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A B S T R A C T

Managing multiple tasks simultaneously often results in performance decrements due to limited cognitive re-
sources. Task prioritization, requiring effective cognitive control, is a strategy to mitigate these effects and is 
influenced by the stability-flexibility dilemma. While previous studies have investigated the stability-flexibility 
dilemma in fully manual multitasking environments, this study explores how cognitive control modes interact 
with automation reliability. While no significant interaction between control mode and automation reliability 
was observed in single multitasking performance, our findings demonstrate that overall task performance ben-
efits from a flexible cognitive control mode when automation is reliable. However, when automation is unre-
liable, a stable cognitive control mode improves manual takeover performance, though this comes at the expense 
of secondary task performance. Furthermore, cognitive control modes and automation reliability independently 
affect various eye-tracking metrics and mental workload. These findings underscore the need to integrate 
cognitive control and automation reliability into adaptive assistance systems, particularly during the perceive 
stage, to enhance safety in human-machine systems.

1. Introduction

1.1. Multitasking and cognitive control

Concurrent multitasking, defined as the simultaneous execution of at 
least two tasks (Salvucci and Taatgen, 2008; Fischer and Plessow, 2015; 
Koch et al., 2018), is a routine aspect of an operator’s day-to-day ac-
tivities in the human factor’s context. Examples include pilots operating 
an aircraft, air traffic controllers guiding a large number of planes at an 
airport, or operators in a power plant managing a variety of control 
systems. To manage information overload within the limits of cognitive 
resources, operators often rely on task prioritization strategies (Hoover, 
2008). A well-known example is the A-N-C-M (aviate – navigate – 
communicate - manage) axiom, advising pilots to prioritize the most 
safety-critical aviate task in mental overload situations.

Cognitive control, a collection of processes involved in generating 
and maintaining context-appropriate tasks and suppressing irrelevant 
goals (Gratton et al., 2018), plays an important role in effective task 
prioritization and is closely related to attentional processes (Mackie 
et al., 2013). Research on multitasking behavior shows that cognitive 
control is subject to the stability-flexibility-dilemma (Musslick et al., 

2018; Goschke and Bolte, 2014; Dreisbach and Fröber, 2019). This 
dilemma describes the antagonistic demands on cognitive control op-
erators need to balance in a concurrent multitasking scenario and re-
mains rather unresearched in the field of human factors. While cognitive 
stability allows for efficient goal pursuit and the ability to ignore irrel-
evant distractions, it can also impair the ability to switch tasks effi-
ciently. Cognitive flexibility allows for quick reactions to unexpected 
events and facilitates task switches, but can also increase distractibility 
by task irrelevant information. Balancing these opposing demands is 
therefore critical for effective multitasking.

Specifically, the meta-control state model (Hommel, 2015) explains 
how the cognitive system can switch between stable and flexible control 
modes based on goal modulation and mutual inhibition between 
competing task representations. Hereby, cognitive stability (persistence) 
is achieved by either strengthening the top-down influence of a goal-
—favoring one representation over others—or by increasing mutual 
inhibition, which suppresses alternative representations and reduces the 
likelihood of spontaneous task switching. Conversely, cognitive flexi-
bility is facilitated by reducing either the goal’s influence or the inhi-
bition between alternatives, allowing for easier switching between task 
representations. Importantly, the number of voluntary task switches is 
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considered as a correlate of cognitive control, whereby a higher number 
of voluntary task switches is linked to cognitive flexibility and a lower 
number of voluntary task switches is linked to cognitive stability (Fröber 
and Dreisbach, 2017).

Recent research suggests that cognitive stability and cognitive flex-
ibility may function as independent dimensions rather than as opposing 
ends of a continuum (Egner, 2023; Geddert and Egner, 2022). For 
simplicity, this study refers to a stable but inflexible control state as the 
"stable control mode" and a flexible but unstable control state as the 
"flexible control mode," without ruling out the existence of other com-
binations. Furthermore, current research on the stability-flexibility 
dilemma is predominantly rooted in basic cognitive science, with a 
focus on its effects on multitasking performance in simple 
stimulus-response tasks. Only few studies have explored how this 
dilemma manifests in more applied contexts.

For instance, Stasch and Mack (2023a) and Stasch et al. (2024)
manipulated the stability-flexibility-dilemma using a gamification 
method (Stasch and Mack, 2023b) in a low-fidelity flight environment. 
Their findings demonstrate the dilemma’s effect on performance, mental 
workload and different eye-tracking metrics when participants were 
performing the experimental task. Participants in a stable control mode 
performed better at the prioritized task at the cost of the subtask’s 
performance, whereas a flexible control mode enhanced subtask per-
formance at the expense of the main task. Notably, the tasks were per-
formed manually without assistance through —a feature prevalent in 
modern human-machine systems. This points to a research gap, as the 
influence of automation on such performance trade-offs remains 
currently underexplored.

1.2. Automation reliability

Nowadays, most human-machine systems are equipped with auto-
mation functions at varying automation levels (Parasuraman et al., 
2000) intended to reduce task load. However, these systems are not 
infallible and can become unreliable. Reasons for that include, but are 
not limited to, sensor failures, sudden external changes, cyber-attacks, 
incorrect system configurations, neglected maintenance or 
inter-system communication failures. When automation fails, the oper-
ator must manually assume control of the task, which can significantly 
impact human-machine performance (Vogelpohl et al., 2018; Eriksson 
and Stranton, 2017).

The negative effects of unreliably automated systems on perfor-
mance were first noted by Bainbridge (1983), who termed this in the 
“Ironies of Automation”. Subsequent research has corroborated these 
findings across various human factors domains, including 
command-and-control environments (Rovira, 2002), military multi-
tasking environments (Chen et al., 2011), aviation (Dixon and Wickens, 
2004), air traffic control (ATC; Rovira and Parasuraman, 2007; Trapsi-
lawati et al., 2015), and automated driving (Strand et al., 2014).

There is evidence suggesting that in some cases, manual task 
execution may outperform imperfect automation. For example, Metzger 
and Parasuraman (2017) found that participants using a 
medium-fidelity ATC simulator were more likely to detect a conflict 
when operating manually than when relying on unreliable automation. 
This decline in performance with automation failure can be partly 
explained by the "out-of-the-loop" phenomenon (Endsley and Kiris, 
1995), where a loss of manual skills and situational awareness occurs, a 
problem not encountered during fully manual operation. However, it is 
also important to note that Xu et al. (2007) found some benefit to using 
imperfect automation, particularly when the system reliability exceeded 
80%.

1.3. Adaptive automation

Out-of-the-loop experiences, where operators become disengaged 
from the automation process in a static task allocation between the 

human and the machine, can significantly impact performance in safety- 
critical systems by making it difficult for them to respond effectively to 
sudden changes in the environment or task demands. Adaptive assis-
tance systems aim to mitigate these challenges by dynamically adjusting 
the level of automation based on the operator’s needs, thereby main-
taining engagement and awareness, which are essential for reliable 
human-machine interaction. Feighs et al. (2012) describe a framework 
of adaptive systems, in which the system monitors the operator’s mental 
state, their tasks, as well as the environment, with sensors and infor-
mation systems (“perceive”-stage). Based on that assessment, an adap-
tation manager selects context-appropriate adaptations 
(“selection”-stage), which are then transferred to the automation and 
the human-machine interface (“act”-stage). The benefits of adaptive 
assistance have been demonstrated in various contexts, such as pre-
venting out-of-the-loop experiences in air traffic control (Di Flumeri 
et al., 2019) and enhancing naval officers’ performance in a high-fidelity 
command-and-control environment compared to static automation (de 
Tjerk et al., 2010).

A key requirement for effective adaptive assistance is the accurate 
estimation of the operator’s mental state during the "perceive" stage. 
Stasch and Mack (2024) have contributed to this area by demonstrating 
that control modes (stable and flexible) can be diagnosed with high 
accuracy using eye-tracking metrics in a virtual flight environment. 
However, their study was limited to manual task performance, leaving 
the interaction between control modes and varying levels of automation 
reliability unexplored.

1.4. Research question

Given the increasing complexity of multitasking scenarios in the 
modern workplace, it is crucial to investigate how cognitive control 
modes (flexible and stable) influence performance under varying levels 
of automation reliability. Understanding this relationship is essential not 
only for advancing the theoretical framework of adaptive systems but 
also for enhancing practical implementations that ensure safety and 
efficiency in human-machine interactions.

Thus, the research question posed is: How does cognitive control 
mode influence performance under conditions of reliable and unreliable 
automation in a multitasking environment? The subsequent study aims 
to investigate the interaction between cognitive control modes (stable 
and flexible) and automation reliability (reliable and unreliable) to 
improve safety and efficiency in human-machine interactions. Specif-
ically, the study seeks to. 

1. Provide insights on how the cognitive control mode of operators can 
be integrated into the perceive stage of adaptive automation systems 
respecting a tasks automation level.

2. Make recommendations regarding the interface design of adaptive 
assistance systems that respect the cognitive control modes of 
operators.

2. Methods

2.1. Experimental task

To address this research question, the open-source version of the 
MATB-II (Santiago-Espada et al., 2011), known as openMATB (Cegarra 
et al., 2020), was used as a virtual flight environment, similar to the 
approach of Stasch and Mack (2024). The MATB is a widely recognized 
tool for studying the cognitive demands associated with performing 
multiple flight-like tasks simultaneously. The environment comprises 
four distinct subtasks (see Fig. 1). 

1. Tracking Task: Participants use a joystick to maintain a cursor at the 
center of a blue square, with the cursor moving in a sinusoidal 
pattern.
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2. System Monitoring Task: Participants monitor F1-F4 scale in-
dicators for deviations, pressing the corresponding F-key on the 
keyboard to respond. Additionally, they react to color changes in the 
F5 and F6 buttons.

3. Communication Task: Participants respond to their designated call 
sign by adjusting the announced radio frequency on one of four ra-
dios (NAV1, NAV2, COM1, COM2).

4. Resource Management Task: The goal is to maintain optimal fuel 
levels in both main tanks (Tank A and Tank B). Participants manage 
fuel levels by toggling pumps 1–8 on or off using the corresponding 
number keys on the keyboard.

Hereafter, the tracking task will also be referred to as the main task, 
while the system-monitoring task, communication task, and resource 
management task will also be referred to as subtasks.

2.2. Participants

Fourty-eight subjects participated in the experiment, aged 18 to 59 
(M = 23.46; SD = 6.48). All participants had normal or corrected-to- 
normal vision and no red-green color deficiency. The sample consisted 
of 15 participants identifying as female and 33 participants identifying 
as male. Additionally, 22.91% of participants has previous flight expe-
rience with an average of 364.36 flight hours (SD = 585.65). The study 
was approved by the local Ethics Committee of the University of the 
Bundeswehr Munich (EK UniBw M 23–50). All participants provided 
written informed consent before participating in the study and received 
a lab token as compensation.

2.3. Experimental design and procedure

A 2x3 within factorial design was employed with two factors: control 
mode (flexible, stable) and automation mode (reliable, unreliable, 
manual), resulting in six conditions (flexible reliable, flexible unreliable, 

flexible manual, stable reliable, stable unreliable, stable manual). 
Automation mode variations were applied to the tracking task. In the 
reliable condition, the tracking task was fully automated; in the unre-
liable condition, automation failed 50% of the time; and in the manual 
condition, participants had full manual control of the tracking task. 
Control modes were manipulated using the Stasch and Mack (2023b)
gamification method. In this method, participants were instructed prior 
to one experimental condition on how to prioritize the MATB tasks 
based on simulated weather conditions. Specifically, participants were 
instructed to prioritize the tracking task during stormy weather condi-
tions to induce a stable control mode. Conversely, a flexible control 
mode was induced by instructing participants to prioritize all tasks 
equally due to good weather conditions. One condition consisted of five 
trials.

After each trial, participants received a feedback score ranging from 
0 to 100, based on the number of task switches performed, along with a 
brief prompt on how to prioritize the tasks. A task switch was registered 
when a fixation was assessed on a task different from the last task that 
received a fixation. The total number of task switches was assessed 
during each trial and normalized according to values obtained in a 
previous experiment using a similar scenario. The scoring system was 
designed to reinforce task prioritization according to the condition in 
which participants were placed. In the stable control mode, participants 
received higher scores for predominantly focusing on the tracking task 
by switching less between subtasks. In contrast, in the flexible control 
mode, participants were rewarded for distributing their attention 
equally across all subtasks by switching more frequently between tasks. 
This approach was chosen because a flexible control mode is associated 
with a higher number of task switches, while a stable control mode is 
associated with a lower number of task switches (Fröber and Dreisbach, 
2017).

Participants were trained on all tasks before the experiment. The 
order of conditions was randomized to minimize order effects. Each 
condition involved five trials, followed by a brief questionnaire assessing 

Fig. 1. The open-MATB. 
Note. Top left: System-Monitoring task, top right: Tracking task, bottom left: Communication task, bottom right: Resource Management task.
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mental workload (NASA-TLX; Hart and Staveland, 1988) and trust in 
automation (Jian et al., 2000). Eye movement data were captured at 
1000 Hz using the EyeLink 1000 Plus in a head-fixed position. After 
completing the experiment, participants filled out a demographic 
questionnaire.

2.4. Data processing

For the tracking task, the root-mean-square error (RMSE) was 
calculated during instances of manual control in the unreliable condi-
tion and across the entire trial in the manual control condition. The 
RMSE was also computed for the first 2 s after transitioning from 
automatic to manual mode in the unreliable condition. Performance 
metrics for the system monitoring and communication tasks included 
the proportion of hits and reaction times. For the resource management 
task, the average deviation from optimal fuel levels in Tank A and Tank 
B was recorded. Performance data were averaged across trials for each 
condition and participant.

Total MATB performance was calculated by summing z-scores, with 
sign changes applied where necessary to ensure higher scores indicated 
better performance. For the system monitoring and communication 
tasks, mean reaction time and hit rate were combined. Eye movement 
data were processed using EyeLink Data Viewer, with all values stan-
dardized (z-scores).

Specifically, the AOI-unspecific metrics (see Section 3.2.5) were 
calculated as follows: A task switch was identified when a fixation on 
one task differed from the previous fixation on another task. The coef-
ficient K is a measure derived from saccade amplitudes and fixation 
durations. Positive values of K are associated with ambient visual pro-
cessing, while negative values are linked to focal visual processing 
(Krejtz et al., 2016). Entropy is a metric that reflects the predictability of 
transitions between tasks (AOIs). Stationary entropy indicates how 
equally attention is distributed across all AOIs, while transition entropy 
reflects the randomness and predictability of transitions between AOIs 
(Krejtz et al., 2014; Nahlik and Daubenmire, 2022).

Mental workload was calculated by summing and z-standardizing all 
NASA-TLX subscales. Similarly, values of trust and mistrust in automa-
tion were averaged and z-standardized, excluding the manual automa-
tion condition, as it does not apply.

2.5. Statistical analysis

Mixed linear effects models were computed using the lme4 package 
(Bates et al., 2015) in RStudio Version 4.3.3 (R Core Team, 2024). 
Predictors, including control mode (stable vs. flexible) and automation 
mode (reliable, unreliable, manual), were sequentially added to the null 
model using a stepwise procedure. A stepwise procedure was employed 
to evaluate the incremental improvement in model fit with the addition 
of each fixed effect. Building on prior findings by Stasch and Mack 
(2023a), which demonstrated a significant effect of control mode on 
MATB performance and various eye-tracking metrics, control mode was 
selected as the initial fixed effect in Model 1. Subsequently, automation 
level was added as a second fixed factor to determine whether it pro-
vided additional explanatory power. The best-fitting model was selected 
using a Chi-Square test, with participants included as a random effect to 
account for individual difference. Post hoc contrasts were performed 
using the emmeans package (Lenth, 2024) on the best fitting models that 
included an interaction term (model 3).

The models were built as follows: 

Model 0ij = β0+u0j+ϵij                                                                        

Model 1ij = β0+β1 × Control_modeij + u0j+ϵij                                      

Model 2ij = β0+β1 × Control_modeij +β2 × Automation_levelij + u0j+ϵij

Model 3ij = β0+β1 × Control_modeij+β2 × Automation_levelij+ β3 ×

(Control_modeij × Automation_levelij) + u0j+ϵij                                   

Hereby:
β0 = Intercept
u0j ¼ Random effect (random intercept) for subject j
ϵij = Residual error term for observation i within subject j
β1 = Coefficient for the control mode
β2 = Coefficient for the automation level
β3 = Coefficient for interaction between the control mode and the 

automation level.

3. Results

Detailed results about the model comparisons can be found in the 
following repository (https://osf.io/tf9vk/). See Fig. 2 for a visualiza-
tion of performance effects, Fig. 3 for visualization of effects on number 
of fixations and Fig. 4 for visualization of effects on mean fixation 
duration.

3.1. Performance

Tracking Task. The reliable tracking condition was excluded from 
analysis since RMSE cannot be calculated with task automation. Model 
1, including the control mode, best explained the data, showing that the 
stable condition negatively affected the RMSE (Mflexible = 0.07; SDflexible 
= 0.02; Mstable = 0.06; SDstable = 0.02). Additionally, the RMSE in the 2-s 
interval after manual takeover with unreliable automation was lower in 
the stable condition (Mstable = 0.07; SDstable = 0.02) than in the flexible 
one (Mflexible = 0.07; SDflexible = 0.02).

System Monitoring Task. Model 2, which includes the control mode 
and automation reliability, best explained the number of hits, indicating 
that the stable condition reduced hits (Mflexible = 5.37; SDflexible = 1.15; 
Mstable = 4.66; SDstable = 1.87), while reliable automation increased them 
(Mmanual = 4.77; SDmanual = 1.80; Munreliable = 5.06; SDunreliable = 1.56; 
Mreliable = 5.22; SDreliable = 1.35). No significant effect was found for 
unreliable automation (see Table 1). For reaction time, Model 1, which 
includes control mode, fits best, showing that the stable condition 
increased reaction time (Mflexible = 3.05; SDflexible = 1.02; Mstable = 3.19; 
SDstable = 1.14).

Communication Task. The number of hits and the reaction time was best 
explained by Model 2, which includes control mode and automation 
reliability. The stable condition decreased the number of hits (Mflexible =

1.65; SDflexible = 0.62; Mstable = 1.39; SDstable = 0.79) and increased re-
action time (Mflexible = 16.66; SDflexible = 2.52; Mstable = 17.23; SDstable =

2.84), while reliable automation increased the number of hits (Mmanual =

1.46; SDmanual = 0.78; Munreliable = 1.50; SDunreliable = 0.72; Mreliable =

1.60; SDreliable = 0.66) and decreased reaction time (Mmanual = 17.26; 
SDmanual = 2.87; Munreliable = 17.21; SDunreliable = 2.83; Mreliable = 16.36; 
SDreliable = 2.25). No significant effect was found for both outcomes with 
unreliable automation (see Table 1).

Resource Management Task. Deviation from optimal fuel levels was 
best explained by Model 2, which includes control mode and automation 
reliability. The stable condition increased deviation (Mflexible = 420.45; 
SDflexible = 209.35; Mstable = 554.64; SDstable = 361.06), while the reliable 
condition decreased it (Mmanual = 535.23; SDmanual = 330.00; Munreliable 
= 485.22; SDunreliable = 299.70; Mreliable = 442.19; SDreliable = 268.21). No 
effect was found for unreliable automation (see Table 1).

Total Performance. Total performance (in z-scores) on the MATB was 
best explained by Model 2, including control mode and automation 
reliability. The stable condition led to worse performance compared to 
the flexible condition (Mflexible = 0.31; SDflexible = 1.68; Mstable = −0.12; 
SDstable = 1.90), while the reliable condition improved performance 
compared to the manual condition (Mmanual = −0.84; SDmanual = 1.66; 
Munreliable = −0.28; SDunreliable = 1.60; Mreliable = 1.43; SDreliable = 1.23; see 
Table 1).
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Fig. 2. Total MATB performance, subtask performance and performance after manual take-over. 
Note. All values have been z-standardized in the plot. To enhance comprehensibility, performance of the overall MATB score required a sign change, so that higher z- 
values correspond to a better overall performance. RMSE after take-over has only been calculated for the unreliable condition in a 2-s time interval.
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3.2. Eye-tracking metrics

3.2.1. Number of fixations
Tracking Task. Model 3, which includes control mode, automation 

reliability, and their interaction, best explained the number of fixations. 
While a stable control mode (Mflexible = 369.73; SDflexible = 169.75; 
Mstable = 413.71; SDstable = 166.91) and unreliable automation (Mmanual 
= 475.56; SDmanual = 122.20; Munreliable = 465.21; SDunreliable = 128.41; 
Mreliable = 234.39; SDreliable = 133.34) had no effect, participants fixated 
the tracking task less often with reliable automation. However, a posi-
tive interaction indicated more fixations with reliable automation and a 
stable control mode (Mflexible-manual = 473.35; SDflexible-manual = 113.34; 
Mstable-manual = 477.77; SDstable-manual = 131.63; Mflexible-unreliable = 447.67; 
SDflexible-unreliable = 121.29; Mstable-unreliable = 482.75; SDstable-unreliable =

134.12; Mflexible-reliable = 188.17; SDflexible-reliable = 96.34; Mstable-reliable =

280.60; SDstable-reliable = 149.30; see Table 2). The post-hoc comparison of 
model 3 shows that participants made fewer fixations in the reliable 
automation condition compared to the manual and unreliable condi-
tions (see Table 3). No significant difference in number of fixations was 
found between the manual and unreliable conditions in either control 
mode. However, in the reliable condition, participants made more fix-
ations in the stable condition compared to the flexible condition. This 
interaction was not observed between the flexible and stable conditions 
for the manual and unreliable automation levels (see Table 4).

System Monitoring Task – Communication Task – Resource Management 
Task. Model 2, including control mode and automation reliability, best 
explained the number of fixations on the system monitoring task 
(Mflexible = 286.66; SDflexible = 109.52; Mstable = 207.23; SDstable = 119.18; 
Mmanual = 212.98; SDmanual = 113.55; Munreliable = 232.56; SDunreliable =

117.17; Mreliable = 295.42; SDreliable = 117.50), the communication task 
(Mflexible = 203.92; SDflexible = 61.07; Mstable = 170.84; SDstable = 73.22; 
Mmanual = 175.19; SDmanual = 68.06; Munreliable = 185.97; SDunreliable =

69.80; Mreliable = 201.39; SDreliable = 68), and the resource management 
task (Mflexible = 461.40; SDflexible = 151.95; Mstable = 354.91; SDstable =

185.80; Mmanual = 345.15; SDmanual = 149.10; Munreliable = 366.06; 
SDunreliable = 143.50; Mreliable = 513.15; SDreliable = 188.23). Participants 
fixated less on these tasks in the stable condition than in the flexible one, 
but more often with reliable automation (see Table 2).

3.2.2. Fixation duration
Tracking Task. Model 3, which includes control mode, automation 

reliability, and their interaction, best explained fixation duration. Par-
ticipants had longer fixations in the stable condition than in the flexible 
one (Mflexible = 294.75; SDflexible = 334.99; Mstable = 451.80; SDstable =

798.53), with no differences across reliability levels (Mmanual = 402.29; 
SDmanual = 711.80; Munreliable = 359.20; SDunreliable = 540.98; Mreliable =

364.45; SDreliable = 611.27). However, the stable condition’s effect on 
fixation duration was reduced with both reliable and unreliable 

Fig. 3. Number of Fixations per MATB task. 
Note. Plot displays z-transformed values.
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automation (Mflexible-manual = 304.82; SDflexible-manual = 358.56; Mstable- 

manual = 498.86; SDstable-manual = 928.73; Mflexible-unreliable = 293.03; 
SDflexible-unreliable = 324.22; Mstable-unreliable = 420.56; SDstable-unreliable =

677.32; Mflexible-reliable = 273.54; SDflexible-reliable = 295.47; Mstable-reliable =

425.41; SDstable-reliable = 745.94; see Table 5). Specifically, the post hoc 
comparison for the condition interaction effects of model 3indicates that 
in the stable condition, participants show significantly longer fixation 
durations in the manual automation level compared to both unreliable 
and reliable levels. This effect was not observed in the flexible condition 
(see Table 6). Across all automation levels (manual, unreliable, reliable), 
fixation durations are longer in the stable condition compared to the 
flexible condition (see Table 7).

Communication Task – Model 2, including control mode and auto-
mation reliability, best explained fixation duration. Fixation duration 
decreased in the stable condition (Mflexible = 294.31; SDflexible = 403.18; 
Mstable = 278.23; SDstable = 367.66) and increased with unreliable 
automation (Mmanual = 256.35; SDmanual = 287.55; Munreliable = 268.62; 
SDunreliable = 315.45; Mreliable = 329.98; SDreliable = 500.95). This increase 
in fixation duration was even stronger with reliable automation (see 
Table 5).

System Monitoring – Resource Management Task – Model 2, including 
control mode and automation reliability, best explained fixation dura-
tion. The stable control mode decreased fixation duration for the system 
monitoring task (Mflexible = 248.37; SDflexible = 172.70; Mstable = 242.83; 

SDstable = 166.19) and the resource management task (Mflexible = 202.20; 
SDflexible = 122.43; Mstable = 200.07; SDstable = 115.78), while reliable 
automation increased it, both for the system monitoring task (Mmanual =

241.91; SDmanual = 144.59; Munreliable = 237.18; SDunreliable = 134.50; 
Mreliable = 255.99; SDreliable = 207.16) and the resource management task 
(Mmanual = 196.90; SDmanual = 113.14; Munreliable = 197.53; SDunreliable =

109.90; Mreliable = 206.86; SDreliable = 129.77). No effect was found for 
unreliable automation (see Table 5).

3.2.3. AOI unspecific metrics
Task Switches – Model 3, including automation reliability, control 

mode, and their interaction, best explained the number of task switches. 
Participants switched tasks less frequently in the stable condition 
compared to the flexible one (Mflexible = 478.12; SDflexible = 131.69; 
Mstable = 402.68; SDstable = 154.86). They also switched tasks less often 
with reliable automation (Mmanual = 485.23; SDmanual = 164.53; Munreli-

able = 469.36; SDunreliable = 139.90; Mreliable = 366.60; SDreliable = 109.19), 
except when being in the stable condition. In that case, participants 
switched tasks more often, as indicated by a significant positive inter-
action between stable control and reliable automation (Mflexible-manual =

543.13; SDflexible-manual = 127.09; Mstable-manual = 427.33; SDstable-manual =

178.10; Mflexible-unreliable = 514.29; SDflexible-unreliable = 109.48; Mstable-unre-

liable = 424.44; SDstable-unreliable = 153.84; Mflexible-reliable = 376.94; SDflex-

ible-reliable = 376.94; Mstable-reliable = 356.27; SDstable-reliable = 119.46; see 

Fig. 4. Mean Fixation Duration per MATB subtask. 
Note. Plot displays z-transformed values.
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Table 8). The post-hoc comparisons for model 3 show that participants 
made fewer task switches in the reliable automation condition compared 
to the manual and unreliable conditions, regardless of control mode (see 
Table 9). No significant difference in task switches was found between 
the manual and unreliable conditions in either control mode. Addi-
tionally, participants made more task switches in the flexible control 
condition than in the stable condition for both the manual and unreli-
able automation conditions. This effect was not observed in the reliable 
automation condition, where task switch frequency remained consistent 

across control modes (see Table 10).
Coefficient K – Model 2, which includes control mode and automation 

reliability, best explains the coefficient K. The stable condition increased 
the coefficient K (Mflexible = −0.08; SDflexible = 0.19; Mstable = 0.29; 
SDstable = 0.82). Unreliable automation decreased the coefficient K and 
reliable automation decreased it even more (Mmanual = 0.27; SDmanual =

0.81; Munreliable = 0.08; SDunreliable = 0.48; Mreliable = −0.04; SDreliable =

Table 1 
Results of the best-fitting linear-mixed models explaining MATB performance.

Task b CI t p

Tracking (RMSE)
stable −0.27 [-0.34, −0.20] −7.91 <0.001

Tracking (RMSE take-over)
stable −0.42 [-0.66, −0.19] −3.58 <0.001

System Monitoring (RT)
stable 0.22 [0.05, 0.40] 2.51 0.013

System Monitoring (Hits)
stable −0.17 [-0.23, −0.12] −6.25 <0.001
unreliable 0.07 [-1.39e−03, 0.13] 1.93 0.055
reliable 0.1 [0.04, 0.17] 3.07 0.002

Communication (RT)
stable 0.35 [0.19, 0.51] 4.29 <0.001
unreliable −0.04 [-0.23, 0.16] −0.35 0.726
reliable −0.50 [-0.69, −0.30] −4.96 <0.001

Communication (Hits)
stable −0.11 [-0.14, −0.07] −6.13 <0.001
unreliable 0.02 [-0.02, 0.06] 0.83 0.406
reliable 0.06 [0.02, 0.10] 2.89 0.004

Resource Management Task
stable 0.51 [0.35, 0.66] 6.31 <0.001
unreliable −0.19 [-0.38, 5.49e−03] −1.91 0.057
reliable −0.35 [-0.54, −0.16] −3.56 <0.001

Total performance
stable −0.49 [-0.72, −0.26] −4.20 <0.001
unreliable 0.13 [-0.15, 0.41] 0.94 0.347
reliable 2.27 [1.99, 2.55] 15.97 <0.001

Note. Only estimates of the best fitting models are displayed. The RMSE for the 
take-over is calculated for a 2 s interval after transition from automatic to 
manual mode in the unreliable mode. Values have been z-transformed before 
analysis. See text for calculation of the total performance. b = beta, CI = 95% 
Confidence Interval, t = t-value, p = p-value.

Table 2 
Results of the best-fitting linear-mixed models explaining the number of 
fixations.

Task b CI t p

Tracking Task
Unreliable −0.15 [-0.36, 0.06] −1.41 0.159
Reliable −1.68 [-1.89, −1.47] −15.67 <0.001
Stable 0.03 [-0.19, 0.24] 0.24 0.808
Unreliable × Stable 0.18 [-0.12, 0.48] 1.19 0.235
Reliable × Stable 0.52 [0.22, 0.82] 3.42 <0.001

System Monitoring Task
Stable −0.48 [-0.59, −0.38] −9.36 <0.001
Unreliable 0.13 [5.66e−03, 0.25] 2.06 0.040
Reliable 0.50 [0.38, 0.62] 7.99 <0.001

Communication Task
Stable −0.22 [-0.28, −0.15] −6.98 <0.001
Unreliable 0.06 [-0.01, 0.14] 1.68 0.094
Reliable 0.17 [0.10, 0.24] 4.54 <0.001

Resource Management Task
Stable −0.64 [-0.78, −0.49] −8.72 <0.001
Unreliable 0.14 [-0.04, 0.31] 1.52 0.129
Reliable 1.00 [0.83, 1.18] 11.20 <0.001

Note. Estimates are based on z-transformed values extracted from the best fitting 
models according to a chi-square comparison. Detailed results of the model 
comparisons can be found in the supplementary material. b = beta, CI = 95% 
Confidence Interval, t = t-value, p = p-value.

Table 3 
Post Hoc Contrasts of Model 3: Interaction Effect of cognitive control on number 
of fixations on the tracking task.

Condition Contrast Estimate SE t-ratio p

flexible manual - unreliable 0.15 0.11 1.41 0.340
flexible manual - reliable 1.68 0.11 15.67 <0.001
flexible unreliable - reliable 1.53 0.11 14.25 <0.001
stable manual - unreliable −0.03 0.11 −0.27 0.959
stable manual - reliable 1.16 0.11 10.83 <0.001
stable unreliable - reliable 1.19 0.11 11.10 <0.001

Note. SE = standard error, p = p-value.

Table 4 
Post Hoc Contrasts of Model 3: Interaction Effect of automation reliability on 
number of fixations on the tracking task.

Automation level Contrast Estimate SE t-ratio p

manual flexible - stable −0.03 0.11 −0.24 0.808
unreliable flexible - stable −0.21 0.11 −1.93 0.055
reliable flexible - stable −0.55 0.11 −5.08 <0.001

Note. SE = standard error, p = p-value.

Table 5 
Results of the best-fitting linear-mixed models explaining the fixation duration.

Task b CI t p

Tracking Task
Unreliable −0.11 [-0.61, 0.39] −0.44 0.662
Reliable −0.25 [-0.75, 0.24] −1.00 0.317
Stable 1.70 [1.20, 2.20] 6.74 <0.001
Unreliable × Stable −0.71 [-1.42, −0.01] −2.00 0.047
Reliable × Stable −0.91 [-1.62, −0.21] −2.56 0.011

System Monitoring Task
Unreliable −2.75e−03 [-0.06, 0.05] −0.10 0.921
Reliable 0.13 [0.08, 0.19] 4.82 <0.001
Stable −0.11 [-0.15, −0.06] −4.74 <0.001

Communication Task
Unreliable 0.12 [0.04, 0.20] 2.90 0.004
Reliable 0.53 [0.45, 0.61] 13.18 <0.001
Stable −0.20 [-0.27, −0.14] −6.16 <0.001

Resource Management Task
Unreliable 3.69e−03 [-0.02, 0.03] 0.28 0.781
Reliable 0.08 [0.06, 0.11] 6.18 <0.001
Stable −0.04 [-0.06, −0.02] −3.70 <0.001

Note. Estimates are based on z-transformed values extracted from the best fitting 
models according to a chi-square comparison. Detailed results of the model 
comparisons can be found in the supplementary material. b = beta, CI = 95% 
Confidence Interval, t = t-value, p = p-value.

Table 6 
Post Hoc Contrasts of Model 3: Interaction Effect of cognitive control on fixation 
duration on the tracking task.

Condition Contrast Estimate SE t-ratio p

flexible manual - unreliable 15.80 36.1 0.44 0.900
flexible manual - reliable 36.20 36.1 1.00 0.576
flexible unreliable - reliable 20.40 36.1 0.57 0.839
stable manual - unreliable 117.80 36.1 3.26 0.004
stable manual - reliable 166.80 36.1 4.62 <0.001
stable unreliable - reliable 49.00 36.1 1.36 0.365

Note. SE = standard error, p = p-value.
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0.48; see Table 8).
Stationary entropy – Model 1, including control mode, best explains 

stationary entropy. The stable condition had a negative effect on sta-
tionary entropy (Mflexible = 0.92; SDflexible = 0.07; Mstable = 0.87; SDstable 
= 0.17; see Table 8).

Transition entropy – Model 2, which includes control mode and 
automation reliability, best explained transition entropy. The stable 
condition decreased transition entropy (Mflexible = 0.65; SDflexible = 0.08; 
Mstable = 0.61; SDstable = 0.15). Additionally, reliable automation, but not 
unreliable automation, decreased transition entropy (Mmanual = 0.65; 
SDmanual = 0.13; Munreliable = 0.65; SDunreliable = 0.11; Mreliable = 0.59; 

SDreliable = 0.11; see Table 8).

3.3. Mental workload

Mental workload. Mental workload was best explained by Model 2, 
which includes control mode and automation reliability. The stable 
condition reduced mental workload (Mflexible = 11.84; SDflexible = 2.24; 
Mstable = 11.28; SDstable = 2.74), as well as the reliable automation 
condition (Mmanual = 11.86; SDmanual = 2.58; Munreliable = 11.86; SDunre-

liable = 2.39; Mreliable = 10.96; SDreliable = 2.72). No effect was found for 
unreliable automation (see Table 11).

3.4. Trust in automation

Trust in Automation. Trust in automation was measured using two 
scales: trust and mistrust in automation. Model 1, which includes 
automation reliability, best explains trust (Munreliable = 3.28; SDunreliable 
= 1.33; Mreliable = 5.35; SDreliable = 1.20) and mistrust (Munreliable = 3.99; 
SDunreliable = 1.23; Mreliable = 2.44; SDreliable = 1.10) in automation. 
Hereby, reliable automation positively influenced trust and reduced 
mistrust (see Table 11).

4. Discussion

This study explored the interaction between the cognitive control 
mode (flexible, stable; manipulated through task prioritization) and 
automation reliability (manual, unreliable, reliable) in the tracking task, 
examining their effects on overall performance, eye-tracking metrics, 
and mental workload. Considering the total MATB performance, our 
findings indicate that participants performed best with a flexible control 
mode and reliable automation, and worst with a stable control mode and 
no automation. No interaction effect was found on a performance level 
between the control mode and the automation reliability. Instead, per-
formance on the tracking task was in general superior in the stable 
condition compared to the flexible one. Considering the initial 2 s after 
transitioning from automatic to manual mode in the unreliable condi-
tion, participants also performed better in the stable condition compared 
to the flexible one. This improvement is likely due to the benefits of 
cognitive stability, such as clearer goal focus and reduced susceptibility 
to distractions.

Contrary to previous studies (Metzger and Parasuraman, 2017; 
Rovira et al., 2002), our results did not show that unreliable automation 
leads to worse performance than manual control in the primary task. 
This discrepancy may stem from the continuous nature of the tracking 
task, which inherently demands significant attention from participants, 
who were aware that manual readjustment might be required unex-
pectedly at any time in both conditions.

For the system monitoring, communication, and resource manage-
ment tasks, performance improved under flexible control relative to 
stable control, consistent with previous research (Stasch and Mack, 

Table 7 
Post Hoc Contrasts of Model 3: Interaction Effect of automation reliability on 
number of fixations on the tracking task.

Automation level Contrast Estimate SE t-ratio p

manual flexible - stable −243.00 36.1 −6.74 <0.001
unreliable flexible - stable −141.00 36.1 −3.92 <0.001
reliable flexible - stable −113.00 36.1 −3.12 0.002

Note. SE = standard error, p = p-value.

Table 8 
Results of the best-fitting linear-mixed models explaining AOI unspecific 
metrics.

Predictor b CI t p

Task Switches
unreliable −0.19 [-0.46, 0.07] −1.46 0.146
reliable −1.12 [-1.38, −0.86] −8.40 <0.001
stable −0.78 [-1.04, −0.52] −5.86 <0.001
unreliable*stable 0.17 [-0.20, 0.55] 0.93 0.354
reliable*stable 0.64 [0.27, 1.01] 3.40 <0.001

Coefficient K
stable 0.24 [0.18,0.30] 7.64 <0.001
unreliable −0.10 [-0.18, −0.03] −2.64 0.009
reliable −0.23 [-0.31, −0.15] −5.97 <0.001

Stationary Entropy
stable −0.06 [-0.09, −0.04] −4.88 <0.001

Transition Entropy
stable −0.05 [-0.07, −0.03] −4.53 <0.001
unreliable 2.08e−03 [-0.02, 0.03] 0.16 0.869
reliable −0.06 [-0.09, −0.04] −4.92 <0.001

Note. Task switches have been z-standardized before analysis. Parameter esti-
mates are extracted from the best fitting model. b = beta, CI = 95% Confidence 
Interval, t = t-value, p = p-value.

Table 9 
Post Hoc Contrasts of Model 3: Interaction Effect of cognitive control on number 
of task switches.

Condition Contrast Estimate SE t-ratio p

flexible manual - unreliable 0.19 0.13 1.46 0.313
flexible manual - reliable 1.12 0.13 8.40 <0.001
flexible unreliable - reliable 0.93 0.13 6.95 <0.001
stable manual - unreliable 0.02 0.13 0.15 0.988
stable manual - reliable 0.48 0.13 3.59 0.001
stable unreliable - reliable 0.46 0.13 3.45 0.002

Note. SE = standard error, p = p-value.

Table 10 
Post Hoc Contrasts of Model 3: Interaction Effect of automation reliability on 
number of task switches.

Automation level Contrast Estimate SE t-ratio p

manual flexible - stable 0.78 0.13 5.86 <0.001
unreliable flexible - stable 0.61 0.13 4.54 <0.001
reliable flexible - stable 0.14 0.13 1.05 0.297

Note. SE = standard error, p = p-value.
Table 11 
Results of the best-fitting linear-mixed models explaining mental workload and 
trust in automation.

Outcome b CI t p

Mental Workload
stable −0.56 [-0.93, −0.20] −3.07 0.002
unreliable −6.94e−03 [-0.45, 0.44] −0.03 0.975
reliable −0.90 [-1.34, −0.46] −4.00 <0.001

Trust in automation
reliable 2.07 [1.79, 2.35] 14.63 <0.001

Mistrust in automation
reliable −1.55 [-1.82, −1.28] −11.37 <0.001

Note. For the calculation of trust and mistrust in automation, the manual con-
dition has been excluded from the analysis. b = beta, CI = 95% Confidence In-
terval, t = t-value, p = p-value.
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2023a; Stasch et al., 2024). This improvement likely results from a 
flexible task switching ability associated with cognitive flexibility, since 
the task switching costs were lower in the flexible condition compared to 
the stable condition. Evidence for that notion is provided by Siqi-Liu and 
Egner (2020), Braem and Egner (2018), as well as Dreisbach and Fröber 
(2018), indicating that greater cognitive flexibility is associated with 
smaller switching costs.

Reliable automation enhanced secondary task performance, whereas 
manual and unreliable automation conditions produced similar perfor-
mance levels, aligning with findings from Chavaillaz et al. (2016), 
showing that low-reliability impairs secondary task performance. A 
possible reason for the improvement with reliable automation, but not 
between the manual and unreliable conditions, may be that it reduced 
the cognitive load associated with the primary tracking task. According 
to Wickens’ 4-D multiple resource model (Wickens, 2002), the ability to 
perform multiple tasks simultaneously, depends not only on the amount 
of mental resources each task requires but also on the type of resources. 
Tasks that require different types of resources can be performed more 
efficiently together than tasks that rely on the same resource. In the 
present study, reliable automation of the tracking task likely reduced the 
mental load on visual-spatial processing and spatial-manual responses, 
freeing up these resources to be used for secondary tasks (e.g., system 
monitoring, resource management), which also required these re-
sources. As a result, reliable automation led to improved secondary task 
performance. In contrast, unreliable automation continued to demand 
attention for the tracking task, even when no input was required (50%), 
occupying the same cognitive resources as the manual condition and 
leading to no improvement in secondary task performance.

Visual attention analysis via eye-tracking shows that participant in 
the stable control mode made longer, but not more frequent, fixations on 
the tracking task, replicating the result of Stasch and Mack (2023a). 
Furthermore, the stable control mode led to fewer, but longer, fixations 
on the system monitoring, communication, and resource management 
task, expect for the fixation duration on the system monitoring task, 
which is also in line with Stasch and Mack (2023a). The fact that the 
stable control mode demonstrated an effect on the fixation duration in 
this study might be attributed to the larger sample size offering greater 
test sensitivity. The task switching data indicates that operating under a 
stable control mode significantly reduced the frequency of task switches. 
These results support the notion that the task-switching ability is 
diminished, but accompanied by enhanced goal-shielding, under a sta-
ble control mode (Dreisbach and Fröber, 2019). Furthermore, low en-
tropy values, indicating a more predictable scanning sequence, and a 
coefficient K greater than 0, which suggests a focus on focal processing 
(Krejtz et al., 2016) were found in the stable condition compared to the 
flexible condition.

Participants fixated the tracking task less frequently with reliable 
automation, which aligns with Sato et al. (2023), who found that higher 
trust in automation correlates with reduced fixation frequency. Reliable 
automation of the tracking task increased both fixation frequency and 
duration on the system-monitoring, communication and resource man-
agement task, suggesting it indeed released visual-spatial processing 
resources from the tracking task, which in turn could be utilized for 
more detailed task processing on the other tasks. Notably, also unreli-
able automation increased the number of fixations, but not the fixation 
duration, on the system monitoring task, while no effect on of unreliable 
automation was detected on the performance level. Together with the 
finding that the coefficient K was lower than 0 (indicating ambient vi-
sual processing) in the unreliable condition, this result might be 
explained by the fact that the stimuli in the system monitoring task, 
namely the moving scales and the color-change in the F5 and F6 buttons 
acted as bottom-up cues attracting visual attention. Since the fixation 
duration was not enhanced with unreliable automation, this result can 
simply be a result of distraction, since the scales were also moving 
during the entire trial.

Additionally, reliable automation further reduced task switching 

compared to manual control and unreliable automation. This reduction 
is likely because participants did not need to frequently check the status 
of the tracking task. However, when the tracking task was reliably 
automated and participants were in a stable control mode, task 
switching increased. This increase may be due to participants priori-
tizing the tracking task and frequently checking it with brief fixations, as 
intended by the experimental design. Generally, the reliable automation 
condition was associated with ambient visual processing (Coefficient K 
< 0). Additionally, reliable automation decreased mental workload, as 
reflected in lower NASA-TLX scores, which may have allowed partici-
pants to allocate more resources to monitoring secondary tasks and 
process these tasks with ambient visual attention, which would be 
explainable with the previously mentioned 4-D multiple resource model 
of Wickens (2002).

The present eye-tracking metrics provide insights not only into their 
relationship with cognitive control modes but also offer interpretations 
in terms of Situational Awareness (SA)—the ability to perceive elements 
in the environment over time and space (Level 1 SA), understand their 
significance (Level 2 SA), and anticipate their future status (Level 3 SA; 
Endsley, 1995). Van de Merwe et al. (2012) demonstrated that 
eye-tracking metrics can serve as indicators of different SA levels in the 
cockpit: higher fixation rates and dwell times correlate with information 
acquisition (Level 1 SA), while lower entropy values suggest an ability to 
efficiently guide information acquisition activities (Level 3 SA). Addi-
tionally, Lounis et al. (2020) found that high Coefficient K values may 
reflect over-focalization, potentially diminishing SA (Sarter and Woods, 
1991).

In the stable condition, decreases in secondary task performance 
could be related to a reduction in SA. This is further supported by de-
creases in fixation count and duration in the stable condition, which, 
according to van de Merwe et al. (2012), might indicate low Level 1 SA. 
However, in the present study, entropy values were also lower in the 
stable condition, suggesting high Level 3 SA—a result that does not align 
with observed performance decrements. Generally, higher SA levels are 
associated with improved performance (Endsley, 1990; Endsley and 
Kiris, 1995; Ma and Kaber, 2007). However, a recent meta-analysis by 
Bakdash et al. (2022) suggests that the predictive validity of SA for 
performance is relatively weak, with significant variation among effect 
sizes, which could explain this discrepancy.

Conversely, a reduction in mental workload was not observed in the 
unreliable automation condition. In this case, participants likely antic-
ipated potential failures and maintained an active task-set for the 
tracking task, preventing a reduction in workload. Finally, the results of 
the trust questionnaire indicate that the reliable condition was positively 
associated with trust in automation and negatively associated with 
mistrust, confirming that the reliability manipulation functioned as 
intended.

4.1. Implications for the interface design

The current findings have several implications for the interface 
design of human-machine systems. Firstly, the observed interaction ef-
fects between control mode and automation level, as reflected in various 
eye-tracking metrics, underscore the importance considering a tasks 
automation level for the accurate diagnosis of the cognitive control 
mode. Failing to correctly identify whether a system’s task is operating 
in a manual, unreliable, or reliable mode can lead to misdiagnosis of the 
control mode, potentially resulting in inappropriate adaptations within 
the adaptive assistance system and a degraded human-machine 
performance.

Assuming an accurate diagnosis of the control mode and automation 
reliability level, how might an adaptive assistance system further sup-
port an operator? The results indicate that adapting to control mode and 
automation level is not a one-size-fits-all solution. This adaptation de-
pends on whether the system is functioning reliably or unreliably. Four 
plausible scenarios can be considered, extending the modifications 
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proposed by Stasch and Mack (2024): the system’s automated subtask 
may be functioning reliably or unreliably, while the operator’s control 
mode may be stable or flexible.

4.1.1. Reliable automation & stable control mode
In this scenario, overall task performance is high and mental work-

load rather low. Despite the good performance and low mental work-
load, task performance, particularly in subtasks, could be further 
improved if the operator were in a flexible control mode. An adaptive 
assistance system could address this by increasing the intensity of 
warning signals of other subtasks, potentially redirecting visual atten-
tion and allowing for deeper cognitive processing of those.

4.1.2. Reliable automation & flexible control mode
This combination yields the best performance among all scenarios, 

but it is associated with higher workload levels compared to when the 
system has reliable automation and the operator is in a stable control 
mode. Therefore, it is crucial to closely monitor the operator’s workload, 
potentially through psycho-physiological measurements (Brookhuis and 
de Waard, 2010; Schwarz et al., 2014). In the event of workload over-
load, the system could be adapted to increase automation, potentially 
achieving full reliable automation of subtasks to reduce overall task 
load.

4.1.3. Unreliable automation & stable control mode
This scenario is characterized by improved take-over behavior 

compared to a flexible control mode. However, other subtasks may 
suffer in performance due to the operator’s focus on responding to un-
predictable system failures. To support this control mode during severe 
disruptions of the primary task—reflecting its urgency and importance 
in that instance—the adaptive assistance system could simplify the 
interface to minimize distractions from non-relevant details. In a team 
context, other subtasks might also be delegated to team members in a 
flexible control mode to prevent mental overload situations.

4.1.4. Unreliable automation & flexible control mode
Manual take-over behavior would benefit from a stable control 

mode, so adaptation should enhance the saliency of the primary task to 
improve take-over behavior. Results showed no significant performance 
differences between manual and unreliable operating modes, but 
switching entirely to a manual operation mode in that instance needs to 
be evaluated in future studies.

4.2. Limitations

The study effectively validates the use of gamification for manipu-
lating cognitive control through task prioritization (Stasch and Mack, 
2023b), demonstrates how the stability-flexibility dilemma impacts 
performance, and provides valuable insights into attention distribution 
via eye-tracking. However, several limitations should be noted. First, the 
MATB (Multi-Attribute Task Battery) simulates tasks that, while rele-
vant, are abstracted from real-world multitasking scenarios faced by 
pilots. Additionally, the study predominantly involved local university 
students, which limits the generalizability of the findings to an expert 
sample. Moreover, the stability-flexibility dilemma was experimentally 
manipulated rather than observed in natural settings. Also the fact that 
the current study found no difference between a manual operation mode 
and unreliable automation on a performance level should be considered 
with caution, since this finding contradicts findings from previous 
research using a different experimental task. Therefore, future research 
should aim to replicate these results in high-fidelity multitasking envi-
ronments with naturally varying task prioritization. Furthermore, the 
study used only two extremes of automation reliability (50% and 100%). 
Further research should examine how more nuanced levels of automa-
tion reliability, as explored by Avril et al. (2021), might affect perfor-
mance in relation to the stability-flexibility dilemma. Lastly, the efficacy 

of the proposed recommendations for how an adaptive assistance system 
could support operators in a stable or flexible control state requires 
further evaluation in future studies.

5. Conclusion

Promoting a flexible control mode is advisable when the automated 
system is functioning reliably. However, when the system is unreliable, a 
stable control mode provides better primary task performance, though it 
may impact secondary task performance. Accurate user state diagnosis 
in the perceive stage, considering automation reliability, is crucial for 
effective adaptive assistance. Future research needs to explore addi-
tional interaction effects, such as varying levels of automation reliability 
and their impact on task performance.
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