International Council of the
Aeronautical Sciences, Stockholm, 2022.
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Chapter 10

Appendices

Spectral analysis Power spectral density (PSD) is a measure of energy contained in the

pressure signal as a function of frequencies. In statistical signal processing, spectral density

estimation involves the process of deducing the spectral density, also referred to as power

spectral density, of a stochastic signal. This is accomplished by analyzing a sequence of

temporal signal samples. Fundamentally, the spectral density encapsulates the frequency

composition of the signal. The objective of estimating it is to identify potential periodic

patterns within the data, observed as heightened peaks corresponding to these specific

frequencies. In this study, the PSD is employed for analyzing the frequency characteristics

of a signal at a specific point, derived from the fluctuating pressure (p′ = p− p). If T
is a total length of signal in s, then Tf f t = T/5 is chosen as a FFT window length. Then,

1/Tf f t is the frequency resolution and minimum frequency that the FFT can resolve and

1/(2×∆T) is the maximum frequency that the FFT can resolve. It is often useful to express

the power spectral density in dB relative to Pre f = 2 × 10−5. Fig. 10.1 shows FFT of

Ma∞ = 1.2 predicted by SAS-WR compared with the experiment data.

SPL( f ) = 10log10(
PSD( f )

P2
re f

) (10.1)
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FIGURE 10.1: Prediction of RMS pressure and cavity modes by SAS-WR in
Ma∞ = 1.2
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