
Relational Semantics for ProcessesMichael WinterDepartment of Computer ScienceUniversity of the Federal Armed Forces Munichemail: thrash@informatik.unibw-muenchen.dePeter Kempfdebis GmbH, Munichemail: peter.kempf@viaginterkom.deAbstractIn this paper we give a relation-algebraic model of processes. All stan-dard operations (including parallel composition/interleaving) of the Calculusof Communicating Systems CCS are interpreted by purely relational termswithout any inductive methods. We also introduce the notion of a relationalbisimulation which leads to a canonical representative of a bisimulation-classof processes.1 IntroductionThe standard model for the Calculus of Communicating Systems CCS is the syn-chronization tree model [4, 8], i.e., operational trees modulo bisimulation. Oneof the drawbacks of this approach is that there is no canonical representative of abisimulation class and that the de�nition of interleaving requires inductive methods.Our relational approach introduces a category of transition graphs with graph ho-momorphisms. On this category a notion of bisimulation is established, and it isproven that a bisimulation class, seen as a subcategory, has a terminal object whichserves as a canonical representative of this class. We will interprete the standard op-erations of CCS: pre�xing, relabelling, hiding, sum, interleaving by purely relationalmethods as functors on our category. Every process term P [X] has therefore anassociated functor F (X). The semantics of a recursive process de�nition X = P [X]is de�ned to be the terminal object of the bisimulation class of the �nal F -coalgebra.The paper is structured as follows: Based on some fundamentals on heterogeneousrelation algebras introduced in the second section we de�ne a category G of labelledgraphs and graph homomorphisms over a given relation algebra in Section 3.



2A main contribution of this paper is the introduction of the notion of a relationalbisimulation on G in Section 4. It is proven by purely relational means that everyequivalence class of bisimilar graphs has a terminal representative.In Section 5 we de�ne the standard operations of process calculi as suitable functorson this category. Thereby, the interleaving functor j : G � G �! G corresponding tothe parallel composition of two processes is de�ned without any inductive methods(e.g. using the expansion law [4]). Furthermore, we show that the transition rulesassociated with each operation are satis�ed.We assume that the reader is familiar with basic notions of the theory of hetero-geneous relation algebras and allegories (cf. [2, 5, 7]). We use the notation from[5].2 Heterogeneous Relation AlgebrasIn this section we recall some fundamentals on heterogeneous relation algebras.De�nition 2.1 A (heterogeneous abstract) relation algebra is a locally small cate-gory R consisting of a class ObjR of objects and a set R[A;B] of morphisms for allA;B 2 ObjR (we also use the notation R : A $ B to indicate that R 2 R[A;B]).The morphisms are usually called relations. Composition is denoted by \;" andidentities are denoted by IA 2 R[A;A]. In addition, there is a totally de�ned unaryoperation `AB : R[A;B] �! R[B;A] between the sets of morphisms, called conver-sion. The operations satisfy the following rules:1. Every set R[A;B] carries the structure of a complete atomic boolean algebrawith operations tAB;uAB; AB, zero element ??AB, universal element >>AB,and inclusion ordering vAB.2. The Schr�oder equivalencesQ;R vAC S () Q ;̀S vBC R () S;R`vAB Qhold for relations Q : A$ B;R : B $ C and S : A$ C.3. The Tarski rule R 6= ??AB =)>>CA;R;>>BD = >>CDholds for all R 2 R[A;B] and C;D 2 ObjR.All the indices of elements and operations are usually omitted for brevity and caneasily be reinvented.One might ask for the greatest solution of Q;X v R. Using the Schr�oder equiva-lences one gets X = Q ;̀R. This operation is called the right residual. By dualityone de�nes the left residual



3QnR := Q ;̀R; S=T := T ;S :̀A symmetric version of the residuals is the symmetric quotientsyQ(Q;R) := QnR uQ`=R`:By de�nition this relation is the greatest solution of the inclusions Q;X v R andX;R` v Q .̀As usual we de�ne the concept of mappings.De�nition 2.2 A relation R 2 R[A;B] is called1. univalent (or partial function) i� R`;R v IB,2. total i� IA v R;R`,3. injective i� R` is univalent,4. surjective i� R` is total,5. a mapping i� it is univalent and total.We also use the notation f : A �! B to indicate that f is a mapping in R[A;B].If Q : A$ B is univalent the equation (RuS;Q )̀;Q = R;QuS is valid for suitableR and S, and if Q is total we have Q;>>BC = >>AC . A proof of these properties canbe found in [7].Another important class of relations are equivalence relations.De�nition 2.3 A relation R 2 R[A;A] is called1. reexive i� IA v A,2. symmetric i� R` v R,3. transitive i� R;R v R,4. idempotent i� R;R = R,5. an equivalence relation i� it is reexive, transitive and symmetric.The reexive and transitive closure R� of a relation R is de�ned as the least relationcontaining R which is both reexive and transitive. It may be computed by R� =Fi2NRi where Ri := R; : : : ;R (i times).We now introduce the notion of unit objects which are the abstract version of sin-gleton sets.



4De�nition 2.4 An object I is called a unit i� II is the greatest morphism in R[I; I]and for every object A there is at least one total morphism in R[A; I]. R is calledunitary i� it has a unit.The unit I may also be characterized as a terminal object in the subcategory ofmappings, and is, hence, unique up to isomorphism. Following the categorical notionof elements, we de�ne a point as follows.De�nition 2.5 A mapping x : I �! A is called a point.One might be interested in the set of all points included in an arbitrary relation. Theso-called point axiom guarantees that this set is not empty. It may be formulatedas follows:Point Axiom: For every relation Q 6= ?? there are two points x; y such thatx ;̀ y v Q.Notice, that the point axiom implies representability [6].The relational description of pairing is the relational product [5, 7]. This construc-tion corresponds to the categorical product in the subcategory of mappings.De�nition 2.6 An object A� B together with two relations � 2 R[A� B;A] and� 2 R[A�B;B] is called a relational product of A and B i�� ;̀� = IA; � ;̀ � = IB;� ;̀ � = >>AB; �;�`u �; �`= IA�B:R has relational products i� for every pair of objects the relational product exists.The relational product of two objects is unique (up to isomorphism) [10]. We usethe following notations<P;Q> := P ;�`u Q; � ;̀ R � S :=<�;R; �;S>;whenever the projections exist. It is easy to see that<P;Q>;<R;S>` v P ;R`uQ;S :̀The validity of the converse inclusion is called the sharpness problem of relationalproducts. A set of su�cient conditions for sharpness can be found in [1]. Notice,that sharpness implies the following equalities<P;Q>; (R� S) =<P ;R;Q;S>;(P �Q); (R� S) = (P ;R �Q;S):However, if P is total we have<P;Q>; � = P ;� ;̀ � uQ = P ;>> u Q = Q



5and analogously <P;Q>;� = P if Q is total.The relational description of disjoint unions is the relational sum [5, 10]. Thisconstruction corresponds to the categorical product1. Here we want to generalizethis concept to not necessarily �nite sets of objects.De�nition 2.7 Let fAi j i 2 Ig be a set of objects indexed by a set I. An objectPi2IAi together with relations �j 2 R[Aj;Pi2IAi] for all j 2 I is called a relational sumof fAi j i 2 Ig i� for all i; j 2 I with i 6= j the following holds�i; �ì = IAi; �i; �j̀ = ??AiAj ; Gi2I �ì ; �i = IPi2IAi:R has relational sums i� for every set of objects the relational sum does exist.For a set of two objects fA;Bg this de�nition corresponds to usual the de�nition ofthe relational sum. We use the following notations_i2I Pi :=Gi2I �ì ;Pi; Xi2I Ri :=_i2I Ri; �i;whenever the injections exist. In the binary case we also write �; � instead of �1; �2,[P1; P2] instead of Wi2f1;2gPi and R1 +R2 instead of Pi2f1;2gRi. It is easy to verify that�j ;Wi2I Pi = Pj ; �j ;Pi2I Ri = Rj; �j;(Wi2I Pi);Q = Wi2I Pi;Q; (Pi2I Ri); (Wi2I Pi) = Wi2I Ri;Pi:As known, categorical products and hence relational sums are unique up to iso-morphism. Furthermore, every relation algebra may be embedded into one withrelational sums (cf. [2, 9]).As in set theory, relational products distribute over arbitrary sums. The inducedisomorphism is de�ned bydistr :=<_i2I �i;Xi2I �i> : Xi2I A�Bi �! A�Xi2I Bi:We have the following property of distrdistr; (R�Xi2I Si) = (Xi2I R � Si); distr:Given a symmetric idempotent (also known as a partial equivalence relation) onemight consider the object of (existing) equivalence classes and the correspondingpartial function mapping each element to its equivalence class.1By conversion, a relation algebra is self-dual. Therefore a product is also a coproduct andhence a biproduct.



6De�nition 2.8 A relation S : A$ A is called a split i� there is an object B and arelation R : B $ A such thatR`;R = S; R;R` = IB:It can be shown that the object B in the de�nition above is also unique up toisomorphism (cf. [2, 9]).3 Labelled GraphsThroughout this paper let R be a unitary heterogeneous relation algebra with a�xed object L from R such that the relational product L � A for every object Aexists2. Furthermore, we suppose that every symmetric idempotent is a split. Asshown in [2, 9], every relation algebra can be embedded into another one such thatthe latter property holds.In contrast to the synchronization tree approach, we model processes by labelledgraphs, also called transition graphs. For example, the recusive de�ned processP = c:b:a:P + a:(b:0 j c:0) may be modeled by the following graph.ttt tt����	 c @@@@Ra� b�������*a ?b ?cWe consider a labelled graph on a set of nodes Z as a relation from Z to L � Z.To obtain a convenient category we will consider suitable transition preserving (re-lational) homomorphisms [5].De�nition 3.1 The category G is de�ned as follows:1. An object of G is a pair (G;w) consisting of a relation G : Z $ L � Z and apoint w : I �! Z. G = (G;w) is called a L-graph with root w over the statespace Z.2. A morphism f : G1 �! G2 is a mapping f : Z1 �! Z2 in R such thatG1; (IL� f) v f ;G2 and w1; f = w2:f is called a homomorphism from G1 to G2.2This requirement gives us sharpness, but do not imply representability (cf. [1, 5]).



7An easy veri�cation shows that G is indeed a category.In the category G a subobject describes a subgraph starting at the same root. Tomodel a transition P a�! P 0 we are interested in subgraphs such that the new rootis successor of the original root.De�nition 3.2 Let a : I �! L be a point. An injective morphism f from G1 : Z1 $L� Z1 to G2 : Z2 $ L� Z2 withf ;G2 = G1; (IL� f) and w1; f v w2;G2; (a ;̀ a� IZ2); �is called a transition (in resp. with a) f : G1 a� G2. We write G1 a� G2 if such amorphism exists.Notice, that a transition morphism is not a morphism of the category G (but of R).Furthermore, the direction of arrows is reversed. Intuitively, G1 a� G2 indicatesthat G1 is an a-derivative of G2. For example, the process P de�ned above mayreduce (by an a-action) to b:0 j c:0. This situation is modeled by the followinga-transitionf . ttt tt����	 c @@@@Ra� b�������*a ?b ?c tt?b ?c�� fWithin a graph there may be an edge targetting at the root. For several purposeswe need to seperate the root from the rest of the graph in the sense that there areno edges of this kind.De�nition 3.3 Suppose R has relational sums. Then the extension of a graphG = (G;w) ext(G) = (ext(G); ext(w)) is de�ned by1. ext(G) := [w;G;G]; (IL� �) : I + Z $ L � (I + Z),2. ext(w) := � : I$ I + Z.In our example we gain the following graph. tttt tt�������� c AAAAAAAUa����	 c @@@@Ra� b�������*a ?b ?c



8In the next section we will show that G and ext(G) are bisimular. For the momentwe have to be satis�ed with the following lemma.Lemma 3.4 Let g : G1 a� G2 be a transition morphism. Then the mapping g;� : Z1�! I + Z2 is a transition morphism from G1 to ext(G2) with g;�; ext(w2)`= ??.Proof: Notice, that the composition of two injective mappings is a injective map-ping again. The calculationsg;�; ext(G2) = g;�; [w2;G2; G2]; (IL� �)= g;G2; (IL� �)= G1; (IL� g); (IL� �)= G1; (IL� g;�)and w1; g;� v w2;G2; (a ;̀ a� IZ2); �;�= w2;G2; (a ;̀ a� IZ2); (IL� �); �= w2;G2; (a ;̀ a� �); �= w2;G2; (IL� �); (a ;̀ a� IZ2); �= �; [w2;G2; G2]; (IL� �); (a ;̀ a� IZ2); �= ext(w2); ext(G2); (a ;̀ a� IZ2); �show that g;� is indeed a transition morphism. The required property follows fromg;�; ext(w2)`= g;�; �`= g;?? = ??: 24 Relational BisimulationAn important class of equivalence relations on processes are strong bisimulations.We are now going to establish a corresponding notion on G. First we modify thede�nition of a covering [5] of two graphs. We want to allow a covering to iden-tify two subgraphs which are identically labelled. This reects the fact that thecorresponding processes are bisimular.De�nition 4.1 A surjective homomorphism f from G1 to G2 withf ;G2 v G1; (IL� f)is called a L-covering.We write f : G1 �! G2 if f is a L-covering from G1 to G2, G1 �! G2 if such amorphism exists and G1 � G2 if there is a G3 such that G1 �! G3 and G2 �! G3.The next lemma is used several times throughout the paper. For this reason we donot explicitly mention it in any case.



9Lemma 4.2 Let be f : G1 �! G2. Then we have1. f ;̀G1 v G2; (IL� f`),2. If f is injective then f` : G2 �! G1.Proof:1. The assertion follows fromf`;G1 v f ;̀G1; (IL� f ; f`)= f ;̀G1; (IL� f); (IL� f )̀= f ;̀ f ;G2; (IL� f )̀= G2; (IL� f`):2. If f is injective the v in the proof of 1: is an equality and we have w2; f` =w1; f ; f`= w1. 2As mentioned in the last section there is a L-covering f from ext(G) to G. Thismorphism identi�es the new with the old root of the graph. In our example thestates at the top of the graph are mapped to the original root.Lemma 4.3 ext(G) �! G.Proof: Consider the surjective mapping [w;IZ] : I + Z �! Z. Then we have[w;IZ];G = [w;G;G]= [w;G;G](IL� IZ)= [w;G;G](IL� �; [w;IZ])= [w;G;G](IL� �); (IL� [w;IZ])= ext(G); (IL� [w;IZ])and ext(w); [w;IZ] = �; [w;IZ] = w: 2The identi�cation of subgraphs can be seen as a reduction process. In the nextlemma we show that this process is conuent. The required graph G4 is just thegraph which is obtained from G1 and the equivalence relation induced by the L-coverings f : G1 �! G2 and g : G1 �! G3.Lemma 4.4 If G1 �! G2 and G1 �! G3 then there is a G4 such that G2 �! G4 andG3 �! G4.



10Proof: Suppose f : G1 �! G2 and g : G1 �! G3. Then the relation A := (f ; f` tg; g )̀� is an equivalence relation on Z1. Futhermore, suppose R splits A. Then R`is a surjective mapping. De�neG4 := R;G1; (I�R`);w4 := w1;R ;̀h := f`;R ;̀k := g ;̀R`:Then w4 is a point because we havew4̀;w4 = R;w1̀;w1;R`v R;R`= I;w4;w4̀ = w1;R`;R;w1̀= w1;A;w1̀w w1;w1̀w I:Now, we want to show that (�) R = R; f ; f`:The �rst inclusion R v R; f ; f` is given by the totality of f and the other one byR; f ; f` = R;R`;R; f ; f` = R;A; f ; f`v R;A;A = R;A = R;R`;R = R:Using (�) we conclude h`;h = R; f ; f`;R`= R;R`= I;h;h` = f`;R`;R; f= f`;A; fw f`; f= Ithat h is a surjective mapping. The property w1; f = w2 gives us w1 v w1; f ; f` =w2; f` and �naly w2;h = w2; f ;̀R`w w1;R`= w4:



11The fact that both w4 and w2;h are mappings shows that w2;h = w4. Again using(�) we have f ; f`;G1; (I�R )̀ = f ; f`;G1; (I� f ; f`;R`)= f ; f`;G1; (I� f); (IL� f ;̀R`)= f ; f`; f ;G2; (IL� f ;̀R`)= f ;G2; (IL� f`;R )̀= G1; (IL� f); (IL� f`;R )̀= G1; (IL� f ; f`;R )̀= G1; (IL�R`)and analogously g; g`;G1; (I�R`) = G1; (IL�R )̀. This impliesA;G1; (I�R`) = (f ; f`t g; g )̀�;G1; (I�R`)= Gi2N(f ; f`t g; g`)i;G1; (I�R`)= G1; (I�R`):Finaly, the following computation shows that h is a L-coveringh;G4 = f ;̀R`;R;G1; (I�R`)= f ;̀A;G1; (I�R`)= f ;̀G1; (I�R`)= f ;̀G1; (I� f ; f`;R`)= f ;̀G1; (I� f); (IL� f`;R )̀= f ;̀ f ;G2; (IL� h)= G2; (IL� h):The required properties of k are shown analogously. 2In the last lemma we have shown that the identi�cation process of subgraphs isconuent. Furthermore, as we will show this process is terminating. In the languageof categories this property is expressed by the existence of suitable terminal objects.Given a graph G we denote with GG the subcategory of G which objects are allgraphs G0 � G and morphisms are L-coverings.Theorem 4.5 The category GG has a terminal object.Proof: Let G : Z $ L� Z be a graph. Consider the operation3� (R) := (G`n(IL�R);G`) u (G; (IL�R)=G):3The de�nition of this operation and its greatest �xpointAwas motivated by a simular de�nitionin [3].



12on R[Z;Z]. Obviously, � is monotonic (wrt. v) and hence has a greatest �xpoint A.Notice that A is by de�nition the greatest relation X in R[Z;Z] with X v � (X).This and the universal properties of the residuals show that the inclusions G`;X v(IL � X);G` and X;G v G; (IL � X) are su�cient for X v A. Furthermore, ifX is symmetric these inclusions are equivalent and only one has to be mentioned.Conversely, we have A v A such that A;G v G; (IL�A) holds.First, we want to show that A is an equivalence relation.A is reexive: Since IZ is symmetric and IZ;G v G holds we have IZ v A.A is transitive: We haveG`; (G`n(IL�A);G )̀; (G`n(IL�A);G )̀v (IL�A);G`; (G`n(IL�A);G )̀v (IL�A); (IL�A);G`= (IL�A;A);G :̀This gives us A;A = � (A); � (A)v (G`n(IL�A);G )̀; (G`n(IL�A);G )̀v G`n(IL�A;A);G :̀Analogously we compute A;A v G; (IL�A;A)=G. Together we have A;A v� (A;A) and hence A;A v A.A is symmetric: For an abitrary relation R we have� (R)` = (G`n(IL�R);G`)`u (G; (IL�R)=G)`= (G; (IL�R`)=G) u (G`n(IL�R`);G )̀= � (R )̀:This implies A`= � (A)`= � (A )̀ and hence A`v A.Suppose R splits A. Then we de�neGt := R;G; (IL�R`);wt := w;R`:By de�nition R` is a surjective mapping. The computationsR`;Gt = R`;R;G; (IL�R`)= A;G; (IL�R`)= G; (IL�A); (IL�R`)= G; (IL�A;R`)= G; (IL�R`;R;R`)= G; (IL�R`)



13and w;R` = wt show that R` is a L-covering from G to Gt.We need some technical properties of Gt for proving that this graph is a terminalobject in GG. First, consider the operation �t simular to � on R[Zt; Zt] de�ned by�t(R) := (Gt̀n(IL�R);Gt̀ ) u (Gt; (IL�R)=Gt)and its greatest �xpoint At. As above At is an equivalence relation. We want to showthat At = IZt holds. Notice, that we have At;Gt v Gt; (IL�At). The computationR`;At;R;G = R ;̀At;R;R`;R;G= R ;̀At;R;A;Gv R ;̀At;R;G; (IL�A)= R ;̀At;R;G; (IL�R`); (IL�R)= R ;̀At;Gt; (IL�R)v R ;̀Gt; (IL�At); (IL�R)= R ;̀R;G; (IL�R`); (IL�At;R)= A;G; (IL�R ;̀At;R)v G; (IL�A); (IL�R`;At;R)= G; (IL�A;R ;̀At;R)= G; (IL�R`;R;R`;At;R)= G; (IL�R`;At;R)and the symmetry of R`;At;R gives us R`;At;R v A. We followAt = R;R`;At;R;R` v R;A;R`= R;R`;R;R` = IZtand hence At = IZt.Suppose g : G �! Gt. Using Lemma 4.2 we haveR; g;Gt = R;G; (IL� g)v Gt; (IL�R); (IL� g)= Gt; (IL�R; g);Gt̀ ;R; g = (g`;R ;̀Gt)`= (g`;G; (IL�R`))`v (Gt; (IL� g )̀; (IL�R`))`= (IL�R; g);Gt̀ :This implies R; g v At = IZt and hence g v A; g = R`;R; g = R`. Since g and R`are mappings they are equal. This shows that R` is the unique L-covering from Gto Gt.Suppose G � G0. Then there is a graph G00 and L-coverings h; k with h : G �! G00and k : G0 �! G00. First, we want to show that R;h;h` = R. The computationh;h ;̀G v h;h ;̀G; (IL� h;h )̀



14 = h;h ;̀G; (IL� h); (IL� h )̀= h;h ;̀h;G0; (IL� h`)= h;G0; (IL� h )̀= G; (IL� h); (IL� h )̀= G; (IL� h;h )̀shows that h;h`v A. This implies our assertition byR;h;h`v R;A = R;R`;R = R v R;h;h :̀Now, we are ready to prove that k;h ;̀R` : G0 �! Gt as follows(k;h ;̀R`) ;̀ k;h ;̀R` = R;h; k ;̀ k;h ;̀R`= R;h;h ;̀R`= R;R`= IZ;k;h`;R ;̀ (k;h ;̀R`)` = k;h ;̀R`;R;h; k`w k;h ;̀h; k`= k; k`= IZ0;k;h ;̀R`;Gt = k;h ;̀G; (IL�R`)= k;h ;̀G; (IL� h;h`;R )̀= k;h ;̀G; (IL� h); (IL� h ;̀R )̀= k;h ;̀h;G00; (IL� h ;̀R )̀= k;G00; (IL� h`;R )̀= G0; (IL� k;h ;̀R`);w0; k;h ;̀R` = w00;h ;̀R`w w;R`= wt:Suppose l : G00 �! Gt. First, we want to show that k; k ;̀ l = l. The symmetry ofl ;̀ k; k ;̀ l and l ;̀ k; k ;̀ l;Gt = l ;̀ k; k ;̀G0; (IL� l)v l ;̀ k;G00; (IL� k`; l)= l ;̀G0; (IL� k; k ;̀ l)v Gt; (IL� l ;̀ k; k ;̀ l)implies l ;̀ k; k ;̀ l v At = IZt. This gives usk; k ;̀ l v l; l ;̀ k; k ;̀ l v l v k; k ;̀ l:



15By using this property a computation simular to the one above shows that h; k ;̀ lis a L-covering from G to Gt. We conclude h; k ;̀ l = R` andk;h`;R`= k;h ;̀h; k ;̀ l = k; k ;̀ l = l:This implies that Gt is indeed a terminal object in GG. 2In contrast to the tree approach this terminal object can be taken as a canonicalrepresentation of its equivalence class.The following theorem shows that G provides convenient models for processes.Theorem 4.6 If the point-axiom is valid, then the relation � is a strong bisimula-tion with respect to a�.Given G1 � G2 and G01 a� G1 the idea of the proof is reected by the followingdiagram: G01 G03-�G1 G3-�66a 66a G02� � G2� �66 66aThe existence of G02 and G03 is guaranteed by the following lemma.Lemma 4.7 1. If G01 a� G1 and G1 �! G3 then there is a G03 such that G01 �! G03and G03 a� G3;2. If G2 �! G3; G03 a� G3 and the point-axiom is valid then there is a G02 suchthat G02 a� G2 and G02 �! G03.Proof:1. Suppose f is a a-transition from G01 to G1 and g is a L-covering from G1 toG3. Then the relation A := g ;̀ f ;̀ f ; g is partial identity on Z3. Suppose thath splits A. Then h is a injective mapping and we de�ne G03 := h;G3; (IL�h`)and w03 := w01; f ; g;h`. Fromw03;w03` = w1; f ; g;h ;̀h; g ;̀ f`;w1̀= w1; f ; g;A; g ;̀ f`;w1̀= w1; f ; g; g ;̀ f`; f ; g; g ;̀ f ;̀w1̀w w1; f ; f ;̀ f ; f`;w1̀= w1;w1̀



16 w II;w03 ;̀w03 = h; g ;̀ f`;w1̀;w1; f ; g;h`v h;h`= Iwe conclude that w03 is a point and hence G03 a L-graph. Next, we want toshow that h;G3 = h;G3; (IL�A) holds. First we havef ; g;A = f ; g; g`; f ;̀ f ; g w f ; f`; f ; g = f ; g;and f ; g;A v f ; g. Furthermore, we geth ;̀h;G3 = A;G3= g`; f ;̀ f ; g;G3= g`; f ;̀ f ;G1; (IL� g)= g`; f ;̀G01; (IL� f ; g)which gives us h;G3 = h;h`;h;G3 = h; g ;̀ f`;G01; (IL� f ; g). Together we aimh;G3; (IL�A) = h; g ;̀ f`;G01; (IL� f ; g;A)= h; g ;̀ f`;G01; (IL� f ; g)= h;G3:Now, the computationG03; (IL� h) = h;G3; (IL� h )̀; (IL� h)= h;G3; (IL� h ;̀h)= h;G3; (IL�A)= h;G3;w03;h = w01; f ; g;h ;̀h= w01; f ; g;Av w01; f ; gv w1;G1; (a ;̀ a� I); �; g= w1;G1; (a ;̀ a� I); (I� g); �= w1;G1; (a ;̀ a� g); �= w1;G1; (I� g); (a ;̀ a� I); �= w1; g;G3; (a ;̀ a� I); �= w3;G3; (a ;̀ a� I); �shows that h is a a-transition.To see that G01 �! G03 de�ne k := f ; g;h .̀ By the de�nition of w03 the equationw01; k = w01; f ; g;h`= w03 holds. The computationsk ;̀ k = h; g ;̀ f`; f ; g;h`



17= h;A;h`= h;h ;̀h;h`= I;k; k` = f ; g;h ;̀h; g ;̀ f`= f ; g; g ;̀ f`; f ; g; g ;̀ f`w f ; f`; f ; f`= I;k;G03 = f ; g;h ;̀h;G3; (IL� h`)= f ; g;A;G3; (IL� h )̀= f ; g;G3; (IL� h`)= f ;G1; (IL� g;h`)= G01; (IL� f ; g;h`)= G01; (IL� k)gives us the assertation.2. Suppose f is a L-covering from G2 to G3, and g is a a-transition from G03to G3. Then the relation A := f ; g`; g; f` u IZ2 is a partial identity on Z2.Suppose h splits A and de�neG02 := h;G2; (IL� h )̀;w02 as a point contained in w03; f ; g`;k := h; f ; g`:Here the point axiom is used to obtain the root w02. In general, the relationw03; f ; g` is not univalent. Simular to point 1: it is shown that h is a a-transitionfrom G02 to G2 and k is a L-covering from G02 to G03. 25 G as a Model of ProcessesNow, we want to de�ne functors corresponding to the standard operations of CCS.Furthermore, we show that every transition rule associated with each operation isful�lled.De�nition 5.1 Suppose R has relational sums, and let a : I �! L be a point. Thepre�xing functor Pa : G �! G is de�ned by1. Pa(G) := [<a;w>;G]; (IL� �) : I + Z $ L � (I + Z),2. Pa(w) := � : I �! I + Z,3. Pa(f) := II+ f ,



18for G : Z $ L� Z;w : I �! Z and homomorphism f .The transition rule associated with the pre�xing is just the simple axiom|a:P a�! P :Pa(G) is, by de�nition, the graph containing a new root and exactly one transitionfrom this new root to old one via the label a.Lemma 5.2 Pa is a functor such that G a� Pa(G).Proof: Let f be a homomorphism from G1 : Z1 $ L � Z1 to G2 : Z2 $ L � Z2,and (I + Z1; �1; �1) respectively (I + Z2; �2; �2) be relational sums. Then we havePa(w1);Pa(f) = �1; (II+ f) = �2 = Pa(w2);and fromPa(G1); (IL� Pa(f)) = [<a;w1>;G1]; (IL� �1); (IL� Pa(f))= [<a;w1>;G1]; (IL� �1; (II+ f))= [<a;w1>;G1]; (IL� f ;�2)= [<a;w1>;G1]; (IL� f); (IL� �2)= [<a;w1>; (IL� f); G1; (IL� f)]; (IL� �2)= [<a;w1; f >;G1; (IL� f)]; (IL� �2)= [<a;w2>;G1; (IL� f)]; (IL� �2)v [<a;w2>; f ;G2]; (IL� �2)= (II+ f); [<a;w2>;G2]; (IL� �2)= Pa(f);Pa(G2)we conclude that Pa(f) is a homomorphism between Pa(G1) and Pa(G2). The otherproperties of a functor are easely veri�ed and therefore omitted.Obviously, � : Z �! I + Z is injective. Furthermore, we have�;Pa(G) = �; [<a;w>;G]; (IL� �) = G; (IL� �)and Pa(w);Pa(G); (a ;̀ a� I); � = �; [<a;w>;G]; (I� �); (a ;̀ a� I);�= <a;w>; (I� �); (a ;̀ a� I); �= <a;w>; (a ;̀ a� �); �= <a; a ;̀ a;w;�>; �= <a;w;�>; �= w;�:



19Hence, � is the required transition morphism. 2Relabelling and hiding are simular operations, i.e., hiding is a relabelling with apartial identity. This implies that both operations can be described by a commonclass of functors.De�nition 5.3 Let l : L$ L be univalent. Then the functor Fl : G �! G is de�nedby 1. Fl(G) := G; (l � IZ),2. Fl(w) := w,3. Fl(f) := f ,for G : Z $ L� Z;w : I �! Z and homomorphism f .Given a relabelling function f and a set L of labels, the corresponding transitionrules are P a�! P 0P [f ] f(a)�! P 0[f ] P a�! P 0PnL a�! P 0nL a 62 L:The second rule indicates that hiding has to be interpreted by FluIwhere l is thepartial identity induced by L.Lemma 5.4 Fl is a functor such that1. if l is total then G1 a� G2 implies Fl(G1) a;l� Fl(G2),2. if l v IL then G1 a� G2 and a ;̀ a u l = ?? implies FluI(G1) a� FluI(G2).Proof: Let f be a homomorphism from G1 : Z1 $ L � Z1 to G2 : Z2 $ L � Z2.Then we have Fl(w1); f = w1; f = w2 = Fl(w2)and from Fl(G1); (IL� Fl(f)) = Fl(G1); (IL� f)= G1; (l � IZ1); (IL� f)= G1; (l � f)= G1; (IL� f); (l � IZ2)v f ;G2; (l � IZ2)= Fl(f);Fl(G2)we conclude that Fl(f) is a homomorphism between Fl(G1) and Fl(G2). The otherproperties of a functor are trivial.



20 1. Suppose l is total and g : G1 a� G2. Then we haveg;Fl(G2) = g;G2; (l � IZ2)= G1; (IL� g); (l � IZ2)= G1; (l � g)= G1; (l � IZ1); (IL� g)= Fl(G1); g:From the computationFl(w1); g = w1; gv w2;G2; (a ;̀ a� IZ2); �v w2;G2; (l � IZ2); (l`� IZ2); (a ;̀ a� IZ2); �= Fl(w2);Fl(G2); (l ;̀ a ;̀ a� IZ2); �= Fl(w2);Fl(G2); (�; (a; l) ;̀ a;�`u �; � )̀; �= Fl(w2);Fl(G2); (�; (a; l) ;̀ a;>>u �)= Fl(w2);Fl(G2); (�; (a; l) ;̀ a; l;>>u �)= Fl(w2);Fl(G2); (�; (a; l) ;̀ a; l;�`u �; � )̀; �= Fl(w2);Fl(G2); ((a; l) ;̀ a; l� IZ2); �we conclude g : Fl(G1) a;l� Fl(G2).2. Suppose l v IL; g : G1 a� G2 and a ;̀ a u l = ??. Analogously to 1:, we haveg;FluI(G2) = FluI(G1); g. Usinga ;̀ a u l = ?? , a ;̀ a u l v ??, a ;̀ a v ?? t l = l) a ;̀ a v l u IL:and the inclusion4 a v a; a ;̀ a we conclude fromFluI(w1); g = w1; gv w2;G2; (a ;̀ a� IZ2); �v w2;G2; (a ;̀ a; a ;̀ a� IZ2); �= w2;G2; (a ;̀ a� IZ2); (a ;̀ a� IZ2); �v w2;G2; ((l u IL)� IZ2); (a ;̀ a� IZ2); �= FluI(w2);FluI(G2); (a ;̀ a� IZ2); �;that g : FluI(G1) a� FluI(G2). 24This formula is valid for all relations. A proof can be found [2, 5, 7, 9]



21The sum operation of CCS is de�ned for arbitary sets I of processes. In our frame-work a set of objects (resp. morphisms) of G is represented by a function from a setI to the objects (resp. morphisms) of G. The obvious de�nition of composition andthe identities turns this structure into a category GI . We call this category the I'spower of G. For simplicity we use a tuple-like notation (: : : ; Gi; : : :).De�nition 5.5 Suppose R has relational sums, and let I be a set. The functorSI : GI �! G is de�ned by1. SI(: : : ; Gi; : : :) := R; (Pi2I ext(Gi)); distr; (IL�R`),2. SI(: : : ; wi; : : :) := (R; Wi2I ext(wi) )̀ ,̀3. SI(: : : ; fi; : : :) := R; (Pi2I II+ fi);R0̀ ,where R : C $Pi2I I + Zi resp. R0 : C 0 $Pi2I I + Z 0i splits the equivalence relationS := (Gi;j2I �ì ; ext(wi) ;̀ ext(wj); �j) t IPi2I I+Ziresp. S0 := (Gi;j2I �ì ; ext(w0i) ;̀ ext(w0j); �j) t IPi2I I+Z0i :The sum of a set of graphs is, roughly, given by the disjoint union of the graphs andidentifying all roots. Associated with the sum operation is the following transitionrule Pi a�! P 0iPi2I Pi a�! P 0i :Lemma 5.6 SI is a functor such that G0i a� Gi implies G0i a� SI(: : : ; Gi; : : :).Proof: Notice, that R is total and surjective, and hence SI(: : : ; fi; : : :) is total.Furthermore, we have5S; (Xi2I II+ fi)= ((Gi;j2I �ì ; ext(wi) ;̀ ext(wj); �j) t IPi2I I+Zi); (Xi2I II+ fi)= (Gi;j2I �ì ; ext(wi) ;̀ ext(wj); �j); (Xi2I II+ fi) tXi2I II+ fi5Notice, that di�erent occurrences of � may point to di�erent injections, i.e., �rst injections torelational sums with di�erent second component.



22 = Gi;j2I �ì ; ext(wi) ;̀ ext(wj); (II+ fj); �j tXi2I II+ fi= Gi;j2I �ì ; ext(wi) ;̀ �; (II+ fj); �j tXi2I II+ fi= Gi;j2I �ì ; ext(wi) ;̀ �; �j tXi2I II+ fi= Gi;j2I �ì ; ext(wi) ;̀ ext(w0j); �j tXi2I II+ fi= Gi;j2I �ì ; � ;̀ ext(w0j); �j tXi2I II+ fi= Gi;j2I �ì ; (II+ fi); � ;̀ ext(w0j); �j tXi2I II+ fi= Gi;j2I �ì ; (II+ fi); ext(w0i) ;̀ ext(w0j); �j tXi2I II+ fi= (Xi2I II+ fi); (Gi;j2I �ì ; ext(w0i)`; ext(w0j); �j) tXi2I II+ fi= (Xi2I II+ fi);S 0:We refer to the last property by (�). Using (�) we concludeSI(: : : ; fi; : : :) ;̀SI(: : : ; fi; : : :)= R0; (Xi2I II+ fi) ;̀R ;̀R; (Xi2I II+ fi);R0̀= R0; (Xi2I II+ fì );S; (Xi2I II+ fi);R0̀= R0; (Xi2I II+ fì ); (Xi2I II+ fi);S0;R0̀v R0;S0;R0̀= R0;R0̀ ;R0;R0̀= IC0that SI(: : : ; fi; : : :) is a mapping. Furthermore, we have(Xi2I ext(Gi)); (Xi2I IL� (II+ fi))= Xi2I ext(Gi)); (IL� (II+ fi))= Xi2I [wi;Gi; Gi]; (IL� �); (IL� (II+ fi))= Xi2I [wi;Gi; Gi]; (IL� �; (II+ fi))



23= Xi2I [wi;Gi; Gi]; (IL� fi;�)= Xi2I [wi;Gi; Gi]; (IL� fi); (IL� �)= Xi2I [wi;Gi; (IL� fi); Gi; (IL� fi)]; (IL� �)v Xi2I [wi; fi;G0i; fi;G0i]; (IL� �)= Xi2I [w0i;G0i; fi;G0i]; (IL� �)= Xi2I (II+ fi); [w0i;G0i; G0i]; (IL� �)= Xi2I (II+ fi); ext(G0i)= (Xi2I II+ fi); (Xi2I ext(G0i)):Using the last property and (�) we getSI(: : : ; Gi; : : :); (IL� SI(: : : ; fi; : : :))= R; (Xi2I ext(Gi)); distr; (IL�R`); (IL�R; (Xi2I II+ fi);R0̀ )= R; (Xi2I ext(Gi)); distr; (IL�R`;R; (Xi2I II+ fi);R0̀ )= R; (Xi2I ext(Gi)); distr; (IL� S; (Xi2I II+ fi);R0̀ )= R; (Xi2I ext(Gi)); distr; (IL� (Xi2I II+ fi);S 0;R0̀ )= R; (Xi2I ext(Gi)); distr; (IL� (Xi2I II+ fi);R0̀ ;R0;R0̀ )= R; (Xi2I ext(Gi)); distr; (IL� (Xi2I II+ fi);R0̀ )= R; (Xi2I ext(Gi)); (Xi2I IL� (II+ fi)); distr; (IL�R0̀ )v R; (Xi2I II+ fi); (Xi2I ext(G0i)); distr; (IL�R0̀ )v R; (Xi2I II+ fi);R0̀ ;R0; (Xi2I ext(G0i)); distr; (IL�R0̀ )= SI(: : : ; fi; : : :);SI(: : : ; G0i; : : :):



24The other properties of a functor are trivial. Suppose h : G0i a� Gi. Then there isg : G0i a� ext(Gi) such that g; ext(wi)`= ??. The computations(g; �i;R`) ;̀ g; �i;R` = R; �ì ; g ;̀ g; �i;R`v R; �ì ; �i;R`v R;R`= IC;g; �i;R`; (g; �i;R`)` = g; �i;R`;R; �ì ; g`= g; �i;S; �ì ; g`w g; �i; �ì ; g`= g; g`w IZ0ishow that g; �i;R` is a mapping. Using the fact that g; ext(wi)`= ?? we haveg; �i;R ;̀SI(: : : ; Gi; : : :)= g; �i;R ;̀R; (Xi2I ext(Gi)); distr; (IL�R`)= g; �i;S; (Xi2I ext(Gi)); distr; (IL�R`)= g; �i; ((Gi;j2I �ì ; ext(wi) ;̀ ext(wj); �j) t IPi2IZi); (Xi2I ext(Gi)); distr; (IL�R )̀= g; ((Gj2I ext(wi) ;̀ ext(wj); �j) t �i); (Xi2I ext(Gi)); distr; (IL�R`)= ((Gj2I g; ext(wi) ;̀ ext(wj); �j) t g; �i); (Xi2I ext(Gi)); distr; (IL�R`)= g; �i; (Xi2I ext(Gi)); distr; (IL�R`)= g; ext(Gi); �i; distr; (IL�R`)= G0i; (IL� g); �i; distr; (IL�R`)= G0i; (IL� g); (IL� �i); (IL�R`)= G0i; (IL� g; �i;R`):By computingw0i; g; �i;R` v ext(wi); ext(Gi); (a ;̀ a� IZi); �; �i;R`= ext(wi); ext(Gi); (a ;̀ a� IZi); (IL� �i;R )̀; �= ext(wi); ext(Gi); (a ;̀ a� �i;R )̀; �= ext(wi); ext(Gi); (IL� �i); (a ;̀ a�R`); �= ext(wi); ext(Gi); �i; distr; (a ;̀ a�R`); �= ext(wi); ext(Gi); �i; distr; (IL�R )̀; (a ;̀ a� IPi2IZi); �



25v (Gi2I ext(wi); ext(Gi); �i); distr; (IL�R`); (a ;̀ a� IPi2IZi); �= (_i2I ext(Gi) ;̀ ext(wi)`) ;̀ distr; (IL�R )̀; (a ;̀ a� IPi2IZi); �= ((Xi2I ext(Gi) )̀; (_i2I ext(wi) )̀) ;̀ distr; (IL�R`); (a ;̀ a� IPi2IZi); �= (_i2I ext(wi)`) ;̀ (Xi2I ext(Gi)); distr; (IL�R )̀; (a ;̀ a� IPi2IZi); �v (_i2I ext(wi)`) ;̀S; (Xi2I ext(Gi)); distr; (IL�R`); (a ;̀ a� IPi2IZi); �= (R;_i2I ext(wi) )̀ ;̀R; (Xi2I ext(Gi)); distr; (IL�R`); (a ;̀ a� IPi2IZi); �= SI(: : : ; wi; : : :);SI(: : : ; Gi; : : :); (a ;̀ a� IPi2IZi); �we conclude that g; �i;R` is a transition morphism from G0i to S(: : : ; Gi; : : :). 2Notice, that using just Gi instead of ext(Gi) does not give an adequate de�nitionof the sum operation. Consider the processes P1 = a:P1 and P2 = b:0. They aremodeled by the graphs: G1t����-a G2tt?bNot using the extension of G1 and G2 we would gain the following graph.t����Ra t@@@@RbThis graph seen as a process may produce the stream ab, which is not in the be-haviour of P1 + P2.Last but not least we de�ne the interleaving functor.De�nition 5.7 Suppose R has relational products. Then the interleaving functorj : G � G �! G is de�ned by1. G1 j G2 := (�;G1; (IL� � )̀ u �; � ;̀ � )̀ t (�;� ;̀ �`u �;G2; (IL� � )̀) a relationin R[Z1 � Z2; L� (Z1 � Z2)],2. w1 j w2 :=<w1; w2>,



26 3. f1 j f2 := f1 � f2,for G1 : Z1 $ L� Z1; G2 : Z2 $ L� Z2 and a homomorphism f .By de�nition the state space of G1 j G2 is the product Z1 � Z2. The next pictureshows an example of the interleaving of two graphs.G1tt t����	a ?c@@@@Rb G2tt?d G1 j G2tt t ttt�������� c @@@@Rd?a ����	a?d����	 b@@@@Rd ?b �������� cThe transition rule associated with interleaving isP a�! P 0P j Q a�! P 0 j Q Q a�! Q0P j Q a�! P j Q0 :The commutativity of relational products implies that our de�nition of the inter-leaving lead to a commutative functor. Therefore, it is su�cient to consider the �rstrule.Lemma 5.8 j is a functor such that G1 a� G2 implies G1 j G3 a� G2 j G3.Proof: We only show the second assertion. Suppose f : G1 a� G2. Then we have(f � IZ3); (G2 j G3)= (f � IZ3); ((�;G2; (IL� � )̀ u �; � ;̀ �`) t (�;� ;̀ �`u �;G3; (IL� � )̀))= (f � IZ3); (�;G2; (IL� � )̀ u �; � ;̀ �`) t (f � IZ3); (�;� ;̀ �`u �;G3; (IL� � )̀)= (�; f ;G2; (IL� � )̀ u �; � ;̀ � )̀ t (�; f ;� ;̀ �`u �;G3; (IL� � )̀)= (�;G1; (IL� f); (IL� � )̀ u �; � ;̀ �`) t (�; f ;� ;̀ �`u �;G3; (IL� � )̀)= (�;G1; (IL� f ;� )̀ u �; � ;̀ � )̀ t (�; f ;� ;̀ �`u �;G3; (IL� � )̀)= (�;G1; (IL� � ;̀ (f � IZ3)) u �; � ;̀ (f � IZ3); � )̀t(�;� ;̀ (f � IZ3); �`u �;G3; (IL� � ;̀ (f � IZ3)))= (�;G1; (IL� � )̀; (IL� (f � IZ3)) u �; �`; � ;̀ (IL� (f � IZ3)))t(�;� ;̀ � ;̀ (IL� (f � IZ3)) u �;G3; (IL� � )̀; (IL� (f � IZ3)))= ((�;G1; (IL� � )̀ u �; �`; � )̀; (IL� (f � IZ3))t(�;� ;̀ �`u �;G3; (IL� � )̀); (IL� (f � IZ3))= ((�;G1; (IL� � )̀ u �; �`; � )̀ t (�;� ;̀ �`u �;G3; (IL� �`))); (IL� (f � IZ3))= (G1 j G3); (IL� (f � IZ3)):



27Since (a ;̀ a� IZ2) is a partial identity and hence (a ;̀ a� IZ2); � univalent the com-putation(w1 j w3); (f � IZ3)= <w1; w3>; (f � IZ3)= <w1; f;w3>v <w2;G2; (a ;̀ a� IZ2); �;w3>= w2;G2; (a ;̀ a� IZ2); �;�`u w3; �`= w2;G2; (a ;̀ a� IZ2); (IL� � )̀; � u w3; �`= w2;G2; (IL� � )̀; (a ;̀ a� IZ2); � u w3; �`= (w2;G2; (IL� � )̀ u w3; � ;̀ �`; (a ;̀ a� IZ2)); (a ;̀ a� IZ2); �v (w2;G2; (IL� � )̀ u w3; � ;̀ �`); (a ;̀ a� IZ2); �v ((w2;G2; (I� � )̀ u w3; � ;̀ � )̀ t (w2;� ;̀ �`u w3;G3; (I� �`))); (a ;̀ a� IZ2�Z3); �= (<w2; w3>; (�;G2; (I� � )̀ u �; �`; � )̀t <w2; w3>; (�;� ;̀ �`u �;G3; (I� �`))); (a ;̀ a� IZ2�Z3); �= <w2; w3>; ((�;G2; (IL� � )̀ u �; �`; � )̀ t (�;� ;̀ �`u �;G3; (IL� � )̀)); (a ;̀ a� IZ2�Z3); �= (w2 j w3); (G2 j G3); (a ;̀ a� IZ2�Z3); �shows that f j IZ3 is a a-transition. 2We have not introduced a notion of communication. As usual this can be done bysplitting L into Li + Lo + I of input resp. output labels and a distinguished symbol� .6 ConclusionWe established a categorical model of process calculi based on abstract relationalgebra. The main advantage of this approach is the existence of a canonical repre-sentation of an equivalance class by its terminal object.Considering concrete relations, the representative of the interpretation of a processbuilt up by �nite summation (but arbitrary recursion) is a �nite graph. The equality(up to isomorphism) of �nite graphs is decidable and thus implies the decidabilityof strong bisimulation of such processes. This result corresponds to the theory of�nite state machines. But notice, that our graphs are not necessarily �nite. Asan example consider the graph SN(P0(;); P1(;); P2(;) : : :) where 0; 1; 2; : : : are thepoints induced by the natural numbers.



28References[1] Desharnais J.: Monomorphic characterization of n-ary direct products. In:Third International Seminar on the use of relational methods in computer sci-ence. (1997)[2] Freyd P., Scedrov A.: Categories, Allegories. North-Holland (1990)[3] Kawahara Y., Mori M.: Hennesy Milner Properties in Dedekind Categories. toappear[4] Milner R.: Communication and Concurrency. Prentice Hall (1989)[5] Schmidt G., Hattensperger C., Winter M.: Heterogeneous Relation Algebras.In: Relational Methods in Computer Science, Advances in Computing, 45{63Springer (1997)[6] Schmidt G., Str�ohlein T.: Relation Algebras | Concept of Points and Repre-sentability, In: Discrete Math. 54, 83{92 (1985)[7] Schmidt G., Str�ohlein T.: Relationen und Graphen. Springer (1989); Englishversion: Relations and Graphs. Discrete Mathematics for Computer Scientists,EATCS Monographs on Theoret. Comput. Sci., Springer (1993)[8] Winskel G.: Synchronization Trees. In: Theoret. Comput. Sci. 34, (1984)[9] Winter M.: Strukturtheorie heterogener Relationenalgebren mit Anwen-dung auf Nichtdetermismus in Programmiersprachen, Dissertationsverlag NGKopierladen GmbH, M�unchen, (1998).[10] Zierer H.: Relation Algebraic Domain Constructions. In: Theoret. Comput.Sci. 87, 163{188 (1991)


