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A B S T R A C T

The advent of additive manufacturing has profoundly transformed component production. However, anisotropic
structural behaviour is frequently observed in additively manufactured components, despite the isotropic
nature of the constituent materials. This behaviour can be attributed to the manufacturing process, which
involves the extrusion and deposition of individual material paths or the powder-based melting of such paths.
For example, fused deposition modelling is a common technique employed in the production of polymer
components. Technological advancements have enabled the use of fibre reinforcement, which can further
amplify anisotropic material behaviour.

Several computational models and approaches have been proposed for simulating and optimising additively
manufactured components treated as an anisotropic continuum. Current methods rely on a finite element
discretisation of the continuum, where the print paths are assumed to be linear within a finite element.
However, since the print paths are essentially arbitrary curves, a fine discretisation is necessary to achieve
realistic simulations.

In this work, we propose a curvilinear local approach, where the print paths at the element level are
considered to be curvilinear. The fineness of the mesh used in this concept depends solely on the stress
gradients that need to be resolved. Furthermore, curvilinear print paths represent the coordinate lines used
to describe anisotropy. As a result, the solution to the balance of linear momentum occurs within the local
curvilinear coordinate system. This paper presents the implementation of this approach within the finite
element method, using an exemplary boundary value problem.
1. Introduction

The field of additive manufacturing is experiencing a notable surge
n prominence as a production technology across a diverse array of

industrial sectors, particularly due to its capacity to generate intricate
structural designs. Among the various additive manufacturing technolo-
gies, the material extrusion process has become the most established.

he application is straightforward, the technology is relatively uncom-
licated, the process is economically viable, and a diverse range of
aterials is available. The high degree of design freedom afforded by

xtrusion processes, when considered alongside their economic acces-
ibility and the availability of high-performance materials, makes them
he optimal choice for producing lightweight structures created through
opology optimisation (cf. Lachmeyer et al., 2016). Fused deposition
odelling represents a specific form of the extrusion process, whereby

hermoplastic filament is applied in a layer-by-layer manner (cf. VDI
405, 2014). Unlike other additive manufacturing processes, such as
aser sintering or stereolithography, fused deposition modelling (FDM)

∗ Corresponding author.
E-mail address: bruno.musil@unibw.de (B. Musil).

enables the alignment of materials at the local level with a high degree
of precision (cf. Parandoush and Lin, 2017). This local alignment results
in material anisotropy (cf. Kafle et al., 2021, Kiendl and Gao, 2020).
The use of fibre-reinforced filaments can further amplify the anisotropic
effects (cf. Klingenbeck et al., 2024, Witzgall et al., 2022). In the
FDM process, over 90% of the fibres are aligned in the direction of
extrusion (cf. Tekinalp et al., 2014). A variety of optimisation tech-
niques have been developed for the load-optimised design of print
paths (cf. Fang et al., 2024, Fernandez et al., 2019, 2021, Murugan
et al., 2022b,a), which is particularly important for the additive man-
ufacturing of topology-optimised lightweight structures (cf. Voelkl and
Wartzack, 2021). The print paths are represented by arbitrary curves
and are thus not straight in general but exhibit curvature within the
printed layer. It is crucial to note that the anisotropic structural-
mechanical behaviour of additively manufactured components depends
on several factors, particularly the selection of an appropriate domain
in which the anisotropy can be characterised. The curvature of the print
ttps://doi.org/10.1016/j.euromechsol.2024.105501
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Fig. 1. Additively manufactured planar domain. Left: local approach; Right: global
approach.

paths and the position of the domain within the component also have
a substantial influence.

In the aforementioned publications, where anisotropic behaviour is
simulated, the so-called ‘‘global approach’’ is employed, reflecting the
current state of the art. Fig. 1 depicts a domain that has been additively
manufactured using curved paths. In this illustration, the density of
the print paths is decreased. To apply the global approach, it is first
ecessary to subdivide the domain into smaller elements, as illustrated
n Fig. 1 on the right. In the context of an element, a straight print
ath with an orthonormal base system 𝐞∗𝑖 is assumed in principle. This
llows for the consideration of orthotropic material behaviour within
he aforementioned base system. The material properties are then
ransformed into the global Cartesian coordinate system 𝑋𝑖, where the
overning equations are also solved. To simulate anisotropic material
ehaviour accurately, a very fine discretisation using finite elements is
equired, particularly for larger curvatures of the print paths.

To reduce the computational effort, it is possible to use only one
lement to discretise the domain rather than 16 elements as illustrated

in Fig. 1. The print paths directly represent the coordinate lines 𝑄𝛼

of a curvilinear coordinate system in which the anisotropy is de-
scribed. The space-dependent covariant basis vectors �⃗�𝛼 are associated
with this coordinate system. Furthermore, the governing equations are
solved within the local curvilinear coordinate system. This idea, the
so-called ‘‘local approach’’, is presented in detail within this paper, and
a corresponding finite element formulation is developed.

In the context of the finite element method, Javili et al. (2014)
and Valle et al. (2019) conducted an investigation into the utilisa-
ion of curvilinear coordinates and the formulation of curved finite
lements. Cinefra (2022) developed a curved finite element, which
epresents a generalisation of the classical shell elements and allows
or the possibility of curvature in the third direction. The strains were
erived in the local curvilinear reference frame, analogous to the
ethodology employed in the present work. In the aforementioned

tudies, a methodology for the development of curved finite elements
s presented, wherein the mesh geometry is assumed to be curved. The
otivation for developing the element presented here is the application

f the aforementioned ‘‘local approach’’ in the context of additively
anufactured components. It is crucial that the meshing of the com-
onent geometry occurs independently of the underlying print paths,
hich is why the element does not necessitate curvilinear boundaries.
onsequently, the meshing is conducted in the Cartesian coordinate
ystem, while the physical description of the anisotropic continuum
nd the solution of the governing equations are performed in a curved
onfiguration.
2 
2. Fundamentals of the elasticity theory in curvilinear coordinates

This section briefly summarises the fundamentals of elasticity theory
in curvilinear coordinates and derives certain continuum mechani-
cal quantities that are relevant to this work. A detailed description
and derivation of the theory can be found in the relevant literature
(see Betten, 1987, Irgens, 2008; Irgens et al., 2019, Itskov et al.,
2007, Klingbeil, 1966).

To describe the general motion of a deformable body in space, a
set of Cartesian coordinates is defined for both the reference configura-
tion, represented by the coordinates 𝑋𝑖, and the current configuration,
represented by the coordinates 𝑥𝑖. The Cartesian coordinates of a

aterial point in Euclidean space correspond to the components of the
ssociated position vector of the same material point, represented as:
⃗ = �⃗�(𝑋𝑖)

�⃗� = �⃗�(𝑥𝑖) .
(1)

t should be noted that in the case of mathematical description using the
urvilinear coordinates of the reference configuration 𝑄𝛼 or the current
onfiguration 𝑞𝛼 , the components of the position vector
⃗ = �⃗�(𝑄𝛼)

�⃗� = �⃗�(𝑞𝛼)
(2)

o not correspond to the curvilinear coordinates of the material point
nd the following applies
⃗ = 𝑋𝛼 �⃗�𝛼 = 𝑋𝛼 �⃗�𝛼 = 𝑋𝑖 𝐞𝑖
�⃗� = 𝑥𝛼 �⃗�𝛼 = 𝑥𝛼 �⃗�𝛼 = 𝑥𝑖 𝐞𝑖 .

(3)

ere, �⃗�𝛼 and �⃗�𝛼 are the co- and contravariant basis vectors of the
eference configuration, �⃗�𝛼 and �⃗�𝛼 are the co- and contravariant basis
ectors of the current configuration, and finally, 𝐞𝑖 is the orthonormal
asis vector. As is customary in tensor algebra, all quantities related to

curvilinear coordinates are indexed with Greek letters, and Cartesian
quantities are indexed with Latin letters. Within the framework of the
geometrically linear formulation, only the quantities of the reference
configuration are considered in the following.

With regard to a transformation of the coordinates, the following is
valid for the calculation of the base vectors

�⃗�𝛼 = 𝜕 𝑋𝑖

𝜕 𝑄𝛼 𝐞𝑖

⃗ 𝛼 = 𝜕 𝑄𝛼

𝜕 𝑋𝑖 𝐞𝑖
(4)

and any tensor components

𝑡𝛼 = 𝜕 𝑋𝑖

𝜕 𝑄𝛼 𝑡𝑖

𝑡𝛼 = 𝜕 𝑄𝛼

𝜕 𝑋𝑖 𝑡𝑖 .
(5)

Using the appropriate form
𝐺𝛼 𝛽 = �⃗�𝛼 ⋅ �⃗�𝛽

𝐺𝛼 𝛽 = �⃗�𝛼 ⋅ �⃗�𝛽

𝐺𝛽
𝛼 = �⃗�𝛼 ⋅ �⃗�𝛽 = 𝛿𝛽𝛼

(6)

of the metric tensor 𝐆, rising or lowering of a component index is
possible. The deformation gradient tensor in curvilinear coordinates is

𝐅 = 𝜕 �⃗�
𝜕 𝑄𝛼 + 𝜕 �⃗�

𝜕 𝑄𝛼
(7)

and in component notation

𝐹𝛽 𝛼 = 𝐺𝛽 𝛼 + 𝑢𝛽 |𝛼 . (8)

The covariant derivative of the displacement field

𝑢𝛽 |𝛼 =
𝜕 𝑢𝛽
𝜕 𝑄𝛼 − 𝛤 𝛾

𝛽 𝛼 𝑢𝛾 (9)

takes the space dependence of the basis vectors into account. Therefore,
the Christoffel symbols of the second kind

𝛤 𝛾 =
𝜕 �⃗�𝛼 ⋅ �⃗�𝛾 (10)
𝛽 𝛼 𝜕 𝑄𝛽
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Fig. 2. Schematic representation of the mixed coordinate interpolation.

must be evaluated for the curvilinear coordinate system. In order to
calculate the stress state, the deformation tensor

𝐂 = 𝐅T ⋅ 𝐅 = 𝐹 𝛾
𝛼 𝐹𝛾 𝛽 �⃗�𝛼 ⊗ �⃗�𝛽 (11)

of the reference configuration is first considered. Combining Eqs. (8)
and (11), we obtain the following

𝐄 = 1
2
(𝐂 − 𝐈)

= 1
2
(

𝑢𝛼|𝛽 + 𝑢𝛽 |𝛼 + 𝑢𝛾 |𝛼 𝑢𝛾 |𝛽
)

�⃗�𝛼 ⊗ �⃗�𝛽
(12)

for the Green–Lagrange strain tensor. Assuming linear elastic material
ehaviour
𝛼 𝛽 = C𝛼 𝛽 𝜇 𝜈 𝐸𝜇 𝜈 (13)

he fourth-order material tensor generally consists of 21 independent
omponents and must be defined in material coordinates (i.e. in the
urvilinear coordinate system). In the case of isotropy, the following
pplies
𝛼 𝛽 𝛾 𝛿 = 𝜆 𝐺𝛼 𝛽 𝐺𝛾 𝛿 + 𝜇

(

𝐺𝛼 𝛾 𝐺𝛽 𝛿 + 𝐺𝛼 𝛿 𝐺𝛽 𝛾) , (14)

here 𝜆 and 𝜇 are the Lamé constants. The quasi-static form of the
balance of linear momentum

∫
𝛺

𝜎𝛼 𝛽 𝛿 𝐸𝛼 𝛽 𝑑 𝑉 = ∫
𝜕 𝛺

𝑡𝛼 𝛿 𝑢𝛼 𝑑 𝐴 , (15)

represented in the weak formulation, is used to solve for the displace-
ent field.

. Finite element formulation

A concept of mixed coordinate interpolation is proposed in this
aper (see Fig. 2). The motivation is that the spatial discretisation takes
lace in the Cartesian coordinate system
𝑖 =

∑

𝐼

𝐼𝑁(𝜉𝑗 ) 𝐼𝑋𝑖 (16)

nd the fundamental finite element technology remains isoparametric.
hus, the finite element mesh is independent of the curved print paths.

However, the solution of the physical problem and the description

of the continuum take place in the curvilinear coordinate system. In

3 
Eq. (16) is 𝑁 the shape function of the 𝐼th node and 𝜉𝑗 are the
soparametric coordinates. The displacement field

𝑖 =
∑

𝐼

𝐼𝑁(𝜉𝑗 ) 𝐼𝑢𝑖 (17)

is discretised in the same way. A key aspect is the formulation of the
discrete covariant derivative, which is a prerequisite for the calculation
of the strain field. By applying the transformation rule (Eq. (5))

𝑢𝛼 = 𝜕 𝑋𝑖

𝜕 𝑄𝛼 𝑢𝑖 = (𝐽2)𝑖𝛼 𝑢𝑖 (18)

to the displacement field and considering the aforementioned discreti-
ation (Eq. (17)), Eq. (9) can be expressed as follows:

𝑢𝛽 |𝛼 = 𝐼𝑁 𝐼𝑢𝑖
𝜕

𝜕 𝑄𝛼 (𝐽2)
𝑖
𝛽 + 𝜕 𝐼𝑁

𝜕 𝑄𝛼
𝐼𝑢𝑖 (𝐽2)𝑖𝛽 − 𝛤 𝛾

𝛽 𝛼 𝐼𝑁 𝐼𝑢𝑗 (𝐽2)𝑗𝛾 . (19)

The derivatives of the shape functions with respect to the curvilinear
coordinates
𝜕 𝐼𝑁
𝜕 𝑄𝛼 = (𝐽−1

1 )𝑗𝑘 (𝐽2)
𝑘
𝛼
𝜕 𝐼𝑁
𝜕 𝜉𝑗 = 𝐽 𝑗

𝛼
𝜕 𝐼𝑁
𝜕 𝜉𝑗 (20)

can be calculated according to the chain rule. This includes

(𝐽1)𝑖𝑗 = 𝜕 𝑋𝑖

𝜕 𝜉𝑗 = 𝜕 𝐼𝑁
𝜕 𝜉𝑗

𝐼𝑋𝑖 . (21)

3.1. Numerical calculation of the Christoffel symbols

The Christoffel symbols are calculated numerically and indepen-
ently of the selected curvilinear coordinate system. Consequently,
arious quantities must be calculated at the Gauss point level. The 𝑖th
omponent of the covariant basis vector

�⃗�𝛼 = 𝐽 𝑗
𝛼
𝜕 𝐼𝑁
𝜕 𝜉𝑗

𝐼𝑋𝑖 (22)

can be calculated by combining Eq. (4), Eq. (16) and (20). Subse-
uently, the covariant metric tensor

𝛼 𝛽 = �⃗�𝛼 ⋅ �⃗�𝛽 (23)

nd its inverse, the contravariant metric tensor 𝐺𝛼 𝛽 , can be calculated.
he contravariant base system is thus obtained as follows

⃗ 𝛼 = 𝐺𝛼 𝛽 �⃗�𝛽 . (24)

n the following step, Eq. (22) can be inserted into the definition of the
hristoffel symbols (Eq. (10)), and the differentiation with respect to
he curvilinear coordinates 𝑄𝛽 is carried out. This leads to
𝛤 𝛾
𝛽 𝛼 =

[

𝐽 𝑗
𝛼 𝐽

𝑘
𝛽

𝜕2 𝐼𝑁
𝜕 𝜉𝑗 𝜕 𝜉𝑘 +

(

𝜕
𝜕 𝑄𝛽 (𝐽

−1
1 )𝑗𝑘 (𝐽2)

𝑘
𝛼 + (𝐽−1

1 )𝑗𝑘
𝜕

𝜕 𝑄𝛽 (𝐽2)
𝑘
𝛼

)

𝜕 𝐼𝑁
𝜕 𝜉𝑗

]

𝐼𝑋𝑖 (�⃗�𝛾 )𝑖 .
(25)

The following rule can be applied
𝜕

𝜕 𝑄𝛽 (𝐽
−1
1 )𝑗𝑖 = −(𝐽−1

1 )𝑘𝑖
𝜕

𝜕 𝑄𝛽 (𝐽1)
𝑚
𝑘 (𝐽−1

1 )𝑗𝑚 (26)

with
𝜕

𝜕 𝑄𝛽 (𝐽1)
𝑘
𝑗 = 𝜕

𝜕 𝑄𝛽

(

𝜕 𝐼𝑁
𝜕 𝜉𝑗

𝐼𝑋𝑘
)

= 𝐽𝑚
𝛽

𝜕2 𝐼𝑁
𝜕 𝜉𝑗 𝜕 𝜉𝑚

𝐼𝑋𝑘 (27)

to calculate the derivative of the inverse transformation with respect to
the curvilinear coordinates. As can be observed in Eqs. (25) and (27),
at least quadratic shape functions are required, as the second partial
derivatives of the shape functions appear. In this paper, a quadratic
Lagrangian element comprising nine nodes and nine Gauss points is
employed to conduct the simulations presented in Chapter 4.
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Fig. 3. (a) The first boundary value problem (BVP I) and (b) the second boundary value problem (BVP II) with prescribed boundary conditions.
i
t

.2. Strain and stiffness matrix

Assuming small strains, the linearised strain tensor

𝜀𝛼 𝛽 = 1
2
(

𝑢𝛼|𝛽 + 𝑢𝛽 |𝛼
)

(28)

of the element can be finally reformulated using the Voigt notation as

𝜺𝑒 = 𝐁𝑒 𝐮𝑒 , (29)

hereby
𝑒 =

( 1𝑢1 1𝑢2 ... 9𝑢1 9𝑢2
)T (30)

s the vector of the nodal degrees of freedom of the element in Cartesian
oordinates. The strain interpolation matrix of the element
𝑒 = 𝐀𝑒

1 𝐍
𝑒 + 𝐀𝑒

2 𝐁
𝑒
N − Γ𝑒 𝐀𝑒

3 𝐍
𝑒 (31)

omprises three terms, analogous to the covariant derivative (Eq. (19)),
ith the matrices:
𝑒 =

( 1𝑁 0 2𝑁 0 ... 9𝑁 0
0 1𝑁 0 2𝑁 ... 0 9𝑁

)

(32)

𝐁𝑒
N =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜕 1𝑁
𝜕 𝑄1 0 𝜕 2𝑁

𝜕 𝑄1 0 ... 𝜕 9𝑁
𝜕 𝑄1 0

0 𝜕 1𝑁
𝜕 𝑄1 0 𝜕 2𝑁

𝜕 𝑄1 ... 0 𝜕 9𝑁
𝜕 𝑄1

𝜕 1𝑁
𝜕 𝑄2 0 𝜕 2𝑁

𝜕 𝑄2 0 ... 𝜕 9𝑁
𝜕 𝑄2 0

0 𝜕 1𝑁
𝜕 𝑄2 0 𝜕 2𝑁

𝜕 𝑄2 ... 0 𝜕 9𝑁
𝜕 𝑄2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(33)

Γ𝑒 =
⎛

⎜

⎜

⎝

𝛤 1
11 𝛤 2

11
𝛤 1
22 𝛤 2

22
2𝛤 1

12 2𝛤 2
12

⎞

⎟

⎟

⎠

(34)

𝐀𝑒
3 =

(

(𝐽2)11 (𝐽2)21
(𝐽2)12 (𝐽2)22

)

(35)

𝐀𝑒
2 =

⎛

⎜

⎜

⎝

(𝐽2)11 (𝐽2)21 0 0
0 0 (𝐽2)12 (𝐽2)22

(𝐽2)12 (𝐽2)22 (𝐽2)11 (𝐽2)21

⎞

⎟

⎟

⎠

(36)

𝐀𝑒
1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝜕
𝜕 𝑄1 (𝐽2)11

𝜕
𝜕 𝑄1 (𝐽2)21

𝜕
𝜕 𝑄2 (𝐽2)12

𝜕
𝜕 𝑄2 (𝐽2)22

𝜕
𝜕 𝑄2 (𝐽2)11

𝜕
𝜕 𝑄2 (𝐽2)21

𝜕
𝜕 𝑄1 (𝐽2)12

𝜕
𝜕 𝑄1 (𝐽2)22

⎞

⎟

⎟

⎟

⎟

⎟

⎠

(37)

By rewriting the weak formulation (Eq. (15)) in Voigt notation and
nserting the discrete virtual strain 𝛿𝜺𝑒 according to Eq. (29)

𝐊𝑒 = ∫
𝛺𝑒

(𝐁𝑒)T �̄� 𝐁𝑒 𝑑 𝑉 = ∫
𝛺□

(𝐁𝑒)T �̄� 𝐁𝑒 det (𝐉𝑒) 𝑑 𝑉□ (38)

one obtains the element stiffness matrix 𝐊𝑒. In this equation, 𝛺□

represents the isoparametric integration domain, such that the Gauss
integration rule can be directly applied. Since the finite element mesh
is not curvilinear but Cartesian, the element Jacobian 𝐉𝑒 is equal to the
transpose of 𝐉 , as defined in Eq. (21).
1

4 
Table 1
Orthotropic material parameters.
𝐸1 5 ⋅ 104 MPa
𝐸2 2 ⋅ 104 MPa
𝐸3 2 ⋅ 104 MPa
𝜈23 0,4
𝜈13 0,3
𝜈12 0,3
𝐺23 2 ⋅ 104 MPa
𝐺13 1 ⋅ 104 MPa
𝐺12 1 ⋅ 104 MPa

4. Results and discussion

The finite element developed has been implemented in the com-
mercial finite element software ANSYS, utilising the Fortran subroutine
UserElem. This work involves the solution of a two-dimensional bound-
ary value problem, as illustrated in Fig. 3. In the first boundary value
problem (BVP I), the left edge is subjected to a clamped condition,
whereas in the second boundary value problem (BVP II), homogeneous
boundary conditions are imposed. In both cases, the displacement in
the 𝑋1-direction is prescribed at the right edge. In this example, an
elliptical coordinate system
𝑋1 = cosh (𝑄2) cos (𝑄1)

𝑋2 = sinh (𝑄2) sin (𝑄1)
(39)

is used to describe the print paths, which are coincident with the 𝑄1

coordinate lines. Hence, the transformation coefficients (𝐽2)𝑖𝛼 are
(𝐽2)11 = − cosh (𝑄2) sin (𝑄1)

(𝐽2)21 = sinh (𝑄2) cos (𝑄1)

(𝐽2)12 = sinh (𝑄2) cos (𝑄1)

(𝐽2)22 = cosh (𝑄2) sin (𝑄1) .

(40)

For illustrative purposes, only a subset of the print paths is displayed
n Fig. 3. The element stiffness matrix (Eq. (38)) contains the ma-
erial tensor �̄� in Voigt notation. In order to verify the numerical

implementation of the finite element, an isotropic material behaviour
(Eq. (14)) was initially assumed. Consequently, the results, including
the displacements, strains and stresses, prove to be independent of
the curvature and shape of the print paths. To simulate anisotropy,
orthotropic material behaviour is assumed. The material parameters are
shown in Table 1.

4.1. Anisotropic simulation

The present study involved simulations of the aforementioned
boundary value problems with varying finite element mesh refinement
and different print path shapes. The objective was to compare the
two calculation methods described in Chapter 1: the standard global
approach and the newly developed local approach.
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Fig. 4. Shape convergence study for BVP I.
Fig. 5. Shape convergence study for BVP II.
⃗

The initial step was to vary the shape of the print paths within the
domain of the component, while maintaining a constant finite element

esh. This is achieved by moving the domain along the elliptical
oordinate system. For illustrative purposes, examples of the diverse
hapes of the print paths are provided in Figs. 4 and 5. The maximum
train in the 𝑋1-direction is then compared. The results indicate that
he two approaches converge towards each other for small curvatures
f the print paths. However, for larger curvatures, there is an evident
iscrepancy.

Subsequently, a comparative analysis was carried out concerning
he strain fields associated with a constant form of the print paths. To
ain further insight, a mesh convergence study was conducted. The
utcomes for minor curvatures of the print paths, which are nearly
inear, are presented in Fig. 6 for both boundary value problems. In
his instance, the influence of the mesh refinement on the result is
egligible, so that equivalence can be assumed. The corresponding
train fields can be observed in Figs. 7 and 8. Regarding BVP I, it
an be observed that the strain fields have an identical shape. The
aximum strains occur in the area of the clamped edges. In consid-

ration of BVP II, it is evident that the strain fields display different
orms in relation to each other. Nevertheless, the range of values for
he minimum and maximum strain is relatively narrow, indicating that
he two strain fields can be regarded as almost homogeneous. In the

case of complete homogeneity of the strain field, it is necessary for the
rint paths to be aligned along the 𝑋1 axis, without the presence of
ny minimum curvature. In contrast with the aforementioned results,

a more complex form of print paths with pronounced curvatures is
considered and analysed in the following. The results of the simulations
are presented in Figs. 9–11. It can be observed that the strain fields
exhibit different maximum values and behaviours. In the case of BVP
5 
I, the local approach demonstrates convergence to a constant value.
In contrast, the global approach demonstrates a notable increase in
maximum strains with mesh refinement. This phenomenon can be
attributed to the fact that the maxima in the global approach are
situated in the fixed corners, which represent a singularity point. In the
local approach, the maximum strains occur at the point of maximum
stiffness of the component. Qualitatively similar simulation results can
be observed in the case of BVP II. As there is no longer a singularity,
the global approach also converges to a constant value.

The numerical investigations raise the essential question of why
there is a significant difference between the two calculation methods
analysed, particularly for large curvatures of the print paths. The source
of the issue can be traced back to the constitutive law. There is an
incompatibility between the strain tensor and the material tensor. The
strain tensor is accurate and provides the true values, taking into
account the curvature due to the covariant derivative of the curvilinear
displacement. However, the local approach necessitates that the mate-
rial tensor can be determined experimentally in the local curvilinear
coordinate system. Nevertheless, material characterisation is only fea-
sible on unidirectional specimens in the Cartesian coordinate system.
An additional transformation into the curvilinear coordinate system
could be implemented to create the local material tensor; however, this
would yield invariant results in terms of the shape and curvature of the
print paths, which correspond to a solution for anisotropy in the global
Cartesian coordinate system.

One straightforward solution to this problem is the introduction of

𝐛𝛼 =
�⃗�𝛼
| |

(41)

|

|

�⃗�𝛼|
|
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Fig. 6. Mesh convergence study for minimal curvatures of the print paths (a): (b) BVP I; (c) BVP II.
Fig. 7. Strain fields of the BVP I: (a) local approach; (b) global approach.
Fig. 8. Strain fields of the BVP II: (a) local approach; (b) global approach.
e
b
t
e
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he normalised local basis system �⃗�𝛼 . Consequently, the transformation
oefficients (𝐽2)𝑖𝛼 are

(𝐽2)11 =
− cosh (𝑄2) sin (𝑄1)
√

sinh2 (𝑄2) sin2 (𝑄1)

𝐽2)21 =
sinh (𝑄2) cos (𝑄1)

√

sinh2 (𝑄2) sin2 (𝑄1)

𝐽2)12 =
sinh (𝑄2) cos (𝑄1)

√

sinh2 (𝑄2) sin2 (𝑄1)

𝐽2)22 =
cosh (𝑄2) sin (𝑄1)

√

sinh2 (𝑄2) sin2 (𝑄1)
.

(42)

With these adjustments, all the calculations presented in Section 3 can
e performed. Thus, all the simulation results for both boundary value
roblems using the local approach with the normalised local basis agree

exactly with the results of the global approach.
6 
5. Conclusion

In the present work, a novel curvilinear coordinate-based finite
lement formulation is introduced for the simulation of anisotropic
ehaviour in additively manufactured structures. In contrast to conven-
ional methodologies, which assume linear print paths within the finite
lements, our approach considers the curvilinear nature of the print

paths at the element level. A notable innovation is the mixed coordinate
nterpolation, whereby the spatial discretisation is conducted in the
artesian coordinate system while the physical problem is solved in

the local curvilinear coordinate system. The methodology presented
herein enables the finite element mesh to be defined independently of
the curved print paths, which are instead accurately represented by the
ocal curvilinear coordinates.

The numerical calculation of the Christoffel symbols and the strain
and stiffness matrices represents a significant challenge in this work.
These are of crucial importance for the accurate modelling of the
anisotropy. The finite element developed was implemented in the com-
mercial finite element software ANSYS using the Fortran subroutine
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Fig. 9. Mesh convergence study for pronounced curvatures of the print paths (a): (b) BVP I; (c) BVP II.
Fig. 10. Strain fields of the BVP I: (a) local approach; (b) global approach.
Fig. 11. Strain fields of the BVP II: (a) local approach; (b) global approach.
C
serElem, which allowed for the practical application and validation
f the proposed methodology.

The results of the numerical investigations have demonstrated that
he outcomes of the local approach deviate from the expected results,
articularly for significant curvatures of the print paths. Nevertheless,

the introduction of a normalised local basis system has the capability
o eliminate these undesirable phenomena. In terms of the reduction
n simulation time compared to the conventional global approach, it
an be observed that the local approach with a normalised basis has
 certain potential, but does not have the same efficacy as the local

approach with a covariant basis, which, however, leads to inaccurate
results.

Further work may focus on extending this approach to three-
dimensional problems for the application of multi-axial additive manu-
facturing, taking spatial print paths into account. In addition, the incor-
poration of more complex material models, such as those accounting for
lasticity or viscoelasticity while taking the geometric nonlinearity into
ccount, could broaden the applicability of the method. Furthermore,
xperimental validation using digital image correlation of the numeri-
al results could further solidify the efficacy of the proposed approach
n practical applications.
7 
RediT authorship contribution statement

Bruno Musil: Project administration, Conceptualization, Investi-
gation, Methodology, Software, Validation, Writing – original draft.
Philipp Höfer: Resources, Supervision, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data will be made available on request.

References

Betten, J., 1987. Tensorrechnung für Ingenieure. Springer.

http://refhub.elsevier.com/S0997-7538(24)00281-X/sb1


B. Musil and P. Höfer European Journal of Mechanics / A Solids 111 (2025) 105501 
Cinefra, M., 2022. Formulation of 3D finite elements using curvilinear coordinates.
Mech. Adv. Mater. Struct. 29 (6), 879–888.

Fang, G., Zhang, T., Huang, Y., Zhang, Z., Masania, K., Wang, C.C., 2024. Exceptional
mechanical performance by spatial printing with continuous fiber: Curved slicing,
toolpath generation and physical verification. Addit. Manuf. 82, 104048.

Fernandez, F., Compel, W.S., Lewicki, J.P., Tortorelli, D.A., 2019. Optimal design of
fiber reinforced composite structures and their direct ink write fabrication. Comput.
Methods Appl. Mech. Engrg. 353, 277–307.

Fernandez, F., Lewicki, J.P., Tortorelli, D.A., 2021. Optimal toolpath design of additive
manufactured composite cylindrical structures. Comput. Methods Appl. Mech.
Engrg. 376, 113673.

Irgens, F., 2008. Continuum Mechanics. Springer Science & Business Media.
Irgens, F., Irgens, Baumann, 2019. Tensor Analysis. Springer.
Itskov, M., et al., 2007. Tensor Algebra and Tensor Analysis for Engineers. Springer.
Javili, A., McBride, A., Steinmann, P., Reddy, B., 2014. A unified computational

framework for bulk and surface elasticity theory: a curvilinear-coordinate-based
finite element methodology. Comput. Mech. 54, 745–762.

Kafle, A., Luis, E., Silwal, R., Pan, H.M., Shrestha, P.L., Bastola, A.K., 2021. 3D/4D
printing of polymers: fused deposition modelling (FDM), selective laser sintering
(SLS), and stereolithography (SLA). Polymers 13 (18), 3101.

Kiendl, J., Gao, C., 2020. Controlling toughness and strength of FDM 3D-printed PLA
components through the raster layup. Composites B 180, 107562.

Klingbeil, E., 1966. Tensorrechnung für ingenieure. Verlag Anton Hain.
8 
Klingenbeck, J., Lion, A., Johlitz, M., 2024. Investigation of the anisotropic mechanical
behaviour of short carbon fibre-reinforced polyamide 6 fabricated via fused filament
fabrication. In: Lectures Notes on Advanced Structured Materials, vol. 2, Springer,
pp. 151–169.

Lachmeyer, R., Lippert, R., Fahlbusch, T., 2016. 3D-Druck beleuchtet: Additive
Manufacturing auf dem Weg in die Anwendung. Springer Berlin Heidelberg, Berlin.

Murugan, V., Alaimo, G., Auricchio, F., Marconi, S., 2022a. An orientation-field based
algorithm for free-form material extrusion. Addit. Manuf. 59, 103064.

Murugan, V., Alaimo, G., Marconi, S., Berke, P.Z., Massart, T.J., Auricchio, F., 2022b.
Filament path optimization of Fused Filament Fabricated parts incorporating the
effect of pre-fusion densities. Int. J. Solids Struct. 254, 111916.

Parandoush, P., Lin, D., 2017. A review on additive manufacturing of polymer-fiber
composites. Compos. Struct. 182, 36–53.

Tekinalp, H.L., Kunc, V., Velez-Garcia, G.M., Duty, C.E., Love, L.J., Naskar, A.K.,
Blue, C.A., Ozcan, S., 2014. Highly oriented carbon fiber–polymer composites via
additive manufacturing. Compos. Sci. Technol. 105, 144–150.

Valle, J.M., Albanesi, A., Fachinotti, V., 2019. An efficient general curvilinear coordi-
nates finite element method for the linear dynamic study of thickness-independent
shells. Latin Am. J. Solids Struct. 16 (05), e183.

VDI 3405, 2014. Additive Fertigungsverfahren, (3405).
Voelkl, H., Wartzack, S., 2021. Systematic development of load-path dependent

FLM-FRP lightweight structures. Design Sci. 7, e10.
Witzgall, C., Völkl, H., Wartzack, S., 2022. Derivation and validation of linear elastic

orthotropic material properties for short fibre reinforced FLM parts. J. Compos. Sci.
6 (4), 101.

http://refhub.elsevier.com/S0997-7538(24)00281-X/sb2
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb2
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb2
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb3
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb3
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb3
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb3
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb3
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb4
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb5
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb6
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb7
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb8
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb9
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb10
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb10
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb10
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb10
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb10
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb11
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb11
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb11
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb12
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb13
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb14
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb14
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb14
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb15
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb15
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb15
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb16
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb17
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb17
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb17
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb18
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb18
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb18
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb18
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb18
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb19
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb19
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb19
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb19
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb19
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb20
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb21
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb21
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb21
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb22
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb22
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb22
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb22
http://refhub.elsevier.com/S0997-7538(24)00281-X/sb22

	Simulation of anisotropic behaviour in additively manufactured structures using a curvilinear coordinate based finite element formulation
	Introduction
	Fundamentals of the Elasticity Theory in Curvilinear Coordinates
	Finite Element Formulation
	Numerical calculation of the Christoffel symbols
	Strain and stiffness matrix

	Results and Discussion
	Anisotropic simulation

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


