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Abstract
The gravitational field of a planetary body is most often modeled by an exterior spherical harmonic series, which is uniformly
convergent outside the smallest mass-enclosing sphere centered at the origin of the coordinate system, known as the Brillouin
sphere. The model can become unstable inside the spherical boundary. Rarely deliberated or emphasized is an obvious fact
that the radius of the Brillouin sphere, which is the maximum radius coordinate of the body, changes with the origin. The
sphere can thus be adjusted to fit a certain convex portion of irregular body shape via an appropriate coordinate translation,
thereby maximizing the region of model stability above the body. We demonstrate that it is, while perhaps counterintuitive,
rational to displace the coordinate origin from the center of figure, or even off the body entirely.We review concisely the theory
and a method of spherical harmonic translation. We consider some textbook examples that illuminate the physical meaning
and the practical advantage of the transformation, the discussion of which, as it turns out, is not so easily encountered. We
provide seminormalized as well as fully normalized version of the algorithms, which are compact and easy to work with for
low-degree applications. At little cost, the proposed approach enables the spherical harmonics to be comparable with the far
more complicated ellipsoidal harmonics in performance in the case of two small objects, Phobos and 433 Eros.

Keywords Spherical harmonics · Coordinate system translation · Gravitational field

1 Introduction

Spherical harmonics (SHs) form a well-known solution to
the Laplace’s equation in the spherical coordinate system,
and are most commonly used for gravity modeling of the
Earth and extraterrestrial bodies. The gravitational poten-
tial is often expressed as a truncated series (Heiskanen and
Moritz 1967),

V = GM

R

nmax∑

n=0

n∑

m=0

(
R

r

)n+1

P̄nm(sin ϕ)

(
C̄nm cosmλ + S̄nm sinmλ

)
, (1)

where r , λ, and ϕ are the spherical coordinates of radius,
longitude, and latitude, respectively, of the field point. GM
is the gravitational parameter. R is a reference radius. P̄nm
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are the normalized associated Legendre polynomials (ALPs)
of degree n and order m. The normalized field coefficients,
C̄nm, S̄nm , measure the phases and amplitudes of the field
variations at corresponding wavelengths. They are related to
the body’s mass density moments:

[
C̄nm

S̄nm

]
= 1

(2n + 1)MRn

∫
rn P̄nm(sin ϕ)

[
cosmλ

sinmλ

]
dM,

(2)

where the integration is over volume occupied by the body
mass. Themass distribution is referred to a uniform sphere (or
concentric shells), the nonzero-degree coefficients measure
“nonsphericity,” e.g., center-of-mass offset, oblateness, etc.,
of the body.

Evaluation in spherical coordinates is intuitive and effi-
cient, making the model suited for analyzing the dynamics
of field objects, such as spacecraft motion often referred to a
(nonrotating) celestial frame (Brouwer and Clemence 1961;
Scheeres 2012). By means of trigonometry the nonspheri-
cal potential can be converted into orbital elements and the
body’s angle of rotation. The perturbed motion is derived in
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terms of time-varying elements directly, where the signatures
of model coefficients can be distinguished (Kaula 1966). The
coefficients are estimated in the orbit determination from
observations of perturbed spacecraft motion (Montenbruck
and Gill 2000). The SH model has been the standard issue in
gravity field recovery campaigns for large and small plane-
tary bodies alike.

Which is not to say the SHs always provide an optimal
solution. Depending on the body shape and the desiredmodel
resolution, a SH series may be neither stable nor efficient.
With each term yielding a global contribution, cancelation
of model signals occurs at all resolutions and all locations
(Beylkin and Cramer 2002). It becomes particularly undesir-
able at small wavelengths, or local scales, where unnecessary
nullification increases computational cost. Regional, mul-
tiresolutional approaches have been proposed as a more
efficient alternative (Freeden 1984; Vermeer 1995; Kusche
et al. 1998; Schmidt et al. 2007; Klees et al. 2008; Jones
et al. 2011). The instability lies with the spherical reference.
The validity of the series is unconditional outside a limiting
sphere that encloses the bodymass but generally unsupported
otherwise. Evaluation near a nonspherical shape, e.g., over
flattened and concave surface areas, below the sphere risks
the model to often unpredictable errors. This issue is briefly
reviewed below.

1.1 Convergence of SH series

The series in (1) is, as nmax → ∞, uniformly convergent if
r > rmax, where rmax is the maximum radius of body mass.
The condition is derived directly from the expansion of the
reciprocal distance, or point-mass potential (Hobson 1931,
see the example in sect. 2.1). The Brillouin sphere is defined
as centered at the coordinate origin and with radius rmax,
touching the outermost point of the body (Fig. 1). The behav-
ior when r < rmax is complicated and depends on the body’s
mass distribution, i.e., C̄nm, S̄nm . Convergence within the
Brillouin sphere is possible for certain distributions (Moritz
1980). An extreme example is the potential of a homoge-
neous sphere, equivalent to that of a point mass. When the
coordinate origin is located at the center, the potential is given
by a single term, GM/r , which is valid everywhere except
at the origin, i.e., into the body where Laplace’s equation
does not apply. The same singularity, when placed above the
body (e.g., in a “grain of sand” or a “mountain” on top of
the Earth), can upset the convergence thereat and underneath
(Krarup 1969; Moritz 1980).

For generic shapes or landscapes encountered on plane-
tary objects, many numerical investigations have invariably
revealed divergent behavior of the SH model in the form
of outstanding errors beyond a certain degree. The symp-
tom is especially acute for small irregular-shaped objects,
e.g., asteroids, natural satellites, on which a mountain can

dominate the global figure. (See, e.g., Sjöberg 1980; Jekeli
1981, 1983;Werner and Scheeres 1996; Garmier and Barriot
2001; Hu and Jekeli 2015; Reimond and Baur 2016; Sebera
et al. 2016; Hirt and Kuhn 2017; Bucha and Sansò 2021).
Costin et al. (2022) presented a proof that the SH series is
virtually always divergent inside the Brillouin sphere for a
multi-peak planetary topography. The attenuation rate of the
surface harmonics gave the same impression (Kholshevnikov
1977; Kholshevnikov and Shaidulin 2015).

Krarup (1969) leveraged Runge’s theorem and proved
the existence of a harmonic function whose domain extends
down to a(n arbitrary) sphere fully inside the body (and thus
includes the entire free space) and which approximates the
true potential arbitrarily well. The series of that function is
then without question convergent on and everywhere exte-
rior to the body. However, this well-behaved, approximating
series, which may or may not be easily found (since no
specific recipe was given concerning its formulation; see,
however, Klees et al. 2008; Bucha and Sansò 2021), is essen-
tially different from, and says nothing about the divergent
behavior of, the original SH series. That is, its existence
should by no means be interpreted as an insurance of the
model defined by Eqs. (1) and (2), with which this work is
solely concerned.

1.2 Choice and translation of coordinate origin

The choice of the coordinate system origin rarely comes into
question in practice. It seems only natural to set the origin
close to the center of the body, e.g., of the (geometric) fig-
ure or its mass distribution. Doing so means that a model
is referred formally to a sphere of radius R that approxi-
mates the body’s global shape as closely as possible, and
thus maximizes the model efficiency capturing the field vari-
ations around the body (even if a sphere may be inherently a
poor fit).

In most cases, there is no need to emphasize (or harm to
omit) that the Brillouin sphere is centered at the origin of the
chosen coordinate system; (see Fig. 2-10, p. 60, Heiskanen
and Moritz 1967, or Fig. 1 here). Because its radius is deter-
mined by rmax, the Brillouin sphere is not the smallest (i.e.,
minimum-volume) sphere enclosing the body (which would
generally havemultiple contact points on the surface), though
the difference should be small for a nearly spherical shape.
A translation of the origin will generally change rmax and
result in a different Brillouin sphere (Fig. 1B).

In the new coordinate system, say, of r ′, λ′, ϕ′, the model
by Eq. (1) will comprise a different set of coefficients
(Fig. 2). They refer to the same mass distribution and have
the same physical meaning as defined by Eq. (2). However,
the corresponding density moments are now measured in
terms of r ′, λ′, ϕ′. For example, the degree-1 coefficients,
proportional to the Cartesian coordinates of the body’s cen-
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Fig. 1 Spherical boundaries.
Brillouin sphere (centered at O)
differs from the smallest
enclosing sphere of body mass
(centered at �) in origin as well
as radius (A). Translation of
origin from O to O ′ results in a
different Brillouin sphere (B).
The interior of the Brillouin
sphere is light-shaded in red

Fig. 2 Coordinate systems. ρ denotes translation vector measured in
the old system. The position vectors of the field point are r(r , ϕ, λ) and
r′(r ′, ϕ′, λ′) before and after translation, respectively. The translation
is expressed by Eq. (11)

ter of mass, vanish if the origin coincides therewith after
translation; similarly, the degree-2 coefficients of polar and
equatorial “oblateness” are (re)measured about the new
coordinate axes (see Sect. 3.3). We note that the tesseral
coefficients, C21, S21, which measure the body’s product of
inertia, likewise change with the coordinate system.

1.3 Statement of problem

Crucially, the convergence space exterior to the Brillouin
sphere changes after a coordinate translation. The effect may
not be appreciable for a small translation, e.g., from the center
of figure to the center of mass located often close by (or from
� to O in Fig. 1A). A large translation, comparable to the
body dimensions for instance, inevitably enlarges the Bril-
louin sphere whereby the total convergence space schrinks
(Fig. 1B).

Totality has little meaning, however, if the model validity
is overall doubtful, which is often the case around distinctly
nonspherical objects (Fig. 1A). It may be sensible to sacrifice
the globality of the model, if doing so can ensure its stability
on a local scale. Specifically, the case of interest is a relatively
flat, yet convex, surface portion (with respect to the global
figure), which can be the polar region of an oblate body, or
around the short axis of the elliptical equator. A translation
can be designed to (just about) maximize the body radius by
that over the area (as indicated by r ′

max Fig. 1B). Thisway, the
new Brillouin sphere closely fits the area in question while
extending away from (all) the rest. The convergence space,
while reduced overall, approaches the local surface to the
extent possible.

Here we explore this simple strategy of trading model
integrity for its local stability and demonstrate its effective-
ness in improving the performance of the SH model around
nonspherical bodies.

2 Effect of coordinate origin onmodel
performance

We examine numerically three cases of series divergence: the
potentials of a point mass, the Martian moon Phobos, and
the asteroid 433 Eros. The point-mass case is also a well-
known, theoretical example, by which the error signatures of
the divergence are most easily identified. (Whereas, it seems
that a specific numerical demonstration, however obvious
and unnecessary one may assume, is not easily found in the
literature.) Phobos andEros both represent typical, nonspher-
ical bodies. Phobos is however close to an ellipsoid and thus
still “regular” in shape; Eros is highly irregular. The base
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simulations for Phobos and Eros are reproduced from results
in several previous studies, Hu (2012), Hu and Jekeli (2015),
and Hu (2016). We will examine the effect of a coordinate
translation in each case.

2.1 Point mass

Let a point mass be located at the North Pole, r = (0 0 1)T.
The series expansion of its potential is derived from that of
the reciprocal distance:

1

�
= 1

|r − r| =
∞∑

n=0

r−n−1C̄n0 P̄n(sin ϕ), C̄n0 = (2n + 1)−1/2.

(3)

As indicated in almost any textbook, the series is convergent
everywhere r > 1, hence the designation exterior series. Less
often explicated yet easily verifiable, e.g., via the nth-term
test, is that the exterior series is divergent everywhere r < 1.

Because we deal with finite-resolution models in practice,
it is the error behavior of a truncated series that is of interest.
Figure3 shows the difference of the series up to degree 5 and
15 from the true �−1 in percentage within the y-plane. The
regions within and outside the Brillouin sphere exhibit con-
trasting behaviors.Where the series is convergent, increasing
the model resolution reduces errors. The errors of the two
model resolutions are dominated by those of degrees 6 and
16, respectively, indicating they are residual, or due to series
truncation, by character. The attenuation of errors with dis-
tance results from the fact that signals decrease in amplitude
at all resolutions, in this case, at degrees 6 and 16.

Where r < 1, the errors are more significant and intensify
with depth, e.g., reaching 100 % quickly below the Brillouin
sphere. The pattern also differs in that the frequencies are
visibly dominated by degrees 5 and 15, respectively, e.g.,
within the 100-% contours. This clearly indicates the errors
are divergent in nature, as the omission errors would be only
eminent beyond the model resolution. Another telltale sign
is the intensification of errors with both resolution and depth,
with the 100-%contours pushing toward theBrillouin sphere.
The errors will still approach as the resolution increases fur-
ther and fill the Brillouin sphere asymptotically.

Note that using Eq. (3) to evaluate a single point-mass
potential would be incomprehensible in practice. The infinite
series reduces to the 1/r , if the coordinate origin is translated
to coincide with the point mass.

2.2 Phobos

TheBrillouin sphere of Phoboswith respect to the same coor-
dinate system for the shape model by Willner et al. (2014)
is shown in Fig. 4A. The flattened figure leaves 56 % of

the volume unoccupied, as the polar regions withdraw into
the Brillouin sphere. The maximum depth in excess of 6km
occurs near the South Pole. Significant departure exists also
around the equator with a secondary ellipticity and within
the largest crater Stickney.

We assume Phobos has a uniform density of 1876 kg/m3

(Andert et al. 2010). The gravitational field model of the
body is obtained via a boundary value problem (Heiskanen
and Moritz 1967),

[
C̄nm

S̄nm

]
= R

4πGM

∫ 2π

0

∫ π/2

−π/2
V (R, ϕ, λ)P̄nm(sin ϕ)

[
cosmλ

sinmλ

]
cosϕdϕ dλ, (4)

where the potential V is evaluated on the Brillouin sphere
using the method byWerner and Scheeres (1996). Numerical
quadrature is based on a grid of 100×200 points in latitude
and longitude, respectively. The same approach was adopted
in Hu (2012) and Hu and Jekeli (2015), where the impact of
the finite grid resolution on the derived coefficients as well
as on the reconstructed potential was discussed in detail.

The evaluation error of the model is defined as the dis-
crepancy from the truth in percentage:

�V (%) = V̂ − V

V
× 100 %, (5)

where V̂ is evaluated by the model. We note that V must
also be erroneous compared with the “real” potential of the
polyhedron, which is theoretically exact. The errors depend
on the machine precision as well as algorithms of the numer-
ical computation. However, because the field coefficients are
directly evaluated from V , the imperfection of the latter does
not affect the assessment of the SH model errors via Eq. (5).

Figure4B and 4C show the errors of the models up to
degree 5 and 20, respectively, in a plane containing the polar
(z) axis and crossing Stickney. The errors display similar
patterns to those in Fig. 3 but are smaller in magnitude, sug-
gesting their behavior depends on themass distribution. They
are extensively reduced at degree 20, both outside and within
a certain distance into the Brillouin sphere. In the immediate
vicinity of the body, however, the errors become intensified
at the higher-frequency similar to the divergence effect. The
comparison is most evident on the body surface (panels D
and E). The maximum errors, occurring in both cases at the
poles, were enhanced from 5.2 % to 94 % at degree 20.

A sphere can be adjusted to fit the local surface curvature
closely. This cannot be achieved by changing only the radius,
and the center position must be treated as additional parame-
ters.As an illustration,wedevise amodel for the northern half
of Phobos by setting the origin of the coordinate system to
(0.114, -1.16, -4.34) km in the original system. The position
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Fig. 3 Errors of Coulomb
expansion modeled by SH series
up to degree 5 (left panel) and
degree 15. The solid black line
contours the level of 100%.
Larger errors are over-saturated

Fig. 4 SH model for Phobos. A.
Depth of the body surface below
the Brillouin sphere. B.
Potential errors of the degree-5
model within a meridian plane
passing Stickney. C. Errors of
the degree-20 model in
comparison. D. Errors of the
degree-5 model on the body
surface. E. Errors of the
degree-20 model. Out-of-range
errors are represented uniformly
by the colors at the
corresponding limits
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Fig. 5 SH model for the
northern half of Phobos. A.
Depth of the body surface below
the Brillouin sphere centered at
(0.114, −1.16, −4.34) km. B.
Potential errors of the degree-5
model within the meridian plane
passing Stickney. C. Errors of
the degree-20 model in
comparison. D. Errors of the
degree-5 model on the body
surface. E. Errors of the
degree-20 model

is found as the center of best-fitting sphere to the northern half
of the shape model. The maximum body radius of 14.7 km
measured therefrom defines a new Brillouin sphere, which
covers snugly the northern half of Phobos but bulges away
from the south (Fig. 5A).

The model, developed via (4) as before, shows the
expected dichotomous behavior. The region above the south
is more error-prone regardless of the model resolution
(Fig. 5D,E). The errors are amplified closer to the body,
i.e., clearly governed by the depth into the Brillouin sphere.
Increasing the model resolution from degree 5 to 20 exac-
erbates the errors from an overall depth of 5km. The
deterioration is again most notable on the surface with errors
exhibiting higher-frequency and stronger oscillations that
no longer represent omission signals. The maximum errors
increase from800% in the degree-5model to 109 % at degree
20, neither value has any practical meaning.

In comparison, the model remains desirably valid over
the north down to the body surface, evidenced by a signif-
icant error reduction as the model resolution increases. For
instance, the errors of the model up to degree 20 are mostly
contained within 1 % on the surface (with an indistinct error
pattern in 5E), an order-of-magnitude decrease from those in
the degree-5 model. Therefore, the displacement of the coor-
dinate origin off the body center has yielded a more reliable
model for the northern half of Phobos, at the expense of its
applicability over the south.

2.3 Eros

TheSHmodel exhibits onlymild shortcomings for the overall
convex Phobos, where the errors are comparable to the actual
potential in magnitude. Eros presents a more emphatic case
due to its elongated, partially bilobed shape. For example,
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the gravitational field of Phobos can be adequately modeled
by the ellipsoidal harmonic series, which accommodates the
triaxiality of the shape. However, the ellipsoidal model is far
from robust near Eros, an issue that will be revisited later in
this work.

Eros’ gravitational field is simulated using the shape
model of 10,000 facets by Thomas et al. (2002) and assuming
again homogeneity with a bulk density of 2670 kg/m3 for the
body (Miller et al. 2002). The Brillouin sphere has a radius
of 17.7 km, with 89 % of its volume unoccupied (Fig. 6A).
The waist formed by the depressions to both east and west is
the deepest region on the body, with the entire western side
(y < 0) sunken along a long, inward curve. The SHmodel in
the original coordinate system is subject to crippling errors
around the body, regarded (accentuated) here as over 100 %
in magnitude, far more severe than those encountered on
Phobos. Increasing the model resolution from degree 5 to 20
aggravates the errors, with the 100%contours expanding vis-
ibly toward the Brillouin sphere (Fig. 6B,C). The model up
to degree 5 incurs larger errors over 17 % of the surface area
(D), compared with 64% up to degree 20 (E). The maximum
errors of 104 % and 1013 % at the respective resolutions can
only be caused by series divergence.

Because the shape recedes on the western side, which can-
not be closely fit inside any (exterior) Brillouin sphere, we
attempt to improve the SH model over the north-eastern part
that is predominantly convex notwithstanding a larger crater,
Himeros (surrounding the positive y-axis) (Thomas et al.
2002). A translation of the origin to (-2, -11.5, -11.1) km
results in a Brillouin sphere of 23.7-km radius that closely
follows the overall convexity of the surface (Fig. 7A). As
in the case of Phobos, the new model exhibits a controlled
dichotomy, with errors effectively alleviated on the east-
ern side, even within Himeros, but intensified elsewhere
(Fig. 7B,C). The errors amount to several percent on average
on the body surface in the degree-5 model, with a maximum
of 11.9 % at the bottom of the crater (Fig. 7D). They are
reduced by one order of magnitude at degree 20, while the
maximum decreases more modestly to 6 % alluding to the
onset of the divergence effect that would intensify at higher
resolution at the depth (7E).

2.4 Summary

In the theoretical case of a shapeless point mass, the trans-
lation of the coordinate system contracts the SH series to
a single term of GM/r thereby minimizing the divergence
region to a singularity. On the other hand, the gravitation of
a finite, arbitrary shape, such as Phobos or Eros, generally
has an infinite bandwidth (even if a SHmodel is always trun-
cated). A translation of the origin can be devised to enhance
the stability of the SH model over a certain, convex portion
of the body. This is justifiable, when the original model is

overall incapacitated near the irregular shape so that model
degradation over other areas, however severe, causes no harm
so long as it is not applied globally.

It is conceivable to derive a few “semi-global” SHmodels,
each with their own origins and tailored for different regions
on the object of interest, such that the combination provides
global, reliable coverage of the entire shape (see Sect. 4).

3 Exterior SH series under coordinate
translation

Weconsider amore practical scenariowhere a base SHmodel
is available, e.g., determined from radio and optical tracking
of spacecraft (Montenbruck and Gill 2000). The goal is then
to derive a new, equivalent model after a coordinate system
translation. The formulation of a boundary value problem, as
demonstrated in the previous section, is possible but inconve-
nient. In particular, the boundary in this case should not be the
new Brillouin sphere, on which the original model would be
liable to divergence, but rather a (larger) concentric sphere
enclosing the original Brillouin sphere. Alternatively, it is
feasible to estimate in the least-squares sense a new model
that conforms to the existing over their common, convergent
space.

We adopt an analytic approach in this work. The trans-
formation properties of the SHs under a coordinate system
change have been well studied and documented for more
than a century, though the rotation problem had received a
bitmore attention and seen applications in geomagnetismand
quantum mechanics (Wigner 1959; Jeffreys 1965; Steinborn
and Ruedenberg 1973; Rico et al. 2013) In the geophysical
and geodetic literature, the coordinate translation was com-
prehensively treated by James (1969) and Aardoom (1969),
the latter of which dealt specifically with the gravitational
field of the Earth. Giacaglia (1980) showed how the SH
transformation is useful in various classic problems in celes-
tial mechanics and geodesy, e.g., expressing the disturbing
function of satellite perturbation, the mutual potential of two
bodies, etc., where multiple coordinate systems are involved.
Referring to James (1969), Casotto (2000) presented a trans-
formation formula for the field coefficients that conforms to
Aardoom’s.

We rewrite eq. (1) in the symmetric, complex, and for the
time being, unnormalized form,

V = GM

R

∞∑

n=0

n∑

m=−n

(
R

r

)n+1
Pm
n (sin ϕ) exp(−imλ)(Amn +iBm

n ).

(6)
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Fig. 6 SH model for Eros. A.
Depth of the body surface below
the Brillouin sphere. B. Potential
errors of the degree-5 model
within the equatorial plane. The
dashed black line indicates the
intersection of the Brillouin
sphere. C. Errors of the
degree-20 model in comparison.
D. Errors of the degree-5 model
on the body surface. E. Errors of
the degree-20 model. Errors
beyond 100 % in magnitude are
represented uniformly by the
colors at the corresponding
limits

The ALPs are defined alternatively to those in (1) (Hobson
1931):

Pm
n = (−1)m Pnm, m ≥ 0, (7)

and have the following properties

P−m
n = (−1)m

(n − m)!
(n + m)! P

m
n . (8)

The complex coefficients are defined by (Aardoom 1969;
Giacaglia 1980),

Am
n +iBm

n = (n − m)!
(n + m)!

1

MRn

∫

M
rn Pnm(sin ϕ) exp(imλ) dM,

(9)

where the coordinates in the integrand refer to the body inte-
rior. Analogous to the ALPs, the following relation exists

A−m
n + iB−m

n = (−1)m
(n + m)!
(n − m)! (A

m
n − iBm

n ). (10)

The conversion between Am
n + iBm

n and C̄nm, S̄nm can be
easily found but is of little use here. It will become evident,
however, via an intermediate (seminormalized) expression
(see Eq.19).

3.1 Aardoom’s transformation formula

Toestablish the transformationof theSHmodel under a trans-
lation, say

r′ = r−ρ, ρ = ρ (cosα cosβ cosα sin β sin α)T , (11)
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Fig. 7 SH model for the
north-eastern side of Eros. A.
Depth of the body surface below
the Brillouin sphere centered at
(−2,−11.5,−11.1) km. B.
Potential errors of the degree-5
model within the equatorial
plane. The dashed black line
indicates the intersection of the
Brillouin sphere.C. Errors of the
degree-20 model in comparison.
D. Errors of the degree-5 model
on the body surface. E. Errors of
the degree-20 model. Note the
reduced error range between
-10 % and 10 % compared to
that in Fig. 6

where ρ points from the current to the new origin (Fig. 2), it
is necessary to find the expression of the solid SHs. Aardoom
(1969) defineda complexvectoru(t) = (

1−t2 i(1+t2)−2t
)T.

It is easily found that (u ·r)n =
(
x + iy− t2(x − iy)−2t z

)n

satisfies the Laplace’s equation, irrespective of the free
parameter t . Let (u·r)n take the form up to the power of
t2n

(u · r)n = tn
n∑

m=−n

Hm
n (r) tm, (12)

where Hm
n is a generating function of degree n in terms of

r . It can be shown that Hm
n (r) is a solid harmonic (Hobson

1931, p.97),

Hm
n (r) = (−2)n

(−1)mn!
(n + m)! r

n Pm
n (sin ϕ) exp(imλ). (13)

(u · r′)n is given by the binomial expansion:

(u · r′)n =
n∑

k=0

(
n
k

)
(u · r)n−k(u · (−ρ)

)k
. (14)

Substituting (12) and (13) into (14) and rearranging the
indices of summation in accord with the power of the trailing
tm (the preceding tn will be canceled out) on both sides of
the equation leads to the transformation formula of the solid
SH:

r ′n Pm
n (sin ϕ′) exp(imλ′) =

n∑

k=0

jmax∑

j= jmin

(−1)n−k
(
n + m
k + j

)

ρn−k Pm− j
n−k (sin α) exp(i(m − j)β) rk P j

k (sin ϕ) exp(i jλ), (15)
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where jmax = min( k,m+n−k ) and jmin = max(−k,m−n+k )

consistent with Pm
n = 0 in case |m| > n.

The transformation of the coefficients proceeds with the
integration overmass by (9) on both sides of (15), after cance-
lation of the factors, (n+m)! and (k+ j)!, yields eventually:

A′m
n + iB ′m

n =
n∑

k=0

jmax∑

j= jmin

(−1)n−k (n − m)!
(n + m − k − j)!(k − j)!

( ρ

R′
)n ( R

ρ

)k

Pm− j
n−k (sin α)

exp(i(m − j)β)
(
A j
k + iB j

k

)
. (16)

The expression differs fromAardoom’s only by R′−n instead
of R−n in the radial function. The marginal difference arises
when we accommodate R′ �= R.

3.2 Normalization

3.2.1 Semi-normalization

The real normalized coefficients, C̄nm, S̄nm , are most com-
monly used in practice. To make use of (16), one could
de-normalize and convert them into complex coefficients,
distinguishing between positive and negative m, before the
transformation and subsequently convert and normalize the
resulting ones (back) into C̄ ′

nm, S̄′
nm (Casotto 2000). The pro-

cedure is entirely feasible but somewhat circuitous. We turn
to the seminormalized version:

P̃m
n =

√
(n − m)!
(n + m)! P

m
n , Ãmn + iB̃m

n =
√

(n + m)!
(n − m)!

(
Amn + iBm

n
)
,

(17)

which differs from theSchmidt seminormalization by a factor
of

√
2 (Winch et al. 2005).

There are two formal reasons to resort to seminormal-
ization. First, it suppresses the factorial ratio (n−m)!

(n+m)! and its
inverse in both the old and new models. Note that the mir-
roring of the ALPs and of the coefficients by (8) and (10),
respectively, is compacted as,

[
P̃−m
n

Ã−m
n + iB̃−m

n

]
= (−1)m

[
P̃m
n

Ãm
n − iB̃m

n

]
. (18)

Otherwise, many expressions used hereafter to interpret the
transformations would be cluttered with the ratios wher-
ever the ALPs or the complex coefficients appear (if not
the transformation formulas themselves), not to mention that
two sets of indices are involved and must be distinguished.
The conversion from the normalized into the seminormalized

coefficients is

Ãm
n + iB̃m

n = (−1)m
√

2n + 1

2 − δm0
(C̄nm + iS̄nm), m ≥ 0. (19)

Hence, the transformation formula (see Eq.21) will be
(almost) directly connected with the model by (1).

Second, thanks mostly to (18), seminormalization retains,
or even improves, the symmetry of the complex formu-
las. The potential has the exact same form as (6). The
decomposition formula involving negative-order harmonics
is compacted to the extent possible:

�−1 =
∞∑

n=0

n∑

m=−n

r ′n

rn+1 P̃
m
n (sin ϕ) exp(−imλ)

P̃m
n (sin ϕ′) exp(imλ′), (20)

assuming r ′ < r .
In particular, it is not difficult to show from (16) that the

transformation of the seminormalized coefficients exhibits
symmetry:

Ã′m
n + iB̃ ′m

n =
n∑

k=0

jmax∑

j= jmin

(−1)n−k

√(
n − m
k − j

)(
n + m
k + j

)

( ρ

R′
)n ( R

ρ

)k

P̃m− j
n−k (sin α)

exp
(
i(m − j)β

) (
Ã j
k + iB̃ j

k

)
. (21)

While this expression does not come with a computational
advantage, neither is the cost notably higher than that of (16).
In particular, the numerators of the binomial coefficients are
falling factorials of min

(
k ± j, n±m − (k ± j)

)
terms. The

true appeal is the ease to implement it with minimal coding
effort.

3.2.2 Transformation of real, normalized coefficients

Should one prefer to work directly with the real coefficients
C̄nm, S̄nm and the ALPs P̄nm instead of P̃m

n , the seminormal-
ized version (21) serves as a plain, intermediate expression
toward a fully normalized formula. Still, it seems most
straightforward to retain the negative indices of j , due to
its asymmetry about zero, but work only with C̄k| j |, S̄k| j | in
the original series. Recalling from Eq. (18) the conjugation
of Ã j

k + iB̃ j
k for j < 0 and the preceding (−1) j for j > 0,

the following expression can be obtained for m ≥ 0:

{
C̄ ′
nm

S̄′
nm

}
= (−1)m

√
1

2n + 1

n∑

k=0

jmax∑

j= jmin

(
− ρ

R′
)n (− R

ρ

)k
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×
√

δ′ 2k + 1

2(n − k) + 1

(
n − m
k − j

)(
n + m
k + j

)

(−1)max(0,m− j) P̄n−k |m− j |(sin α)

(−1)max(0, j)
[
C̄k| j |

{
cos(m − j)β
sin(m − j)β

}

+sgn( j) S̄k| j |
{− sin(m − j)β

cos(m − j)β

}]
, (22)

where

δ′ = 2 − δm0

(2 − δmj )(2 − δ j0)
=

⎧
⎪⎨

⎪⎩

1, if j = m, or j = 0;
1
4 , elseif m = 0;
1
2 , else.

(23)

3.3 Low-degreemodel demonstration

We consider a few theoretical examples demonstrating the
behavior of the SH model under a coordinate translation
effected by (22).

3.3.1 Point mass: transformation into finite-degree model

The potential of a point mass located at the North Pole, ρ =
(0 0 1)T, involves an infinite series of zonal SHs with C̄k0 =
(2k+1)−1/2 (Eq.3). As is theoretically known and illustrated
in Fig. 3, the series diverges everywhere inside the unit sphere
centered at the origin. Now, let the origin be relocated to ρ.
All ALPs other than P̄(n−k)0(sin π/2) = (

2(n − k) + 1
)1/2

in (22) vanish. Assuming R′ = R = 1, the transformation
becomes

C̄ ′
n0 =

√
1

2n + 1

n∑

k=0

(−1)n−k
(
n
k

)
= δn0 (24)

The potential is given by GM/� = GM/r ′, now rid of the
artificial divergence region due to the displacement of the
coordinate origin from the source.

3.3.2 Total mass, center of mass, and oblateness under
translation

The transformation should not change the physical meaning
of the coefficients regardless of the mass distribution. We
seek no proof here – it is given by Eq. (15) relating the trans-
lated solid harmonics to those in the original coordinates,
from which the coefficients are derived – and focus instead
on the expressions of a few low-degree coefficients in valida-
tion of Eq. (22) applicable to the normalized models, which
are most common in practice. Because the new coefficients
are affected by the original up to the same degree, namely,

k ≤ n, it is found immediately that C̄ ′
00 = C̄00 = 1, i.e., the

body mass is invariant.
The transformation of the degree-1 coefficients is: .

⎧
⎨

⎩

C̄ ′
10

C̄ ′
11

S̄′
11

⎫
⎬

⎭ = 1√
3R′

⎛

⎝− ρ√
3

⎧
⎨

⎩

P̄10(sin α)

P̄11(sin α) cosβ

P̄11(sin α) sin β

⎫
⎬

⎭+ √
3R

⎧
⎨

⎩

C̄10

C̄11

S̄11

⎫
⎬

⎭

⎞

⎠ .

(25)

Since P̄10(sin α) = √
3 sin α, P̄11(sin α) = √

3 cosα, the
first terms in the parentheses are−ρz ,−ρx , and−ρy , respec-
tively, as in Eq. (11). The Cartesian coordinates of the body’s
center of mass, which were originally 1

M

∫
(x y z)TdM =√

3R(C̄11 S̄11 C̄10)
T, are shifted by−(ρx ρy ρz)

T aftermodel
transformation.

The degree-2 zonal coefficient measures the polar oblate-
ness of the mass distribution: .

C̄20 = 1

5MR2

∫
r2 P̄20(sin ϕ)dM = 1√

5MR2

∫
z2 − x2 + y2

2
dM,

(26)

and undergoes a transformation,

C̄ ′
20 = 1√

5R′2

(
ρ2

√
5
P̄20(sin α) − ρR

[
2 P̄10(sin α)C̄10− P̄11(sin α)

(
C̄11 cosβ+ S̄11 sin β

) ]

+R2
√
5C̄20

)
. (27)

Incorporating (26) andρ2 P̄20(sin α)/
√
5 = ρ2

z −(ρ2
x+ρ2

y)/2
into the right-hand side gives

C̄ ′
20 = 1√

5MR′2

∫
(z−ρz)

2 − (x − ρx )
2 + (y − ρy)

2

2
dM,

(28)

which differs from (26) merely by a translation and the ref-
erence scale.

At last,we consider the sectoral case of r2 P̄22(sin ϕ) cos 2λ

=
√
15
2 (x2 − y2),

C̄ ′
22 = 1√

5R′2

{
ρ2

√
5
P̄22(sin α) cos 2β − Rρ

√
3P̄11(sin α)

[
C̄11 cosβ − S̄11 sin β

]
+ R2

√
5C̄22

}

= 1

5MR′2

√
15

2

∫
(x − ρx )

2 − (y − ρy)
2 dM, (29)

which measures the body’s equatorial flattening with respect
to the axis, x = ρx and y = ρy .
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Fig. 8 Surface depths of the
northern and southern halves of
Phobos (A) and Eros (B),
measured with respect to the
respective Brillouin spheres
after translation. The color scale
is as in Figs. 4 and 6

The integrals for other coefficients can be obtained in the
same way to verify the preservation of their physical mean-
ing.

4 Translatedmodels for Phobos and Eros

The feasibility of coordinate translation is a trade-off between
the robustness and the coverage of the SH model (Sect. 2.2
and 2.3). It is most practical when the resultant models are
not rendered too “local”, so that a few, say, two or three,
transformations suffice to ensure global coverage around the
body. That is to say, it does not take too many (Brillouin)
spherical segments to wrap around the body. This should be
the case for many small bodies with convex shapes. Global
concavities cannot be fit into an exterior sphere, however.

4.1 Phobos

In the case of moderately irregular Phobos, the translated
model shown in Fig. 5D and E is mostly reliable over the
north. To find a complementary hemispheric model, we
determine the best-fitting sphere of the south, in this case
originated at (0.21, -0.16, 2.86) km. The outermost point of
the shape has a radius of 14.47 km. It should be pointed
out this has not resulted in the smallest Brillouin sphere
of the south, namely, one that would minimize locally the
unoccupied volume of the spherical sector. The optimization,
and any practical advantage thereof, is beyond the scope of
this analysis. The depths of the body surface relative to the
respective Brillouin spheres are shown in Fig. 8A. The root-
mean-square of 3km with respect to the original Brillouin
sphere is nearly halved after translations, with the improve-
ment more significant in the north (Table 1).

We apply the formula of (22) for themodel transformation
up to degree 20. Figure9A shows the errors of the trans-
formed coefficients, C̄ ′

nm, S̄′
nm , evaluated as the discrepancy

from those derived via the boundary value problem in per-
centage. The errors increase with degree and remain under

Table 1 Depth statistics on Phobos and Eros with respect to Brillouin
spheres

Depth (km) Phobos Eros

North South Total North South Total

original Max 4.79 5.94 14.55 14.15

RMS 3.10 3.06 3.08 8.43 8.52 8.47

Translated Max 3.94 3.58 10.19 9.94

RMS 1.27 1.94 1.64 3.83 3.71 3.77

0.01 % up to degree 10. They are larger than the numerical
uncertainty of the quadrature, which amounts to the maxi-
mum of about 10−7.

We test two simple cases of model synthesis. First, only
the translatedmodels are used for the north and south, respec-
tively, distinguished by the latitude, which we designate as
the “translated” case (as inTable 2; Fig. 10). In the second, the
translated models are used together with the original, where
the model whose Brillouin sphere lies the closest to the field
point is selected for evaluation, which is distinguished as the
“translated+original” case.

We compare the results with those for the ellipsoidal har-
monic models (Hu 2012; Hu and Jekeli 2015). Phobos has
an exemplary triaxial figure, for which the ellipsoid serves
as a natural geometric as well as geodetic reference (though
less obvious, the same applies to the Earth, Hu 2017; Hu
et al. 2023). The Brillouin ellipsoid has semiaxes of 14.5,
12.5, 10.5 km, with 71.3 % of the volume filled by the body
compared to 44 % of the original Brillouin sphere (Fig. 11).
The ellipsoidal harmonic model is overall stable on Phobos’
surface. The potential error RMS of 0.15 % up to degree 20
is improved by more than an order of magnitude compared
with that of the SH model (Table 2). Errors exceeding 1 %
are localized along the equator, within the crater, and around
the South Pole. The maximum of 2.2 % increased slightly
by 0.6 % from that up to degree 10, which signals the gentle
onset of divergence at degree 20.

123



Translated spherical harmonics for semi-global… Page 13 of 17    25 

Fig. 9 Errors of translated coefficients for Phobos (A) and Eros (B). The upper (inverted) and lower triangles correspond to the models for the
northern and southern hemispheres in each case. The white lines separate C̄nm and S̄nm (left)

Table 2 Error statistics of
modeled potentials on Phobos
and Eros up to degree 20

�V Phobos Eros

Original Max 93.8% 6.4 × 1013%

RMS 4.46% 2.45 × 107%

Percentile (≤) 10% 98.2 25.4

1% 86.1 14.8

Translated Max 8.62% 5.24 × 103%

RMS 0.316% 352.8%

Percentile (≤) 10% 100 81.7

1% 98.9 64.0

Translated + original Max 5.44% 6.85 ×103 %

RMS 0.243% 767.8%

Percentile (≤) 10% 100 82.0

1% 99.1 66.6

Ellipsoidal harmonic Max 2.19% 2.21 × 104%

RMS 0.152% 735.2%

Percentile (≤) 10% 100 83.6

1% 99.5 70.4

The advantage over the translated SH model(s) is less
remarkable. The maxima and the RMS are smaller but on
the same order of 1 and 0.1 %, respectively. Both the SH
and the EH can be evaluated (up to degree 20) over about
99 % of the surface area, if potential errors no greater than
1 % are regarded as tolerable. We note that the combina-
tion of the translated and the original models yields a modest
improvement over the translation case,with a reduction of the
maximum and RMS errors by 3 % and 0.07 %, respectively
(Table 2). However, the ellipsoidal harmonics are intrinsi-
cally more efficient in the ellipsoidal spectrum and thus more
accurate around a triaxial body up to the same degree (or

requiring fewer terms to achieve the same accuracy) than the
SHs (Garmier and Barriot 2001). Hence, the leading metrics
of the ellipsoidal harmonic model hardly come as a surprise.

4.2 Eros

Similar to the approach for Phobos, we derive another trans-
lated SH model for the south-east of Eros, i.e., with the
concave western side knowingly excluded from considera-
tion. The translation vector is (−1.8 −11.6 11.9)T km and
the Brillouin sphere has a radius of 24.1 km. The separation
of the surface from the translated Brillouin spheres is notably
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Fig. 10 Potential errors of
combined translated SH models
for Phobos (A) and Eros (B) up
to degree 20

reduced compared with that from the original (Figs. 8B and
6A); the larger statistics compared with those for Phobos are
due to the misfit of the western part (Table 1). The model
extends the coverage of the one shown in Figure 7 to the
entire convex eastern side of Eros.

Because of the asymmetry along two (equatorial) axes,
Eros is a loose fit into the Brillouin ellipsoid with semiaxes of
23.1×10.1×7.6 km3, occupying 34.1 % of the volume. It is
unsurprising then that ellipsoidal harmonics are barely suited
for Eros and diverge near the nonellipsoidal body (Garmier
et al. 2002). Nevertheless, they are not nearly as impaired as
the original SH series (Fig. 6D,E), and can be applied over a
much larger surface area (Table 2).

Where the ellipsoidal model is compromised, i.e., around
much of the equatorial belt accounting for about 20 % of
the surface, the translated SH models prove to be at least in
part more resistant to failure. The errors are kept consistently
below 10 % over the eastern side, for which the translations
were purposed (Fig. 10B).We note again themarginal benefit
of combining the translated and the original models, where
the area fractions of errors below 10 % and 1 % expanded
from 81.7 % to 82.0 % and from 64.0 % to 66.6 %, respec-
tively. The EH and SH are both divergent on the concave
western side, while the translated model is affected over a
wider strip about the equator. The distributions of the errors
at 10 % and 1 % are similar, with the ellipsoidal model being
slightly more resilient (Table 2, Fig. 11).

5 Conclusion & discussion

It has been demonstrated that the translation of SH series
can be used to improve the stability of the gravitational field
model near a nonspherical body. The emphasis here is that a
coordinate translation (nearly) always changes the Brillouin
sphere, the consequence ofwhich however can only be appre-
ciated with a substantial shift. The approach trades the model
integrity for its local performance, a worthy sacrifice inmany

cases (e.g., Eros). Global modeling is achieved by the com-
bination of a few translated series. This flexibility allows the
SHs to rival, if not outperform, the far more sophisticated
EH model. While the SH translation has been well treated
across disciplines, a search in the literature has not yielded
any similar application (Fig. 11).

There could be two reasons for the singularity. First,
insofar as gravitational fieldmodeling is concerned, the trans-
lation problem has not been eagerly explored in a practical
light. For instance, a fieldmodel is rarely transformed explic-
itly via (16); indeed, the closed-form formula was used by
Aardoom (1969) to assess the impact of the center-of-mass
offset on other (low-degree) coefficients, a question that later
could be easily, if less deftly, solved via numerical meth-
ods. Second, effective alternatives to the SHs have been well
studied in the literature, which could obviate the divergence
issue of the global model (see, e.g., Klees et al. 2008). The
present study shows on the other hand that, by relinquishing
the global base, the translations can significantly alleviate the
divergence effect.

Equations (21) and (22) are equivalent to the original for-
mula by Aardoom and both can be easily implemented for
the model translation; the latter is less compact in form but
applies directly to the normalized gravity field models. They
obviate the need for the two-way conversion between the real,
normalized and the complex, unnormalized coefficients. We
have not attended to the computational aspect, as the formu-
las suffice for the low-degree applications, e.g., up to degree
20 in the case of Phobos and Eros. The transformation of
higher-degree models, should it be of interest, would require
further investigation.

A practical question is how to optimize the synthesis of
multiple models. This concerns maximizing the region of
model convergencewhile invoking as few translations as pos-
sible. The model transition across boundaries also needs to
be established. While this study could not touch these topics,
the results here can still offer some insight. For instance, that
the addition of the original to the translated models has not

123



Translated spherical harmonics for semi-global… Page 15 of 17    25 

Fig. 11 EH models for Phobos
and Eros. A. Surface depth of
Phobos with respect to the
Brillouin ellipsoid. B. Surface
depth of Eros. C. Errors of
modeled potential on Phobos up
to degree 20. D. Errors on Eros
up to model degree 20

proved beneficial (Table 2) suggests fine adjustment of the
Brillouin spheres is not of critical importance to model per-
formance. On the other hand, the most abrupt discontinuity
of errors occurred along boundaries where both models are
distinctly divergent (Fig. 10B), whereas the model transition
at reasonable error levels is relatively smooth. This implies
that the transition problem may only be relevant in the com-
mon divergence region of models.

The issue of (global) surface concavity, i.e., the western
side of Eros, was unaddressed. The exterior series is inade-
quate in this case. An interior SH series should be employed
instead, as discussed in Takahashi et al. (2013). That model is
also applied locally, since the convergence space is the inte-
rior of the Brillouin sphere, which touches and excludes the
body mass. It is worth pointing out that the exterior-interior
SH transformation can also be accomplished by a coordinate
translation; see James (1969).

AppendixA:Model uncertainty of Eros due to
numerical quadrature

The field coefficients derived via numerical quadrature
(Eq.4) contain numerical errors. In this appendix we disso-
ciate the overbar symbol from normalization, and Cnm, Snm

and Pnm are implicitly normalized quantities from now on.
The integration can be approximated as

[
Ĉnm

Ŝnm

]
= Inm(V ) = R

4πGM

×
200∑

i

100∑

j

V (R, ϕ j , λi )Pnm(sin ϕ j )

[
cosmλi
sinmλi

]
cosϕ j�ϕ j �λi ,

(A1)

where ϕ j , λi are, respectively, the latitude and longitude of
the grid point (i, j).

Rewrite the true potential as a partial sum in terms of
degree p and order q,

V =
∞∑

p=0

p∑

q=0

Vpq , (A2)

with Vpq = (Cpq cos qλ+ Spq sin qλ)Ppq(sin ϕ). Then, the
model potential errors can be expressed as

�V = V̂ − V = �V (CF) − �V (OM), (A3)

where �V (OM) is the omission error, i.e.,
∑∞

p=nmax+1
∑p

q=0

Vpq . The other component, �V (CF), is the contribution of
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Fig. 12 Numerical uncertainty of the original model for Eros up to degree 20. A. Total error, �V , on Brillouin sphere. B. Impact of coefficient
error, �V (CF), on Brillouin sphere. C. �V (CF)/|�V | in percentage on body surface

the coefficient errors, which we denote by

[
�Cnm

�Snm

]
=
[
Ĉnm

Ŝnm

]
−
[
Cnm

Snm

]
. (A4)

Theoretically, the orthogonality ensures Inm(Vpq) = [Cpq

Spq ]δnpδmq , where δi j is the Kronecker delta. Numerically,
however, the condition cannot be realized to perfection,
resulting in δ̂nn δ̂mm ≈ 1 and δ̂np δ̂mq ≈ 0 if n �= p or m �= q.

To assess the magnitude of �V (CF) we assume that

|�V (CF)| � |�V |, (A5)

i.e., the omission errors should not cancel out the effect of the
coefficient errors. Then, the impact of the numerical inaccu-
racy of Inm(Vpq) can be quantified by

[
�Ĉnm

�Ŝnm

]
= Inm(�V ). (A6)

Figure12 shows �V (CF) of the original model in com-
parison with the total error, �V , for Eros. On the Brillouin
sphere�V consistsmostly of omission signals and undulates
on the order of 0.01 % of the potential with a maximum of
0.3 % closest to the extremity of the body shape (A).�V (CF)

varies at the level of 10−6 %, i.e., 4 orders of magnitude
smaller than �V , and is thus negligible. The maximum of
5×10−4 % occurs at the poles (B). Amplified below the Bril-
louin sphere in the same way as the coefficients themselves,
the coefficient errors account for a part of the total error,
which exhibits a strong divergent behavior around the waist
(Fig. 6E). Figure12C shows that the error ratio,�V (CF)/�V ,
is mostly below 1%over the body surface. The coiled pattern
of some scattered, larger values results from the undulation
of �V whose magnitude diminishes at intervals. Thus, the

divergence effect of the model is not due to the contribution
of the coefficient errors.
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