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Vorwort / Preface

Durch die zunehmende Vertiefung der Bundeswasserstraßen im Küstenbereich hat sich

in den Ästuaren eine erhebliche Verschlickung entwickelt, der nur mit sehr aufwendigen

und kostspieligen Unterhaltungsmaßnamen entgegengewirkt werden kann. Vor allem die

Tideems weist in großen Bereichen kein reines Meerwasser mehr auf, sondern führt eine

so hohe Feststofffracht aus kohäsiven Sedimenten mit sich, dass trübe Flüssigschlicke

gebildet werden. Zur Evaluierung von Lösungsstrategien für diese Problematik benötigt

die wasserbauliche Systemanalyse Simulationsmodelle, mit denen man auch die Dynamik

von Flüssigschlicken modellieren kann. Hierfür haben die Bundesanstalt für Wasserbau

und das Institut für Wasserwesen der Universität der Bundeswehr München das Projekt

MudSim beim
’
Kuratorium für Forschung im Küsteningenieurwesen’ (KFKI) des BMBF

beantragt. Es beinhaltete

a) die Entwicklung eines rheologischen Modells für Flüssigschlicke aus rheometrischen

Messungen am Institut für Wasserwesen der Universität der Bundeswehr und

b) die Entwicklung eines numerischen Modells zur Simulation der Flüssigschlickdynamik

an der Bundesanstalt für Wasserbau in Hamburg.

Die Untersuchungen des Teilprojekts MudSim-A haben gezeigt, dass es möglich ist, das

Fließverhalten von Flüssigschlicken zu erklären und die Rheologie von Flüssigschlicken

hinreichend genau zu parametrisieren. Dargestellt werden die Ergebnisse dieses Teilpro-

jekts in den Mitteilungen des Instituts für Wasserwesen der Universität der Bundeswehr

München, Heft 111/2011. Die Ergebnisse der Modellentwicklung für die Simulation von

Flüssigschlickdynamiken des Teilprojektes MudSim-B sind in der vorliegenden Schrift

beschrieben.

In Ihrer hier vorliegenden Dissertationsschrift beschreibt Frau Dr.-Ing. Denise Wehr wie

man die Flüssigschlickdynamik mit einem isopyknischen Ansatz diskretisieren kann. Frau

Wehr konnte hiermit zeigen, dass es möglich ist, viele Details, wie z.B. die Ausbreitung

von internen Wellen zu simulieren. Frau Dr.-Ing. Wehr hat damit einen wichtigen Mei-

lenstein auf dem Weg zur integrierten Simulation eines Ästuars gesetzt, dessen Gezei-

tendynamik in weiten Bereichen durch turbulente Strömungen geprägt ist, in manchen

Bereichen aber auch Flüssigschlickzonen aufweist.

München, im Februar 2012 Prof. Dr.-Ing. Andreas Malcherek
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Abstract

The progressive extension and development of coastal waterways has led to an increase

in siltation and formation of fluid mud in sections of estuarine shipping channels, ports

and port approaches over the past decades. The need for a better understanding and

a profound knowledge of fluid mud dynamics has increased so that it is necessary to

develop new maintenance strategies and renaturation measures in estuaries as well as

optimize existing ones. Numerical simulations contribute to the evaluation of such

strategies. For that reason, the aim of this thesis is to enable the numerical simulation

of fluid mud dynamics.

Fluid mud forms by building up a structure of aggregates in regions in which there

is an increasing accumulation of cohesive sediments. Although the water content of

the high-concentration suspension can be very high, the flow behavior changes from

Newtonian to non-Newtonian. However, most of the current established hydrodynamic

numerical models solve the shallow water equations with a Newtonian assumption. A

standard numerical model approach for the Reynolds-averaged Navier-Stokes equations

is therefore extended in this thesis to cover the simulation of non-Newtonian behavior.

The developments are based on an existing numerical model in isopycnal coordinates.

A vertical resolution by isopycnal layers - layers of constant density - is pursued as the

flow can be strongly stratified in systems of high-concentration suspensions. In addi-

tion, sharp density gradients characterize the transitional area of fluid mud and water

body. The isopycnal discretization enables a vertically resolved simulation of the velocity

and density distribution inside the fluid mud body. The isopycnal layers interact due to

momentum transfer, mass transfer and interfacial shear stresses. Advective and gravi-

tational transport, mixing and settling of cohesive sediment suspensions are realized by

changes in the isopycnal layer thicknesses as each layer represents a suspension with a

specific sediment concentration. The vertical transport rates are determined by param-

eterizations of transport subprocesses and lead to variations in the layer thicknesses.

The rheology of fluid mud is dominated by the break-up and recovery of the internal

structure in response to shear impact (non-Newtonian behavior). A time- and space-

dependent rheological viscosity is therefore introduced into the internal stress terms for

the simulation of the rheological behavior of fluid mud.

Applications to schematic and realistic model domains demonstrate the abilities and

performance of the extended isopycnal numerical model for the simulation of fluid mud

dynamics such as simulation of fluid mud influenced by tidal currents.
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Zusammenfassung

In den letzten Jahrzehnten hat der fortschreitende Ausbau von Seeschifffahrtsstraßen

zu einer Zunahme der Verschlickung und Entstehung von Flüssigschlick in Bereichen

der ästuarinen Schifffahrtstraßen, Häfen und Hafeneinfahrten geführt. Der Bedarf an

fundierten Kenntnissen über die Flüssigschlickdynamik wächst, um neue Unterhaltungs-

strategien und Renaturierungsmaßnahmen in Ästuaren zu entwickeln und bestehende zu

optimieren. Numerische Modelle dienen als Werkzeug zur Beurteilung dieser Strategien

und Maßnahmen. Ziel der vorliegenden Arbeit ist daher, die numerische Simulation der

Dynamik von Flüssigschlick zu ermöglichen.

Flüssigschlick entsteht in Bereichen erhöhter Akkumulation von kohäsiven Sedimen-

ten. Diese bilden Aggregate und führen zum Aufbau einer inneren Struktur, mit der

sich das Fließverhalten der hochkonzentrierten Schlicksuspension von Newtonschen zu

nicht-Newtonschen Verhalten verändert. Die derzeit etablierten hydrodynamischen Mo-

delle lösen die Flachwassergleichungen unter der Annahme eines Newtonschen Flui-

des. In der vorliegenden Arbeit wird daher ein herkömmliches numerisches Verfahren

für die Reynolds-gemittelten Navier-Stokes Gleichungen für die Simulation von nicht-

Newtonschen Verhalten erweitert.

Die Entwicklungen für die Simulation der Flüssigschlickdynamik bauen auf einem be-

stehenden isopyknischen numerischen Modell auf. Eine vertikale Auflösung durch Iso-

pyknen - Schichten gleicher Dichte - ist in dieser Arbeit eingesetzt worden, um stark

geschichtete Strömungen in Gewässern mit hochkonzentrierten Suspensionen zu rea-

lisieren. Insbesondere die Grenzschicht zwischen Flüssigschlick- und Wasserkörper ist

durch einen ausgeprägten Dichtesprung gekennzeichnet. Die isopyknische Diskretisie-

rung ermöglicht die Dichte- und Strömungsverteilung im Flüssigschlickkörper vertikal

aufzulösen. Die isopyknischen Schichten interagieren durch Impulsaustausch, Massen-

austausch und Schubspannungen an den Grenzflächen. Jede Isopykne repräsentiert eine

Suspension mit entsprechender Sedimentkonzentration. Advektion und gravitationel-

ler Transport, Durchmischung und Absetzen kohäsiver Schwebstoffsuspensionen wird

durch Änderungen der Schichtdicke der Isopyknen realisiert. Die vertikalen Transportra-

ten zwischen den isopyknischen Schichten werden durch Parametrisierungen der Trans-

portteilprozesse bestimmt. Die Rheologie von Flüssigschlick wird durch Aufbrechen und

Neubildung der internen Struktur in Reaktion auf einwirkende Scherkräfte dominiert

(nicht-Newtonsches Verhalten). Das rheologische Verhalten wird im numerischen Mo-

dell durch eine zeit- und ortsabhängige rheologische Viskosität umgesetzt, die in den

Termen der inneren Spannungen der Impulsgleichung berücksichtigt wird.

Anwendungen auf schematische und realistische Modellgebiete verdeutlichen die Mög-

lichkeiten und Leistungsfähigkeit des weiterentwickelten isopyknischen numerischen Mo-

dells für die Simulation der Flüssigschlickdynamik. Weiterhin zeigen die Modellanwen-
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dungen, dass die Entwicklung von Flüssigschlick im tidebeeinflussten System mit diesem

Modellverfahren simuliert werden kann.
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herzlich bedanken für die konstruktiven, motivierenden Diskussionen und der anstecken-

den Freude an immer wieder neuen Forschungsaspekten, für die hilfreichen Hinweise im

richtigen Moment und für die vielen spontanen Gespräche, die trotz der Entfernung
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zum Forschen, der es mir ermöglicht hat in einem erfahrenen Kollegenkreis und in einer

technisch hervorragend ausgestatteten Umgebung promovieren zu können.
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Hamburg, im Februar 2012 Denise Wehr, geb. Knoch

X



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

XI



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

XII



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

Contents

1 Introduction 1

1.1 Motivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation und Zielsetzung . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Properties, Processes and Mathematical Description of Fluid Mud Dynam-

ics 7

2.1 Fluid Mud Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Rheology of Suspensions . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Introduction to Rheology . . . . . . . . . . . . . . . . . . . . . 9

2.2.2 Fluid Flow Behavior . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Rheological Characteristics of Suspensions . . . . . . . . . . . 10

2.2.4 Rheological Behavior of Fluid Mud . . . . . . . . . . . . . . . . 12

2.3 Fluid Mud Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 Formation of Fluid Mud . . . . . . . . . . . . . . . . . . . . . 13

2.3.2 Horizontal Transport Processes of Fluid Mud . . . . . . . . . . 15

2.3.3 Vertical Transport Processes of Fluid Mud . . . . . . . . . . . 16

2.3.4 Fluid Mud Dynamics under Tidal Flow . . . . . . . . . . . . . . 20

2.4 Mathematical Description of Fluid Movement . . . . . . . . . . . . . . 23

2.4.1 Basic Equations of Motion - Cauchy’s Equations of Motion . . 23

2.4.2 Decomposition of Motion . . . . . . . . . . . . . . . . . . . . 25

2.4.3 The Total Stress Tensor . . . . . . . . . . . . . . . . . . . . . 26

2.4.4 Internal Stress Tensor of a Newtonian Incompressible Fluid . . . 27

2.4.5 Internal Stress Tensor of a Non-Newtonian Fluid . . . . . . . . 28

2.5 Outline of Numerical Methods for the Simulation of Fluid Mud . . . . . 29

2.5.1 Evaluation of the Numerical Methods . . . . . . . . . . . . . . 31

3 Conceptual Model 33

3.1 Basic Concept and Properties of the Model . . . . . . . . . . . . . . . 33

3.2 Vertical Resolution due to Isopycnals . . . . . . . . . . . . . . . . . . . 35

3.3 Approximation for the Internal Stresses for High-concentrated Mud Sus-

pensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

CONTENTS XIII



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

3.4 Rheological Approach for Mud Suspensions . . . . . . . . . . . . . . . 39

3.4.1 Rheological Measurement of Fluid Mud Samples . . . . . . . . 41

3.4.2 Parameterization of the Worrall-Tuliani Model for Mud Suspen-

sions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.5 Rheological Viscosity in Three-dimensional Flow . . . . . . . . . . . . . 47

3.6 Mobilization of Mud Suspensions . . . . . . . . . . . . . . . . . . . . . 52

3.7 Settling of Mud Suspensions . . . . . . . . . . . . . . . . . . . . . . . 59

4 The Isopycnal Numerical Model 61

4.1 Governing Equations of the Three-dimensional Isopycnal Model . . . . 62

4.2 One-dimensional Isopycnal Model Vertically Resolved by

%-layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Numerical Approximation . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Diapycnal Mass Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Basic Explicit Approach for Mass and Volume Balancing . . . . 73

4.4 Properties of the Numerical Method . . . . . . . . . . . . . . . . . . . 75

5 Model Verification and Performance 79

5.1 Interfacial internal Waves . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Vertical Mass Transfer in a Sedimentation Tank . . . . . . . . . . . . . 83

5.3 Flow over a Ground Sill . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Fluid Mud Movement on an Inclined Plane . . . . . . . . . . . . . . . . 98

6 Application to the Ems Estuary 103

6.1 Model Section from Rhede to Herbrum . . . . . . . . . . . . . . . . . 105

6.2 Model of Emden Harbor . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Conclusions and Perspective 139

Appendices 147

XIV CONTENTS



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

A 3D Unstructured Isopycnal Model with Combined Vertical Discretization

of z-layers and %-layers 147

A.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

A.2 Numerical Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 150

A.2.1 Momentum Equation . . . . . . . . . . . . . . . . . . . . . . . 152

A.2.2 Free Surface Equation . . . . . . . . . . . . . . . . . . . . . . 154

A.3 Solution Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.3.1 Momentum Equation in Matrix Notation . . . . . . . . . . . . 156

A.3.2 Free Surface Equation in Matrix Notation . . . . . . . . . . . . 162

A.3.3 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

A.3.4 Vertical Velocity . . . . . . . . . . . . . . . . . . . . . . . . . 163

A.3.5 Time Step Limitation . . . . . . . . . . . . . . . . . . . . . . . 164

A.4 Properties of the Numerical Method . . . . . . . . . . . . . . . . . . . 165

B General Solution for Diapycnal Mass Transfer 167

Nomenclature 173

References 181

CONTENTS XV



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

XVI CONTENTS



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

List of Figures

1 Rheological constitutive laws. . . . . . . . . . . . . . . . . . . . . . . . 10

2 Shear-thickening and shear-thinning behavior. . . . . . . . . . . . . . . 12

3 Particle structures under shear impact. . . . . . . . . . . . . . . . . . . 13

4 Significant physical processes for fluid mud dynamics. . . . . . . . . . . 14

5 Vertical transport processes for cohesive sediments. . . . . . . . . . . . 17

6 Scheme of the vertical stress profile from mobile suspension to fluid

mud and to cohesive bed. . . . . . . . . . . . . . . . . . . . . . . . . . 19

7 Multi-layer system of fluid mud detected due to sediment echo sounder

measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

8 Fluid mud detected due to sediment echo sounder measurements in the

Ems Estuary during flood tide. . . . . . . . . . . . . . . . . . . . . . . 22

9 Scheme of dominant physical processes in a tide influenced cross-section. 23

10 Shear stress components at the cross-sections of a Cartesian system. . 27

11 Scheme of the isopycnal approach. . . . . . . . . . . . . . . . . . . . . 36

12 Aggregation and break-up of flocs. . . . . . . . . . . . . . . . . . . . . 40

13 Example of the results of rheological measurements - flow curve and

viscosity curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

14 Parameterization due to surface fitting. . . . . . . . . . . . . . . . . . 44

15 Yield stress as a function of the bulk density according to the parame-

terized Worrall-Tuliani model. . . . . . . . . . . . . . . . . . . . . . . . 46

16 Flow curves for different bulk densities according to the parameterized

Worrall-Tuliani model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

17 Rheological viscosity-shear rate relation for different bulk densities ac-

cording to the parameterized Worrall-Tuliani model. . . . . . . . . . . . 47

18 Analysis of the entrainment model according to Winterwerp et al. [2002]. 57

19 Analysis of the entrainment model according to Whitehouse et al. [2000]. 58

20 Settling velocity with regard to hindered settling for different gelling

concentrations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

21 Isopycnal model for three-dimensional flows. . . . . . . . . . . . . . . . 62

22 Scheme of the 1D% isopycnal model vertically resolved by %-layers. . . . 68

LIST OF FIGURES XVII



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

23 Mass transfer approach for a mixed system and a stratified system for

a three-layer example. . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

24 Scheme of the 3D isopycnal model vertically resolved by z- and %-layers. 77

25 Internal waves of test case 3 at initial state, 200 s and 600 s. . . . . . 81

26 Time series of the interfacial movement at the left and right boundary. 82

27 Observation of the total mass and total volume during the simulation. . 83

28 Sedimentation tank at initial state and after a few hours. . . . . . . . . 84

29 Transition area between mud suspension layers and clear water layer. . . 85

30 Simulated density distribution over depth and time. . . . . . . . . . . . 86

31 Initial density distribution in a longitudinal cross-section. . . . . . . . . 87

32 Isopycnal layer-averaged velocity (absolute values) in the longitudinal

cross-section of simulation (1). . . . . . . . . . . . . . . . . . . . . . . 90

33 Isopycnal layer-averaged velocity (absolute values) in the longitudinal

cross-section of simulation (2). . . . . . . . . . . . . . . . . . . . . . . 91

34 Isopycnal layer-averaged velocity (absolute values) in the longitudinal

cross-section of simulation (3). . . . . . . . . . . . . . . . . . . . . . . 92

35 Density distribution in the longitudinal cross-section of simulation (3). . 93

36 Rheological viscosity in the longitudinal cross-section of simulation (3). 94

37 Shear rate intensity in the longitudinal cross-section of simulation (1). . 95

38 Shear rate intensity in the longitudinal cross-section of simulation (2). . 96

39 Shear rate intensity in the longitudinal cross-section of simulation (3). . 97

40 Propagation of high-concentration layers - variations of simulation setup

(1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

41 Simulation results of model run (2), (1d), (3) and (4). . . . . . . . . . 101

42 Rheological viscosity of model run (1d) and (2) with a different color

scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

43 Overview of the Ems Estuary. . . . . . . . . . . . . . . . . . . . . . . 103

44 Bathymetry along the center line of the Ems waterway. . . . . . . . . . 104

45 Bathymetry and grid of the sectional model extending from Rhede to

Herbrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

46 Initial density distribution of the longitudinal section in the channel cen-

ter line. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

XVIII LIST OF FIGURES



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

47 Bathymetry of the longitudinal profile and top view of the profile with

marked positions for result output. . . . . . . . . . . . . . . . . . . . . 108

48 Simulated water levels by variation of the bottom roughness and com-

parison with measured data at Herbrum. . . . . . . . . . . . . . . . . . 109

49 Simulated water levels with variable rheological properties and compar-

ison with measured data at Herbrum. . . . . . . . . . . . . . . . . . . 109

50 Simulation results of the water level at the Herbrum position for simu-

lations (1), (2) and (3) and comparison with measured data at Herbrum.110

51 Water level and mean velocity (absolute values) at position 1, results

of simulation (1), (2) and (3). . . . . . . . . . . . . . . . . . . . . . . 112

52 Density distribution of the longitudinal section in the channel center line

of simulation (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

53 Density distribution of the longitudinal section in the channel center line

of simulation (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

54 Density distribution of the longitudinal section in the channel center line

of simulation (3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

55 Internal waves in the fluid mud layer. . . . . . . . . . . . . . . . . . . . 116

56 Mud accumulation in the harbor basin - results of simulation (2). . . . 117

57 Isopycnal layer-averaged velocity of the longitudinal section in the chan-

nel center line of simulation (1). . . . . . . . . . . . . . . . . . . . . . 118

58 Rheological viscosity of the longitudinal section in the channel center

line of simulation (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

59 Isopycnal layer-averaged velocity of the longitudinal section in the chan-

nel center line of simulation (2). . . . . . . . . . . . . . . . . . . . . . 120

60 Rheological viscosity of the longitudinal section in the channel center

line of simulation (2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

61 Shear rate intensity of the longitudinal section in the channel center line

of simulation (1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

62 Tidal dynamic of the lutocline - comparison between simulation results

and observations which result from 300 kHz ADCP measurements. . . 124

63 Scheme of basic flow pattern in a harbor basin located in the brackish

zone of an estuary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

64 Bathymetry and grid of the sectional model from Dukegat to Herbrum. 128

65 Initial vertical density distribution. . . . . . . . . . . . . . . . . . . . . 129

LIST OF FIGURES XIX



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

66 Simulated velocity pattern in the entrance to the Emden harbor basin. . 130

67 Observed drift paths during flood currents. . . . . . . . . . . . . . . . 131

68 Observed drift paths during flood currents. . . . . . . . . . . . . . . . 132

69 Comparison of simulated velocity patterns in the fluid mud body at a

depth of -9m with different barrier heights at the entrance to the Emden

harbor basin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

70 Isopycnal layer-averaged velocities in the profile along the harbor basin

with increased barrier height. . . . . . . . . . . . . . . . . . . . . . . . 134

71 Isopycnal layer-averaged velocities in the profile along the harbor basin

with reduced barrier height. . . . . . . . . . . . . . . . . . . . . . . . . 135

72 Simulated density distribution in the profile along the harbor basin. . . . 136

73 Observed fluid mud layer thicknesses in the Emden Outer Harbor by

echo sounder measurements with different frequencies. . . . . . . . . . 136

74 Vertical structure of isopycnals combined with z-layers. . . . . . . . . . 151

75 Definition of the z-layer and %-layer at isopycnal interfaces. . . . . . . . 151

76 Location, indices and interpolation of the horizontal velocity. . . . . . . 153

77 Locations and interpolation of the vertical viscosity. . . . . . . . . . . . 155

78 Scheme of the tridiagonal block matrix Anj which represents the vertical

viscosity terms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

79 Calculation of the vertical velocity by considering the horizontal fluxes

from bottom to top. . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

80 Definition of the neighboring interface for the mass balance. . . . . . . 168

XX LIST OF FIGURES



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

List of Tables

1 Overview of mud suspension concentrations. . . . . . . . . . . . . . . . 8

2 Analytical and numerical results of the wave celerity for different test

configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3 Simulation overview for the test case flow over a ground sill. . . . . . . 87

4 Simulation overview for the test case flow on an inclined plane. . . . . 99

5 Simulation overview for the model Rhede to Herbrum. . . . . . . . . . 106

6 Initial density distribution over depth with an initial water level of -1.15 m.107

7 Initial density distribution over depth with an initial water level of -0.47 m.129

LIST OF TABLES XXI



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

XXII LIST OF TABLES



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

1 Introduction

1.1 Motivation and Objectives

Fluid mud (hyperconcentrated mud suspension) is a suspension consisting of mineral

particles, organic substances, water and in some cases small amounts of gas. The

fraction of clay particles is accountable for the specific flow behavior of fluid mud

because of the cohesive properties of the clay particles. Cohesive sediments in water

are transported by turbulent currents whereas in regions of quiescent flow or during

periods of low currents, e.g. during slack water in tidal currents, the particles settle

and accumulate on the bottom. Then fluid mud forms where there is an adequate

supply of suspended matter. Fluid mud describes a state in which mud is capable of

flowing in spite of very high concentrations of suspended matter in the range of several

10 g/L (see Table 1 on Page 8). The flow behavior of fluid mud depends on the shear

state and can be described as viscoelastic with a yield stress. By comparison, water is

characterized as an ideal viscous Newtonian fluid. Fluid mud, being a non-Newtonian

fluid, is therefore governed by a different rheology than clear water. The investigation

and process description of highly concentrated suspensions is of relevance to many

fields of work. Besides fluid mud formation in coastal areas and estuaries, many of

the issues are similar to those in fields such as sewage sludge treatment [Mori et al.,

2006; Novarino et al., 2010] or the production and processing of bentonite [Heinz, 2006]

suspensions, cement or concrete [Banfill, 2003; Roussel, 2007].

Naturally occurring mud provides nutrients for organisms in waters as mud exhibits a

relatively high content of organic substances. However, mud becomes an unwanted

material when it accumulates, deposits and consolidates. In many estuarine waters

and harbors in particular, the mud budget has been greatly affected by infrastructure

projects over the past few decades. The increasing siltation of harbor basins, harbor

access channels and parts of shipping channels leads to an increase in the level of

maintenance requirements and, as a consequence, to higher costs. Depending on its

contaminant load, dredged material is also expensive to redistribute in the water or to

dump on landfill sites. Another issue is the determination of the nautical depth where

the presence of fluid mud in waterways needs to be considered. Hence, an almost

stationary fluid mud layer may be navigable in spite of a high concentration of solids if

the vessel overcomes its yield stress [Wurpts, 2005].

A profound understanding of the process of the formation, development and transport

of fluid mud and the description of its rheological behavior is needed in order to en-

able construction work, maintenance work and activities aimed at reducing siltation to

be evaluated, planed and optimized. Today, the required detailed investigations and

prognoses of the behavior and reaction of water systems are supported by numerical
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modeling.

The numerical modeling of estuaries is carried out by means of three-dimensional models

which take account of physical processes such as the suspended sediment transport, salt

transport, density-induced currents, turbulence. These conventional models are based

on the assumption of a Newtonian fluid. However, highly concentrated mud suspensions

exhibit a distinctly non-Newtonian behavior. Therefore, in this thesis a module for the

simulation and prediction of the dynamics of fluid mud is developed. An existing nu-

merical method has been extended to include an approximation of the inner stresses in

a non-Newtonian fluid and by considering a parameterized approach for the description

of the specific rheological behavior of fluid mud. In addition, major subprocesses of the

fluid mud transport are taken into account by parameterizations in the model.

There is usually a strong density gradient at the transition between a fluid mud layer

and the body of water above it. This transitional zone is known as a lutocline. The

two fluid layers exhibit very different flow behaviors and interact by means of the shear

forces acting in the boundary layer. A common approach is therefore to model the

fluid mud as a two-dimensional, depth-averaged layer. Processes such as the formation

and resuspension of fluid mud lead to changes in the density gradient and to the de-

velopment of a system with multiple layers. An isopycnal approach, in which the mud

suspensions are resolved three-dimensionally by means of layers of constant density, has

been chosen in this research work to improve the resolution of such mechanisms.

This thesis expands an existing numerical method of modeling the dynamics of fluid mud.

The fundamental properties and flow behavior of fluid mud are described in Sections 2.1

and 2.2 respectively of Section 2 while the main processes governing the dynamics of

fluid mud are discussed in Section 2.3. This is followed by an introduction to the general

mathematical description of the movement of fluids in Section 2.4. Section 2.5 provides

an overview and evaluation of existing numerical methods of modeling fluid mud.

The conceptual principles of the numerical model are developed in Section 3 and are

based on the description of the dynamics, the rheology of fluid mud and the overview

of existing methods of modeling. This is followed by the presentation of the isopycnal

numerical method and how it has been extended to include the modeling of vertical

transport processes in Section 4. Section 5 deals with the functionality of the model

which is illustrated by examples of tests and verifications. The application of two

sectional models of the Ems estuary in Section 6 illustrates how the method can be

applied to complex estuary systems. The thesis concludes with a discussion of the results

and by identifying possible future developments and those aspects in which further

research is required.
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1.2 Motivation und Zielsetzung

Flüssigschlick (fluid mud, hyperconcentrated mud suspension) ist eine Suspension be-

stehend aus mineralischen Partikeln, organischen Stoffen, Wasser und teilweise auch

geringen Anteilen von Gasen. Ein wesentlicher Bestandteil dieser Suspensionen ist

der erhebliche Anteil an Tonpartikeln, die kohäsive Eigenschaften aufweisen. Dieser

kohäsive Anteil ist maßgeblich für das Fließverhalten des Flüssigschlicks verantwortlich.

Kohäsive Sedimente werden im Gewässer durch turbulente Strömungen transportiert.

In strömungsberuhigten Gebieten und zu Phasen beruhigter Strömung, z.B. während

der Kenterungsphasen in Tideströmungen, sinken die Partikel zu Boden und akkumulie-

ren dort. Bei ausreichendem Schwebstoffangebot entstehen hier Flüssigschlickschichten.

Diese Schlickschichten befinden sich in einem fließfähigen Zustand, obwohl die Schweb-

stoffkonzentratrationen sehr hoch werden können im Bereich von einigen 10 g/L (siehe

Tabelle 1 auf Seite 8). Das Fließverhalten von Flüssigschlick ist abhängig vom Scherzu-

stand und kann als viskoelastisch mit einer Fließgrenze (yield stress) beschrieben werden.

Im Vergleich dazu wird Wasser als ein ideal viskoses Newtonsches Fluid charakterisiert.

Daher unterliegt Flüssigschlick als nicht-Newtonsches Fluid einer anderen Rheologie als

Wasser. Die Untersuchung und Prozessbeschreibung von hochkonzentrierten Suspen-

sionen umfasst viele Bereiche. Neben dem Flüssigschlickvorkommen in Ästuaren und

Küstengewässern sind Fragestellungen der Behandlung von Klärschlämmen [Mori et al.,

2006; Novarino et al., 2010] oder auch Herstellung und Verarbeitung von Bentonit-

Suspensionen [Heinz, 2006], Zement oder Beton [Banfill, 2003; Roussel, 2007] ver-

gleichbar.

Natürlich vorkommender Schlick bietet Organismen in Gewässern ein Nährstoffangebot

aufgrund der hohen organischen Bestandteile. Schlick wird jedoch zu einem un-

erwünschten Material, wenn er verstärkt akkumuliert, sich ablagert und konsolidiert.

Insbesondere in vielen ästuarinen Wasserstraßen und Hafenanlagen haben Infrastruktur-

maßnahmen der letzten Jahrzehnte zu einer starken Beeinflussung des Schlickhaushaltes

geführt. Die zunehmende Verschlickung in Häfen, Hafenzufahrten und auch in Fahrrin-

nenabschnitten geht mit einem erhöhten Unterhaltungsbedarf und damit auch erhöhten

Kostenaufwand einher. Die Umlagerung im Gewässer oder Verbringung auf Deponien

des gebaggerten Materials kann je nach Schadstoffbelastung ebenfalls kostenintensiv

werden. Eine weitere Fragestellung bezüglich des Flüssigschlickvorkommens in Was-

serstraßen ist die Ermittlung der nautischen Tiefe. Obgleich Flüssigschlick sehr hohe

Konzentrationen aufweist, kann er bei entsprechender Belastung fließfähig bleiben. So

kann eine fast ruhende Flüssigschlickschicht trotz hoher Feststoffkonzentration schiffbar

sein, wenn ihre Fließgrenze vom fahrenden Schiff überschritten wird [Wurpts, 2005].

Vertieftes Prozessverständnis über die Entstehung, Entwicklung und des Transportes

sowie der Beschreibung des rheologischen Fließverhaltens von Flüssigschlick ist erfor-
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derlich um Fragestellungen zu Bau- und Unterhaltungsmaßnahmen zu beantworten und

Methoden zur Verminderung der Verschlickung des Systems zu entwickeln. Diese Maß-

nahmen bedürfen detaillierter Untersuchungen und Prognosen zum Systemverhalten ei-

nes Gewässers, welche heute durch den Einsatz von numerischen Modellen unterstützt

werden.

Numerische Modellierung von Ästuaren erfolgt mit dreidimensionalen Modellen, die

Schwebstofftransport, Salztransport, dichteinduzierten Strömung, Turbulenz usw. be-

rücksichtigen. Diese konventionellen Modelle basieren auf der Annahme eines Newton-

schen Fluides. Hochkonzentrierte Schlicksuspensionen verhalten sich jedoch deutlich

nicht-Newtonsch. In der vorliegenden Arbeit wird daher ein Modellbaustein zur Simu-

lation und Prognose der Dynamik von Flüssigschlick entwickelt. Ein bestehendes nu-

merisches Verfahren wird durch eine Approximation für die inneren Spannungen eines

nicht-Newtonschen Fluides erweitert und es wird ein parametrisierter Ansatz zur Be-

schreibung des spezifischen rheologischen Verhaltens von Flüssigschlick integriert. We-

sentliche Teilprozesse des Schlicktransportes sind über Parametrisierungen im Modell

realisiert worden.

Eine sich gebildete Flüssigschlickschicht im Gewässer weist meist einen starken Dichte-

sprung zum darüber liegenden Wasserkörper auf. Dieser Übergangsbereich wird als Luto-

kline bezeichnet. Die beiden Fluidschichten haben ein grundverschiedenes Fließverhalten

und interagieren über Scherkräfte an der Grenzfläche. Daher ist ein häufig gewählter

Ansatz den Flüssigschlick als einen zweidimensionalen tiefengemittelten Layer zu model-

lieren. Prozesse wie die Entstehung und Resuspension von Flüssigschlick wirken sich in

einer Änderung des Dichtegradienten und der Entwicklung eines Mehrschichtensystems

aus. Um diese Mechanismen besser auflösen zu können, wird in der vorliegenden Ar-

beit ein isopyknischer Ansatz verfolgt, der Schlicksuspensionen durch Schichten gleicher

Dichte dreidimensional auflöst.

Im Rahmen dieser Arbeit ist ein vorhandenes numerisches Modellverfahren für die Mo-

dellierung der Dynamik von Flüssigschlick erweitert worden. In Kapitel 2 werden die

grundlegenden Eigenschaften (Abschnitt 2.1) und das Fließverhalten von Flüssigschlick

(Abschnitt 2.2) beschrieben. In einem weiteren Abschnitt werden die wesentlichen Pro-

zesse, die die Dynamik von Flüssigschlick bestimmen, erläutert (Abschnitt 2.3). Darauf

folgt eine Einführung für die allgemeine mathematische Beschreibung der Bewegung

von Flüssigkeiten in Abschnitt 2.4. Ein Überblick über vorhandene numerische Modell-

verfahren zur Simulation von Flüssigschlick wird in Abschnitt 2.5 gegeben und bewertet.

Auf Basis der Beschreibung der Dynamik und der Rheologie von Flüssigschlick sowie der

Übersicht vorhandener Modellverfahren werden in Kapitel 3 die konzeptionellen Grund-

lagen für das numerische Modell entwickelt. Danach erfolgt die Darstellung des iso-

pyknischen, numerischen Modellverfahrens und dessen Erweiterungen zur Modellierung

von vertikalen Transportprozessen in Kapitel 4. In Kapitel 5 wird die Funktionalität des
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Modells anhand von schematischen Testbeispielen und Verifikationsbeispielen dargelegt.

Die Modellierung von zwei Ausschnittsmodellen des Emsästuars, dargestellt in Kapitel 6,

gibt einen Eindruck über die Anwendbarkeit des Verfahrens für komplexe Ästuarsysteme.

Abschließend werden die Ergebnisse der Arbeit diskutiert und Perspektiven für Weiter-

entwicklungen sowie zukünftiger Forschungsbedarf aufgezeigt.
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2 Properties, Processes and Mathematical Description

of Fluid Mud Dynamics

2.1 Fluid Mud Properties

Natural mud suspensions or fluid mud basically consist of water and mineral grains with

a mean diameter ranging from 1 µm to 10 µm. They also contain small concentrations

of organic components, which vary greatly according to the season, and gas. These

two minor components are not considered in this work.

The solid particles are mostly clay (particle size <2 µm) and silt (particle size <63 µm).

Additionally, colloids with a particle diameter of around 0.1 µm form a sub-fraction of the

clay fraction. The inorganic particles consist of different types of mineral (clay minerals,

quartz, silicates) and their distribution is site-specific. Other comparable suspensions

such as industrial water-debris mixtures, cement and bentonite often contain coarser

grain sizes than colloidal clay suspensions. Estuarine mud suspensions have a high clay

content which significantly influences their rheological behavior.

Coussot [1997] indicates three fundamental physical parameters which have an effect

on the rheology of mud suspensions: the concentration described by the solid volume

concentration, the grain size distribution and the ion concentration (natural clay sus-

pensions are cation-saturated and have a pH of around 7).

The solid volume concentration is defined by the relationship between the volumes of

the two components, water (index w) and solids content (index s):

φs =
Vs

Vs + Vw
. (2.1.1)

The relation between the solid volume concentration φs and the solid mass concentra-

tion cs is

cs = φs%s (2.1.2)

and in terms of density, the bulk density is defined by

% = %w +

(
1−

%w
%s

)
cs = φs%s + (1− φs) %w . (2.1.3)

The particle density is approximately %s=2650 kg/m3 and the water density %w=1000 kg/m3.

In mud suspensions a distinction can generally be made between the different interac-

tions of the constituents [Coussot, 1997]:

• water molecule interactions

• colloidal interactions of particles <10 µm such as van der Waals attraction,

double-layer interaction, Born repulsion
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• friction or collision between particles >10 µm

The weight of clay particles is small enough so that even Brownian motion keeps them

in suspension. Moreover, clay particles have a negative charge on their surface so that

they repel each other. These electrical repulsive forces are neutralized by ambient water

ions or by organic polymers. Colliding clay particles stick to each other, forming ag-

gregates or flocs. This is the cohesive property of clay particles. Cohesion is the most

important mechanism governing the behavior of mud suspensions. The flocs that have

formed can now settle under the action of gravity. They may be disrupted under shear

impact and then re-aggregate with decreasing shear if the attractive forces are stronger

than the repulsive forces. This process of the break-up and aggregation of the flocs

is known as flocculation. A more detailed description of these mechanisms is given by

McAnally and Mehta [2001] and Dankers [2006] amongst others.

Fluid mud is formed by such aggregates which hinder each other in settling as their

concentration increases. Under quiescent conditions the aggregates form a granular

structure, also known as a gel. A strong density gradient arises between the hypercon-

centrated mobile or static mud at the bottom and the water body above. This gradient

is known as the lutocline. An additional characteristic is that below the lutocline the

flow behavior is non-Newtonian and laminar. Ross and Mehta [1989] indicates that

lutoclines form if the concentration exceeds 10 kg/m3 (% =1006.2 kg/m3).

However, it is difficult to define a characteristic concentration or bulk density of fluid

mud. The concentration is dependent on several constituents of the aggregates and can

be site-specific. Different concentration ranges can be found in the literature. Some of

them are shown in Table 1.

A more detailed description of estuarine muds is given by Winterwerp and van Kesteren

[2004], Coussot [1997] and Ross [1988].

Soulsby (2000)

in Whitehouse

et al. [2000]

flocculated

suspension,

0.01–3 kg/m3

fluid mud,

3–100 kg/m3

consolidating

settled bed,

50–100 kg/m3

Winterwerp

[1999]

low-concentration

mud suspension,

several 0.01 kg/m3

to a few 0.1 kg/m3

high-concentration

mud suspension,

few 0.1 kg/m3 to

few 1 kg/m3

fluid mud,

several

10 kg/m3 to

100 kg/m3

van Rijn [2005]

revised from

Bruens (2003)

dilute mud

suspension,

0–10 kg/m3

fluid mud,

10–300 kg/m3

consolidated

mud,

>300 kg/m3

Table 1: Overview of mud suspension concentrations.
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2.2 Rheology of Suspensions

2.2.1 Introduction to Rheology

Rheology is the science of the deformation and flow behavior of materials ranging from

ordinary liquids to elastic solids. This general definition of rheology was drawn up by

Bingham. Today, the term ’rheology’ is mainly used to denote the study of complex

fluids. Thus Oswald [2009] establishes the term ’rheophysics’ which describes the study

of arbitrary types of material (gaseous, liquid, solid materials or materials between liquid

and solid). In the present paper the term rheology is used with its original meaning.

There are two different rheological approaches. The macroscopic approach comprises

the mechanics of continuous media, based on macroscopic physics such as Newton’s

Law and the first and second principles of thermodynamics. The structure of a material

is characterized by its average appearance and is described by constitutive laws. The

relationship between stress and strain/deformation is one of the most applied laws. This

relationship can be measured and adopted for model approaches.

The microscopic approach identifies the rheological phenomena on its microscopic struc-

ture scale. Thus, the rheological description varies with the scale of the structure and

the material. Changes in the particle interactions during flow are examples of such

microscopic mechanisms.

In the following, the macroscopic rheological approach is primarily applied and the focus

is on the rheology of fluids.

2.2.2 Fluid Flow Behavior

A fluid can be characterized according to its behavior under the action of external pres-

sure or shear stress. The first type of behavior distinguishes between compressibility and

incompressibility depending on whether a fluid element reacts to the applied pressure

or not. Most of the time, fluids can be considered as incompressible, whereas gases

are compressible media. This assumption is used to set up the continuity equation

for a fluid element. The influence of shearing on a continuous fluid element is more

important. The shear stress can be expressed by different rheological constitutive laws.

They describe the fluid behavior due to flow curves (shear stress τi j versus shear rate

γ̇i j =
∂ui
∂xj

), which is illustrated in Figure 1. There are two elementary fluid behaviors,

known as the Newtonian and the non-Newtonian fluid behavior respectively. A New-

tonian fluid is defined by the linear dependence of the two parameters shear rate and

shear stress, with viscosity as the constant of proportionality. Newtonian fluids are ho-

mogeneous and isotropic, for example water. The viscosity of the materials in simple
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shear (one-dimensional shear) is defined as

µ =
τ

γ̇
. (2.2.1)

In the following, this viscosity is also denoted as rheological viscosity µr in contrast to

the turbulent viscosity in hydrodynamics. Non-Newtonian fluids have a non-linear flow

curve and/or can have a yield stress τy . The reaction of these complex fluids to shear

impact may be time-dependent. Not only may they exhibit viscous behavior but, such

as solids, they may additionally have elastic characteristics - these are viscoelastic fluids.

The rheology of non-Newtonian suspensions and especially of mud suspensions is de-

scribed in the following section. The suspensions are assumed to be homogeneous and

are treated as a continuum.

  ny K
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Figure 1: Rheological constitutive laws.

They describe the behavior of a material under influence of shear impact. The simplest constitutive law

is that of a Newtonian fluid with a constant viscosity. Some materials have to overcome a specific stress,

the yield stress τy , to deform. The yield stress and other parameters of the constitutive laws can be

determined by rheological measurements.

2.2.3 Rheological Characteristics of Suspensions

In terms of the rheological viscosity of non-Newtonian fluids (complex fluids such as

suspensions) a distinction can be made between the following basic types of shear

behavior [Chhabra and Richardson, 2008; Coussot, 1997]:

• time-independent fluid behavior

– shear-thinning

– shear-thickening
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– viscoplastic / yield-stress fluids

• time-dependent fluid behavior

– thixotropy

• viscoelastic behavior

The rheological viscosity in shear-thinning materials decreases with increasing shear

rate: dµ
dγ̇ < 0. Such materials include, for example, mud suspensions, blood and yoghurt.

Shear-thinning is a phenomenon which results from phase transitions or changes in the

particle structure.

Shear-thickening leads to increasing viscosity with an increasing shear rate: dµ
dγ̇ > 0.

Shear-thickening or dilatant materials are, for example, certain granular, water-silicium

or clay suspensions. These two behaviors are qualitatively illustrated in Figure 2.

A yield stress τy can also be observed for many shear-thinning fluids. The characteristic

behavior of such fluids is realized with the constitutive laws by Hershel-Bulkley and

Worrall-Tuliani (see Figure 1). The critical shear stress in the fluid has to be exceeded

in order for the fluid to begin flowing or deforming. Examples of yield stress fluids are

fresh concrete, greases, mud, lavas, paint, inks, filled polymers and foodstuffs such as

molten chocolate or toothpaste. These kinds of suspension form a continuous matrix

of bonded particles as long as the shear impact is below the yield stress. If the yield

stress is exceeded, the bonds break and the fluid starts to move.

The simplest constitutive approach to describing a yield stress fluid is the Bingham

model, illustrated in Figure 1, which is a linear function with a yield stress. When the

yield stress is exceeded, the fluid reacts as a Newtonian fluid. Such fluids are known as

Bingham-plastic or viscoplastic fluids whereas yield stress fluids with a non-linear flow

curve are known as yield-pseudoplastic fluids.

Thixotropic materials change their behavior with time under constant shear conditions.

The rheological viscosity changes with time dµ
dt 6= 0. Thixotropy describes the destruc-

tion and recovery of the granular matrix and flocs with time as these processes do not

take place immediately. As the shear stress increases, interior bonds crack to support

a new shear strain state. Only a lower shear stress might then be needed to conserve

this shear state owing to the bonds breaking up. It requires time and the absence

of the shear stresses, or a reduction of such stresses, to rebuild the structural bonds.

Clay-water mixtures and paints are typical thixotropic and shear-thinning suspensions.

The last characteristic is viscoelasticity. The behavior of viscoelastic fluids is dependent

on the time of the shear impact. They react elastically in the same way as a solid when

subject to brief impacts and in the same way as a purely viscous fluid under continuous

shear.
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Figure 2: Shear-thickening and shear-thinning behavior (redrawn from Coussot [1997]).

The viscosity decreases with increasing shear rate of a shear-thinning material and shear-thickening

behavior leads to an increase of the viscosity with an increase of the shear rate.

The two latter types of behavior, thixotropy and viscoelasticity, are both related to a

characteristic time of the phenomenon. That time has to be considered during obser-

vation of such behavior.

2.2.4 Rheological Behavior of Fluid Mud

Fluid Mud contains a considerably large amount of clay. Therefore, the cohesive prop-

erties of clay dominate the rheological behavior of mud suspensions.

High-concentration mud suspensions can be characterized as shear-thinning, thixotropic,

viscoelastic, yield stress fluids. However, these characteristics do not necessarily affect

the behavior of fluid mud in all flow conditions and for every mud consistency. Un-

derstanding the rheological behavior of fluid mud is essential for the simulation of its

(laminar) flow and transport.

In mud suspensions in which clay particles predominate shear-thinning is mainly induced

by the break-up of flocs and/or the orientation of the particles or aggregates. These

effects are illustrated in Figure 3. Worrall and Tuliani [1964] derived a constitutive

approach with a structural parameter to consider the degree of aggregation and to

which break-up of the flocs occurred. Toorman [1997] and Wurpts [2005] analyzed

the Worrall-Tuliani model. They found out that the flow curves of colloidal soils and

cohesive suspended sediments match observations very well as long as they contain a

great deal of clay and only a small amount of organic substances. More details on the

constitutive law and parameterizations of the model are given in Section 3.4.

Hyper-concentrated mud suspensions behave elastically at low deformations (low shear

impact) below the yield stress. Rheological measurements require different methods to
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Figure 3: Particle structures under shear impact (modified from Brummer [2006]).

Spherical particles can orientate or distort under impact of shear to minimize the resistance against the

shear impact. The bonds of flocs break-up and fibers elongate under impact of shear. These processes

can lead to shear-thinning behavior of a material.

analyze behavior. For viscoplastic behavior the fluid deformation is measured under a

permanent shear impact with increasing shear stress whereas, for elastic behavior, the

deformation is measured under oscillating shear.

Fluid mud is approximated as a one-phase fluid, which implies that settling has to be

negligible during the rheological measurements.

2.3 Fluid Mud Dynamics

The most important fluid mud transport processes and fluid mud dynamics are described

below and are based on a review of the available literature. Further details can be found

in McAnally et al. [2007a], McAnally et al. [2007b], Mehta et al. [1989], Whitehouse

et al. [2000], Wan and Wang [1994], Winterwerp and van Kesteren [2004] and van

Kessel [1997].

2.3.1 Formation of Fluid Mud

Fluid mud formation is related to the amount of cohesive material available in the water

body. Cohesive material is transported into the system in different ways, for example by

land erosion, elutriation and shore erosion. The fine material is transported downstream

in rivers.

Fluid mud occurs in coastal regions in the turbidity maximum zone of estuaries, shores,

on mud flats and in harbors. Fluid mud forms layers ranging from a few decimeters to

2. Properties, Processes and Mathematical Description of Fluid Mud Dynamics 13
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Figure 4: Significant physical processes for fluid mud dynamics.

In this scheme the cohesive sediment concentration increases from surface to bottom. The left side

shows transport processes of mud suspensions. The right side shows processes which contribute to the

formation of fluid mud. The physical processes are dependent on the rheological behavior.

several meters in thickness.

The formation of fluid mud is a combination of the settling and flocculation of sus-

pended cohesive material and the fluidization of mud deposits by waves. Additionally,

the erosion of consolidated mud enriches the cohesive suspended load in the water sys-

tem. The formation and transport processes are illustrated in Figure 4. The transport

processes are further described in the Sections 2.3.2 and 2.3.3. Once fluid mud is

formed, it is mainly transported by advection due to currents or waves, shear flow and

gravity-driven currents. Vertical transport occurs due to the entrainment of fluid mud

into the water body above. This results in the fluid mud being resuspended.

Furthermore, fluid mud settles during decelerating or slack currents where the capacity

to carry particles or flocs is reduced. This is often a temporary mechanism as in tidal

currents. If the decelerated currents continue in the long term the fluid mud consoli-

dates as seen in harbor basins and on river banks.

Flocculation

Flocculation covers the processes of the aggregation and break-up of flocs. Aggregates

or flocs consist mainly of cohesive material and smaller amounts of organic material,

other sediment particles, nutrients and a great amount of water. Owing to their high

water content, their density may be only slightly higher than the density of water, re-

sulting in very low settling velocities.

The state of dispersion and aggregation of flocs depends on the balance between at-

tractive and repulsive forces. Aggregates form due to cohesive forces, collision and

polymeric bonding of the solid particles. Collision supports aggregation and is induced

by turbulent flow and the increasing concentration of suspended matter. Brownian mo-
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tion also leads to collision. Another mechanism for the build-up of aggregates results

from particles with higher settling velocities overtaking those with lower velocities.

Although turbulent flow leads to aggregation, strong turbulent flow causes the break-up

of the aggregates as the repulsive forces overcome the attractive forces.

Turbulence affects the flocculation process while the process of the formation of fluid

mud influences turbulence. The generated aggregates settle due to hindered settling

to the bottom and the vertical concentration profile increases downwards. This strati-

fication attenuates the turbulence in the regions of high concentrations, allowing fluid

mud to form.

In tidal currents, the flocculation process and the resulting suspended sediment trans-

port is strongly coupled to the intensity of turbulence, buoyancy destruction and the

vertical suspended sediment concentration profile [Winterwerp, 2011].

2.3.2 Horizontal Transport Processes of Fluid Mud

Shear Flow

The advective flow of fluid mud can be caused by currents and waves. Currents above

a fluid mud layer can force the fluid mud to flow owing to interfacial friction (shear

flow), while stronger boundary layer flow leads to entrainment of fluid mud into the

water body (by exceeding the fluid resistance). If the oscillating currents of wind waves

impact the mobile mud layer, they induce a movement of the fluid mud layer parallel to

the direction of wave propagation. This type of transport occurs in shallow waters in

shelf regions, for example.

Gravity Flow

Density-driven currents are referred to as density flow, gravity flow or turbidity flow.

In general, density flows are currents caused by gravity forces having an effect on any

density differences in a fluid. Gravity flow describes down-slope movement of a sus-

pension due to the impact of gravity. Mobile mud can be transported by gravity flow

whereas turbidity currents describe density currents of suspensions with solid particles.

Such suspensions are not necessarily fluid mud.

In this case, McAnally et al. [2007b] distinguishes between three kinds of gravity flow:

1. non-turbulent, laminar down-slope fluid mud flow

2. turbulent down-slope fluid mud flow where the turbulence is induced by the mud

suspension itself

3. gravity flow induced by the flow of the ambient suspension or waves.
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The internal shear strength of the fluid mud has to be exceeded in order for gravity flow

to be initiated and is characterized by the yield stress.

If neither currents nor waves act on a hyper-concentrated layer (case 1. or 2.) the

bottom slope has to be steep enough to enable the gravitational force to overcome the

yield strength. The flow regime changes from laminar to turbulent flow with increasing

slope and increasing internal shear. McAnally et al. [2007a] concluded that a slope of

less than one degree leads to laminar gravity currents in the fluid mud.

If the down-slope turbidity current of a fluid mud layer exceeds the critical shear stress

for erosion, the mud layer is enriched with additional sediment load from the bottom,

which in turn accelerates the velocity of the layer. This is referred to as auto-suspending

turbidity flow [Scully et al., 2002; Wright et al., 2001]. However, dissipative turbidity

flow decelerates the fluid mud movement due to the denser suspension mixing with the

less concentrated suspension at the interface. The interfacial mixing leads to decreasing

concentration of the fluid mud layer. In nature, gravity flow exhibits both mechanisms,

auto-suspending and dissipative turbidity, concurrently.

The presence of high ambient turbulent currents (case 3.) leads to an increase in the

internal resistance of the fluid mud layer and decelerates the gravity current. However,

at the same time, the turbulent shear forces keep the fluid mud mobile.

2.3.3 Vertical Transport Processes of Fluid Mud

The vertical processes of mud suspensions and stationary mud depend on the condition,

sediment concentration and impact on the mud. They describe the transition from

dilute to high-concentration suspensions and then to mud beds. In terms of mobility,

the processes transform mud suspensions from mobile to stationary conditions and vice

versa. This is shown in Figure 5.

Settling

Settling is a process influenced by the gravity force acting on the particles or aggregates,

the viscous drag of the ambient fluid and the interaction of the aggregates [Mehta et al.,

1989]. Therefore, the settling velocity of particles and aggregates depends on their den-

sity, size, shape and the ambient fluid properties.

The settling velocity and formation of fluid mud itself depend on the size, density, shape

and strength of the flocs. Formulations for the settling velocity which consider these

aspects are often based on the approximation that flocs are self-similar entities.

The settling velocity of aggregates ranges from around 10-5 m/s to 10-2 m/s [McAnally

et al., 2007a].

In general, the settling velocity increases with increasing concentration. At very high

suspended matter concentrations the settling velocity decreases due to inhibiting aggre-
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Figure 5: Vertical transport processes for cohesive sediments (modified according to Mehta

et al. [1989]).

The vertical transport processes (yellow panels) depend on the rheological condition and sediment con-

centration. They transfer a dilute suspension of cohesive material in horizontal transport (blue panel) to

a high-concentration suspension/mobile fluid mud to stationary fluid mud and to consolidated mud bed

(green panel) and vice versa.

gates (hindered settling). This starts at concentrations of around 5-10 kg/m3 [Mehta

et al., 1989] which is also the range in which fluid mud is generated. With increas-

ing contact between the aggregates the settling process is replaced more and more by

consolidation. The concentration at this point is defined as the gelling concentration.

Entrainment

Entrainment describes the transition from a highly concentrated suspension to a sus-

pension with a lower concentration as a result of turbulent mixing (mobilization of fluid

mud).

There are two different entrainment cases [McAnally et al., 2007a; Kranenburg, 1994]:

1. Considering a turbulent mixed water layer above a nearly quiescent fluid mud layer.

Turbulent eddies will cause the fluid mud to become mixed with the water layer.

2. The water layer is assumed to be static, while the fluid mud layer is turbulent.

The fluid mud layer moves between a lower rigid bed layer and a water layer. If

the mud suspension allows sufficiently high Reynolds numbers the shear stresses

at these boundaries will cause turbulence and water will be entrained in the fluid

mud layer.
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The first case is the most frequently observed case, whereas the second case is a

phenomenon observed particularly in estuaries. During slack water, the water layer may

be far slower than the inertial flowing mud suspension layer or even static. In both

entrainment cases, the thickness of the water layer decreases and that of the mud layer

increases with simultaneously decreasing concentration. The turbulent mixing involves

turbulence damping due to stratification effects. The stratification of a fluid and the

turbulence structure of the flow can be characterized by the gradient Richardson number

Ri

Ri = −
g ∂%∂z

%
(
∂u
∂z

)2 (2.3.1)

where z is the height above the bottom, ρ is the suspension density and u the current

speed at depth z . As the density gradient increases, the turbulence is damped and the

flow reaches a laminar state. At a Ri-value between 0.1 and 0.3 the turbulence is totally

damped by stratification [Whitehouse et al., 2000].

Additionally, the Ri-number may be an indicator of interfacial mixing (initiation of en-

trainment). Whitehouse et al. [2000] reports, for example, that entrainment occurs at

Ri-numbers lower than around 10. In this case, the bulk Richardson number, which is a

discretized form of the gradient Ri-number, is applied

Ri∗ =
(%w − %mud )

%mud

gHmud

(uw − umud )
2

. (2.3.2)

This equation considers a two-layer system comprising a water layer (index w) and a

fluid mud layer (index mud). The degree of stratification can be classified as:

Ri <
1

4
instable stratification

Ri >
1

4
stable stratification (2.3.3)

Entrainment approaches for the determination of entrainment rates are presented in

Section 3.6.

Fluidization of Mud Deposits by Waves

Fluidization is the process of transition from consolidated cohesive bed to fluid mud

under the impact of waves.

At first, the distribution of the resultant stresses in suspensions and mud beds has to

be studied, see Figure 6. Fluid mud deposits or consolidated mud beds are regarded

as solids in which the aggregates are in contact with each other, forming a soil matrix

with fluid-filled pores. The total load is supported by the soil matrix and the pore water.

This is described by the total normal stress σ. The effective normal stress σ
′

is the load

supported by the granular structure. up is the pore water pressure. They are related

with σ
′
= σ− up. The pore pressure is the sum of the hydrostatic pressure ph and the
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excess pore pressure ∆up: up = ∆up + ph. In mobile suspensions or fluid mud there is

no permanent contact between the aggregates and the entire load is supported by the

fluid phase. The effective normal stress is then zero and σ = ph. Both, the aggregates

and the pore water, support the load as the contact between the aggregates increases

and a granular structure is formed. The effective normal stress will then increase.

Fluidization occurs in freshly consolidated mud beds. Whereas the material is increas-

ingly eroded as consolidation progresses. Additionally, a low permeability of the mud

bed supports fluidization.

Waves cause oscillating pressure gradients in the pore water, progressively weakening

the grain structure. As a result, the pore water will start to flow. If the upward

velocity is pronounced enough, the aggregate bonds will break up. The excess pore

pressure increases as the effective stress decreases. If the effective stress approaches

zero the mud bed is transformed from a solid to a fluid with a specific viscosity. This

is the fluidization process. The reaction of the mud bed is both elastic and viscous.

The elasticity restores the initial condition of the mud bed after impact whereas the

viscous behavior responds in a dissipative manner. It attenuates the wave action and

the amplitude of the waves propagating over the fluid mud. Moreover, modeling of this
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Figure 6: Scheme of the vertical stress profile from mobile suspension to fluid mud and to

cohesive bed (modified from Ross and Mehta [1990]).

The total stress inside the cohesive bed is the sum of hydrostatic pressure, excess pore water pressure

and the effective normal stress. The first two quantities represent the load supported by the pore water.

The latter results from the load supported by the granular structure.
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process needs to describe the viscoelastic behavior.

Once the mud bed is fluidized it can easily be entrained or transported due to shear and

gravitational forces.

Research on the understanding, description and modeling of wave attenuation over

a fluid mud bed and fluidization due to wave action is being carried out by several

research groups e.g. Mehta [1996], Jain and Mehta [2009], Foda and Hunt [1993] and

Soltanpour and Haghshenas [2009].

Consolidation

As the suspended matter concentration increases, the aggregates hinder each other in

settling which generates fluid mud. The gelling concentration then is reached at which

the aggregates are in contact with each other. Now the aggregates form a granular

structure with water-filled pores. Consolidation begins of this soil structure if the fluid

mud becomes stationary. The weight of the overlying water column is supported by the

granular matrix and the pore water. The load causes the pore water to escape and the

soil matrix to densify, resulting in a reduction in the volume of the cohesive bed - the

primary consolidation. Secondary consolidation then begins with the full dewatering of

the pores. Sorting of the aggregates starts to allow further reduction of the interstitials.

Moreover, the elevation of the lutocline decreases during the consolidation process.

Consolidation of cohesive material is a relatively slow process compared with the other

transport processes that have been mentioned and takes place on a time scale ranging

from hours to years. By contrast, consolidation in sandy beds occurs immediately,

the pore water escapes and the grains are rearranged. Owing to the slowness of this

process, fresh deposits are easily entrained or eroded again. Accordingly, the degree

of consolidation gives information about the erodibility of the cohesive bed [Lick and

McNeil, 2001]. The evolution of strength in dependence to the effective stress of

the cohesive bed is studied by Merckelbach [2000]. The indicator for the strength or

resistance against erosion is the yield stress of the consolidated cohesive bed.

Numerical modeling of consolidation rates can be considered as a settling velocity. A

combined formulation for consolidation and hindered settling by means of the density

is described by Toorman and Berlamont [1993], for example. Parameterizations are

gained from settling column experiments.

2.3.4 Fluid Mud Dynamics under Tidal Flow

The formation and transport of fluid mud in estuaries and coastal regions is forced

by tidal conditions. Estuarine fluid mud most commonly develops in the maximum

turbidity zone. Depending on the tidal phase, the mud settles during slack water and is
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mobilized or entrained by highly turbulent ebb and flood velocities. Fluid mud is present

only during certain hydrological events or during low current tidal phases as determined

by the hydrological situation and on the availability of mud in the estuary. This is the

case in the Weser Estuary, for example, or in wide areas during all tidal stages, as in the

Ems Estuary. Schrottke et al. [2006] observed that, in the Weser, fluid mud may occur

in the troughs of dunes in the turbidity zone. In the Ems Estuary fluid mud layers of

several meters in thickness appear in the maximum turbidity zone, especially during ebb

tide, due to the tidal asymmetry. For example, this was observed during a field survey

in 2009 (see Figure 7). Figure 8 shows a lutocline detected during flood tides where

internal waves are observed.

Mud suspensions settle and are deposited on the bottom during slack water. As flood

or ebb currents increase the mud deposits are then eroded and the fluid mud or mobile

mud is entrained into the water body (see Figure 9). Depending on the intensity of the

currents, the fluid mud may become totally mixed into with the water body. In phases

of moderately turbulent currents, fluid mud is generated owing to flocculation processes

and hindered settling of the flocs and a sharp lutocline forms. The mud concentration

is so high below the lutocline that the flow behavior differs from that in the water

column (see Section 2.2.4). Vertical fluid mud transport processes during a tide period

are dominated by the settling and formation of fluid mud as well as by entrainment,

particularly in deep channels.

A typical phenomenon observed in estuaries is the decoupled flow of the water body

and fluid mud layer. The fluid mud has a more inertial flow than water. The currents

in the water body are nearly zero at the beginning of slack water but the fluid mud is

still moving. However, once the mud movement stagnates, the shear forces of the main

flow have to overcome the resistance of the mud to force the fluid mud to flow.

The estuarine system may be influenced hydrodynamically by the fluid mud when the

thickness of the layers reaches a certain thickness and the fluid mud covers wide areas.

The strong density stratification results in turbulence damping in the region of the

water-fluid mud interface and finally leads to a reduced bottom friction.

Fluid mud deposits on river banks or mud flats can move down slope due to gravitational

forcing. Gravity flow may move fluid mud to the deepest parts of an estuary such as

the shipping channels as well as over great distances in the longitudinal direction of

estuaries. The near-bed transport of cohesive sediments in the form of fluid mud layers

is associated with significantly higher transport rates than the transport in suspension

in the water body above. The knowledge about gravity flow of fluid mud can be used

most effectively for maintenance purposes in harbor basins [Wurpts, 2005].

In consolidated mud, the cohesive forces and the density of the granular structure

increase so that high impacts, for example waves or ship-induced waves, are required

for re-mobilization. Ship-induced waves are more likely to cause erosion at the river
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Figure 7: Multi-layer system of fluid mud detected due to sediment echo sounder measurements

(parametric sub-bottom profiler for shallow water) during ebb tide.

The longitudinal section is located between Terborg and Leer in the lower Ems Estuary. Blue lines indicate

strong density gradients and the horizon in red to yellow indicates the sediment bed. The field survey

was carried out in July 2009 by the Federal Waterways Engineering and Research Institute (BAW).
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Figure 8: Fluid mud detected due to sediment echo sounder measurements (parametric sub-

bottom profiler for shallow water) in the Ems Estuary during flood tide.

The observations show a time series at a position near Leerort where the measured data begins at -3.0 m

below water surface. The lutocline remains at about -4.5 m water depth at the beginning and then

an internal wave is initiated. The field survey was carried out in June 2011 by the Federal Waterways

Engineering and Research Institute (BAW)).

banks. Impacts by waves need wide areas such as tidal flats or shorelines where the

waves have enough fetch to develop. The oscillatory currents act on the mud deposits

which are fluidized and softened owing to their viscoelastic behavior.
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Figure 9: Scheme of dominant physical processes in a tide influenced cross-section.

High flood currents lead to entrainment and mobilization of fluid mud. The mobile suspensions are

transported upstream of the river. Fluidization occurs in shallow water regions due to impact of waves.

Settling, aggregation and deposition are dominant processes during slack water. Fluid mud is forming.

Mobile mud layer flow downslope even at very small slopes due to gravity forces. The fluid mud is

entrained again with increasing velocities during ebb tide. Suspended mud particles are transported in

areas of low currents like the tidal flats during flood. They deposit and accumulate here during slack

water. They can be remobilized by ebb currents or by waves.

2.4 Mathematical Description of Fluid Movement

2.4.1 Basic Equations of Motion - Cauchy’s Equations of Motion

Cauchy’s equations of Motion describe the flow of materials with any flow behavior.

They are based on the Principle of Momentum for a collection of particles [Malvern,

1969]. This principle says:

1. The total momentum of a given mass of particles changes with time and is de-

termined by a rate.

2. The rate of momentum is equal to a vector sum of all external forces, which act

on the given mass of particles.

3. The precondition for this principle is Newton’s Third Law, where action and re-

action determine the internal stresses.

To find a mathematical formulation for the first statement, a given mass of a medium

with a specific Volume V and a specific surface S is considered. The change of mo-
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mentum (%uV ) with time is expressed with

d

dt

∫
V
%udV , (2.4.1)

and also represents the acceleration of the mass (%V ) with the density % and the velocity

vector u. The external forces are represented by a surface force s (force per surface

area) and a body force b (force per mass). Both forces act on the considered mass.

They can be formulated with ∫
S

sdS and

∫
V
%bdV . (2.4.2)

The momentum balance is set up where the change of momentum equals the external

forces

d

dt

∫
V
%udV =

∫
S

sdS +
∫
V
%bdV . (2.4.3)

Changing the formulation in rectangular coordinates and replacing the external force

per surface with the stress tensor (si = τj ini), the divergence theorem can be applied∫
S
τj inidS =

∫
V

∂τj i
∂xi

dV (2.4.4)

with ni as the i-th component of the normal vector. These transformations result in

the momentum balance ∫
V
%
dui
dt
dV =

∫
V

∂τj i
∂xi

dV +
∫
V
%bidV (2.4.5)

and lead to Cauchy’s Equations of Motion with reduction of the integrals

%
dui
dt

=
∂τj i
∂xj

+ %bi (2.4.6)

The pressure can be extracted from the external body forces and replaced with

bi = −
1

%

∂p

∂xi
+ fi . (2.4.7)

Dividing by density, a more common form known for fluid dynamics results

dui
dt

= −
1

%

∂p

∂xi
+

1

%

∂τj i
∂xj

+ fi (2.4.8)

in index notation or in vector notation

Du

Dt
= −

1

%
gradp+

1

%
divτ + f (2.4.9)

where f is the external force vector normalized by density, p is the total pressure and τ

is the stress tensor. The fully written Cauchy equations have the following form

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
= −

1

%

∂p

∂x
+

1

%

(
τxx
∂x

+
τyx
∂y

+
τzx
∂z

)
+ fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
= −

1

%

∂p

∂y
+

1

%

(
τxy
∂x

+
τyy
∂y

+
τzy
∂z

)
+ fy

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −

1

%

∂p

∂z
+

1

%

(
τxz
∂x

+
τyz
∂y

+
τzz
∂z

)
+ fz (2.4.10)
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After deriving the equations of motion, the components of motion are examined in

Section 2.4.2, which than leads to a more detailed discussion of the stresses in Sec-

tion 2.4.3.

2.4.2 Decomposition of Motion

There are four different kinds of motion: translation, rotation, non deformable volume

change and deformation with consistent volume. The decomposition of motion was

introduced by Stokes and evaluated in Lamb [1932] and Malcherek [2001]. In the array

of motion a specific point is defined by x = (x , y , z) and an infinitely close point is

given by x + dx = (x + dx , y + dy , z + dz). If the movement of a considered element

is only translation, the array of motion can be described by

u (x + dx) = u (x) . (2.4.11)

The pure rotation has the following form

u (x + dx) =
1

2
rotu× dx

=
1

2


∂w
∂y −

∂v
∂z

∂u
∂z −

∂w
∂x

∂v
∂x −

∂u
∂y

 ·

∂x

∂y

∂z

 =
1

2


∂2u
∂z2 − ∂2w

∂xz −
∂2v
∂xy +

∂2u
∂y2

∂2v
∂x2 − ∂2u

∂xy −
∂2w
∂yz + ∂2v

∂z2

∂2w
∂y2 − ∂2v

∂yz −
∂2u
∂xz +

∂2w
∂x2

 .

(2.4.12)

The motion of pure non deformable volume change is

u (x + dx) =
1

3
divuEdx =

1

3


∂x
(
∂u
∂x +

∂v
∂y +

∂w
∂z

)
∂y
(
∂u
∂x +

∂v
∂y +

∂w
∂z

)
∂z
(
∂u
∂x +

∂v
∂y +

∂w
∂z

)
 (2.4.13)

with the unit matrix E. Finally, the deformation with conserved volume can be deter-

mined by

u (x + dx) =

(
D−

1

3
divuE

)
dx

=

1

2


2∂u∂x

∂u
∂y +

∂v
∂x

∂u
∂z +

∂w
∂x

∂u
∂y +

∂v
∂x 2∂v∂y

∂v
∂z +

∂w
∂y

∂u
∂z +

∂w
∂x

∂v
∂z +

∂w
∂y 2∂w∂z

−

1
3divu 0 0

0 1
3divu 0

0 0 1
3divu


 ·

∂x

∂y

∂z


(2.4.14)

with the deformation rate tensor

D =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
=

1

2

(
∇u +∇uT

)
. (2.4.15)

2. Properties, Processes and Mathematical Description of Fluid Mud Dynamics 25



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

This leads to the total vector field of motion in combination of the four kinds of motion

u (x + dx) = u(x) +
1

2
rotu× dx +

1

3
divuEdx +

(
D−

1

3
divuE

)
dx. (2.4.16)

The assumption of an incompressible fluid only allows a volume change combined with

a deformation. Thus, the term for non deformable volume change is set to zero

1

3
divuEdx = 0, (2.4.17)

and it results in the volume conservation equation (equation of continuity)

divu = 0. (2.4.18)

For incompressible fluids it follows

u (x + dx) = u(x) +
1

2
rotu× dx + Ddx. (2.4.19)

This formulation leads to the internal stresses of a medium with progressive assump-

tions. It can be assumed that rotational motion of the entire element as well as the

translation and movement of this element in space has no influence on the internal

stresses. So the equation is reduced by two additional terms. Adding now the dynamic

viscosity µ [kg/(m · s)] as a proportional constant results in

τ = 2µD (2.4.20)

the tensor of internal stresses.

In the next section properties and abilities of the stress tensor are discussed.

2.4.3 The Total Stress Tensor

The total stress tensor σ describes internal and external stresses such as water pressure,

thermodynamical stresses, internal shear stresses, etc. Commonly the stress tensor

of the Navier-Stokes equations considers hydrostatic pressure, atmospheric pressure,

internal stresses and friction at the boundaries. The total stress tensor of the Cauchy

equations of motion is defined as follows

σ = −pE + τ . (2.4.21)

The terms of internal viscous stresses of the Cauchy equations (2.4.9) (second terms

of the left side) denote the general expression for internal stresses with

1

%
divτ =

1

%
div


τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 . (2.4.22)

Figure 10 shows the orientation of the stress components in three-dimensional space.

Subsequently, the mathematical description of the internal stresses of incompressible

Newtonian and non-Newtonian fluids will be described, which is presented in detail, for

example, by Malvern [1969] and Chhabra and Richardson [2008].
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Figure 10: Shear stress components at the cross-sections of a Cartesian system.

2.4.4 Internal Stress Tensor of a Newtonian Incompressible Fluid

The shear stress tensor of an isotropic and homogeneous Newtonian fluid is described

by the deformation rate tensor D = 1
2

(
∇u +∇uT

)
times the dynamic viscosity µ. In

Newtonian fluids, the viscosity is assumed to be constant. Hence the divergence of the

stress tensor is div (2µD) = 2µdivD. The generation of the divergence of the stress

tensor leads to the formulation

µ

%
div
(
∇u +∇uT

)
=
µ

%


2 ∂
∂x

(
∂u
∂x

)
+ ∂

∂y

(
∂u
∂y +

∂v
∂x

)
+ ∂

∂z

(
∂u
∂z +

∂w
∂x

)
∂
∂x

(
∂u
∂y +

∂v
∂x

)
+ 2 ∂

∂y

(
∂v
∂y

)
+ ∂

∂z

(
∂v
∂z +

∂w
∂y

)
∂
∂x

(
∂u
∂z +

∂w
∂x

)
+ ∂

∂y

(
∂v
∂z +

∂w
∂y

)
+ 2 ∂

∂z

(
∂w
∂z

)
 . (2.4.23)

For incompressible fluids the continuity equation (2.4.18) is used to reduce the mixed

derivative terms from the stress tensor. Some restructuring of the stress tensor makes

that clear

1

%
divτ =

µ

%


∂
∂x

(
∂u
∂x +

∂v
∂y +

∂w
∂z

)
+
(
∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
∂
∂y

(
∂u
∂x +

∂v
∂y +

∂w
∂z

)
+
(
∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

)
∂
∂z

(
∂u
∂x +

∂v
∂y +

∂w
∂z

)
+
(
∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2

)
 . (2.4.24)

By applying the continuity equation ∂u
∂x +

∂v
∂y +

∂w
∂z = 0 the following form of the stress

tensor is obtained

1

%
divτ =

µ

%


∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

∂2v
∂x2 +

∂2v
∂y2 +

∂2v
∂z2

∂2w
∂x2 + ∂2w

∂y2 + ∂2w
∂z2

 . (2.4.25)

This leads to a decoupled system of the x , y , z-components of the viscous stress terms,

because the x-component of the stress terms consists only of derivatives of the x-

velocity and the y -component of the stress terms consists only of derivatives of the
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y -velocity and so on. The three-dimensional stress terms have the form of a parabolic

diffusion equation with the constant viscosity (diffusive) coefficient µ
% .

Navier-Stokes Equations

Now, the Navier-Stokes equations can be derived from Cauchy’s equations of mo-

tion (2.4.10) by substitution of the general stress tensor with the incompressible New-

tonian stress tensor (2.4.25) and by applying mass conservation

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+w

∂u

∂z
= −

1

%

∂p

∂x
+
µ

%

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
+ fx

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+w

∂v

∂z
= −

1

%

∂p

∂y
+
µ

%

(
∂2v

∂x2
+
∂2v

∂y2
+
∂2v

∂z2

)
+ fy

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+w

∂w

∂z
= −

1

%

∂p

∂z
+
µ

%

(
∂2w

∂x2
+
∂2w

∂y2
+
∂2w

∂z2

)
+ fz

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (2.4.26)

2.4.5 Internal Stress Tensor of a Non-Newtonian Fluid

According to Section 2.4.4, the divergence of the stress tensor is developed for a non-

Newtonian fluid with a variable kinematic rheological viscosity ν = f
(
x,
∣∣∂u
∂x

∣∣) deter-

mined by constitutive laws, examples see Figure 1. The assumption for the rheological

viscosity in tensor formulation is given in Section 3.5. Now the viscosity has to be

derived, too

div (νD) =


∂
∂x

(
ν
(
∂u
∂x +

∂u
∂x

))
+ ∂

∂y

(
ν
(
∂u
∂y +

∂v
∂x

))
+ ∂

∂z

(
ν
(
∂u
∂z +

∂w
∂x

))
∂
∂x

(
ν
(
∂u
∂y +

∂v
∂x

))
+ ∂

∂y

(
ν
(
∂v
∂y +

∂v
∂y

))
+ ∂

∂z

(
ν
(
∂v
∂z +

∂w
∂y

))
∂
∂x

(
ν
(
∂u
∂z +

∂w
∂x

))
+ ∂

∂y

(
ν
(
∂v
∂z +

∂w
∂y

))
+ ∂

∂z

(
ν
(
∂w
∂z + ∂w

∂z

))


(2.4.27)

unfortunately, the continuity equation cannot be extracted anymore.

In this work, non-Newtonian fluid behavior will be transformed on a hydrodynamic nu-

merical approach based on the Navier-Stokes equations (2.4.10), which are valid for

incompressible Newtonian fluids. Comparing the Newtonian (2.4.25) and the non-

Newtonian three-dimensional stress components (2.4.27), their appearance differs es-

sentially. The solution algorithm for the equations of motion is influenced by them. The

Newtonian stress tensor contains only linear terms µ
%
∂2ui
∂x2
i

, whereas the non-Newtonian

tensor includes also non-linear terms ∂
∂xi

(
ν ∂ui∂xj

)
, where ν is a non-negative function

of the derivatives ∂ui
∂xi

. The partial differential character of the tensor changes from

parabolic to hyperbolic because of the non-linear stress terms. Moreover, the stress

terms of the directions x , y , z are strongly coupled by the mixed derivatives such as
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∂ui
∂xi∂xj

, but also by the presence of all three components of the velocity vector. All these

aspects change the character of the solution system.

With the aim to improve existing and approved hydrodynamic numerical models for

the simulation of fluid mud dynamics, suitable approximations has to be identified.

Otherwise the solution algorithm of the numerical model has to be changed significantly.

In Section 3.3 a closer look on the importance of the particular stress components is

given by a dimensional analysis and an approximation will be derived for application to

shallow water hydrodynamics.

2.5 Outline of Numerical Methods for the Simulation of Fluid Mud

Numerical models are a way of predicting fluid mud dynamics. They have to solve the

governing equations of motion adapted to fluid mud movement. There are different

concepts for simulating the transport, flow behavior and development of fluid mud

in a hydrodynamic model environment. In principle, the following different types of

conceptual model for the numerical simulation of fluid mud dynamics exist:

• three-dimensional models with different discretization schemes

– in x , y , z-coordinates (Cartesian)

– in x , y , σ-coordinates

– in x , y , %-coordinates (isopycnal models)

• two-phase models

• single-layer fluid mud models

In the following, the approaches of numerical models that have been developed in recent

years are presented. The suitability of their application to fluid mud dynamics in coastal

areas as well as their limitations are summarized and assessed.

The numerical differential models on Cartesian grids solve the conservation of mass and

momentum equation for fluid mud in three or fewer dimensions. The fluid mud behavior

is simulated by the rheological correlation between shear stress and deformation rate in

form of a parametrization which is used instead of the Newtonian stress tensor.

A two-dimensional laterally-averaged model (2DV) for the simulation of fluid mud dy-

namics was developed by Yan and Hayter [1994]. The model includes a hydrodynamic

module with a turbulence model and a cohesive sediment transport module simulating

low-concentration suspensions as well as fluid mud. The following transport processes

are considered: advection, dispersion, aggregation, settling, re-entrainment, erosion,
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deposition, bed formation and bed-consolidation. Fluid mud is described by its Bing-

ham plastic behavior with an additional yield stress term in the momentum equations.

Density is treated as a time-dependent quantity. As only a few results were presented,

further applications and validation of the model would be needed for an assessment of

the predictability of fluid mud dynamics.

Le Hir et al. [2001] developed a continuous approach for the simulation of the wa-

ter column with cohesive sediments and fluid mud and a progressive transition to the

bottom sediment. The processes under consideration leading to the formation of high-

concentration layers are stratification-induced turbulence damping, settling and the vis-

cous behavior of mud. The rheological viscosity is determined as a function of shear

and concentration. This is implemented in form of a one-dimensional vertical model

(SAM-1DV).

Teeter presented a three-dimensional, curvilinear, hydrodynamic model in Cartesian

coordinates (CH3DZ) [Teeter and Johnson, 2005a,b] which includes cohesive suspended

sediment transport and a fluid mud module (CH3DZ-FM). The hydrodynamic model

is fully coupled with a sediment module of a layered bed structure in which deposition

through hindered settling, erosion of consolidated mud and entrainment are considered.

The movement of the fluid mud is forced by gravitational effects on slopes and density-

dependent yield stress. Fluid mud specific properties are applied by exceeding a specific

density threshold. The rheological behavior is described by a viscoplastic approach with

a yield stress.

Another three-dimensional model for the simulation of fluid mud was developed by Guan

et al. [2005] based on the generalized σ-coordinate Princeton Ocean Model (POM). The

horizontal discretization is defined by curvilinear grids and the vertical discretization by

σ-layers which have a higher resolution near the bottom with respect to fluid mud layers.

The hydrodynamic model includes a sediment transport module covering deposition

and erosion. The non-Newtonian fluid mud behavior is considered by a rheological

viscosity approach. The turbulence model used considers eddy viscosity damping with

increasing sediment stratification. Compared with observations, this approach under-

predicted vertical mixing. Therefore, they introduced an additional term for vertical

viscosity which takes account of mixing due to internal waves riding on the lutocline and

represents a parameterized approach to the entrainment of fluid mud. After a sensitivity

study, they remark that the 3D-model results are very sensitive to the parameterized

processes and more process-based studies are necessary.

The second type of numerical model are the two-phase models. They solve the conser-

vation of mass and the momentum equations for the fluid as well as for the sediment

phase by considering interactions of those phases. A two-phase model approach which

includes fluid mud properties was established by Hsu et al. [2007]. The model consid-

ers boundary layer transport, gravity-driven sediment transport, the interaction between
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turbulence and sediment concentration and sediment granular rheology. Son and Hsu

[2009] extends it to include dynamic flocculation processes. They infer from studies on

fluid mud dynamics that one of the important processes is the turbulence damping of

the carrier fluid due to sediment density stratification. The approach is able to simulate

dilute as well as high-concentration suspensions. It was not possible to simulate the

mobilization of mud from the bed. The two-phase equations are simplified to reduce

the computational effort. Some of the simplifications apply the mean flow velocity to

the sediment phase and neglect the acceleration terms.

The transitional zone between fluid mud and the overlying water body is characterized

by a sharp density gradient, the lutocline. Below the lutocline, the flow behavior is non-

Newtonian. It is possible to assume a strong stratified flow of two layers. Therefore,

there are some numerical approaches which approximate the fluid mud as a single layer

between the water body and the consolidated bed. A model of this type has been

incorporated in the Delft3D software package described in Winterwerp et al. [2002] and

in the user manual of Deltares [2010]. The water and fluid mud layer interact only

as a result of interfacial shear stresses. The water body can be simulated in two or

three dimensions and a depth-averaged simulation is used for the fluid mud layer. The

sediment concentration of the fluid mud layer is taken as constant and does not vary with

time or space. The fluid mud behavior is described as a Bingham plastic fluid but with

constant yield stress. The model was applied in an investigation of dredging activities in

a tide-influenced river. Another single-layer model, named FLUIDMUDFLOW-2D was

developed by H.R. Wallingford [Crapper and Ali, 1997]. However, it does not include

the specific rheological characteristics of fluid mud. The single-layer models are not

able to reproduce the vertical density and velocity distribution of fluid mud. Vertical

transport processes such as hindered settling or entrainment result in a vertical density

distribution which could not be resolved sufficiently with the single-layer approach.

2.5.1 Evaluation of the Numerical Methods

The main purpose of the numerical model will be its application to investigations in

coastal regions, estuaries and harbors. These are complex topographical domains in-

fluenced by three-dimensional physical processes. One- or two-dimensional numerical

models are not sufficient in such cases.

The fluid mud thickness covers only a few decimeters compared to the total water depth

of several meters. The high-concentration suspensions only reach thicknesses of one or

more meters in mud transport dominated estuaries and rivers. Vertical density distri-

butions of mud suspensions not only vary due to horizontal processes but also mainly

due to vertical transport processes such as hindered settling, consolidation, entrainment

and resuspension of mud suspensions. In other words, the transitions between dilute

2. Properties, Processes and Mathematical Description of Fluid Mud Dynamics 31



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

suspension, high-concentration suspension, mobile fluid mud, freshly consolidated fluid

mud and consolidated fluid mud must be reproduced. Predictive numerical simulations

thus require sufficiently resolved processes.

Accordingly, a single-layer model is very limited in simulating these processes. Cartesian

grid resolutions with z-planes or with σ-layers require high vertical resolutions in the

range of centimeters for the reproduction of density distribution and vertical velocity

profiles within the fluid mud. Another solution is to use an adaptive vertical grid reso-

lution to take account of simulation accuracy in the mud layers which depends on the

particle concentration and results in fine resolutions at high concentrations. However,

large domains are usually investigated, in particular in coastal regions and estuaries

where the computational effort can rapidly increase due to grid refinement.

The 3D isopycnal model approach has its advantages in such cases. Within this model

concept, the vertical domain is divided into layers of constant density, the %-layers or

isopycnal layers. The vertical discretization is thus matched automatically to the density

distribution (described in more detail in Section 3.2). This conceptual model is able

to reproduce the density distribution and changes with considerably low discretization

effort.

Fluid mud does not necessarily appear in the entire investigation area. This means that

the appearance and disappearance of fluid mud should be possible. The z- and σ-layers

are always active, even though with a very small thickness in case of the σ-layers. The

isopycnal layer can be active with a definite thickness or inactive with a thickness equal

to zero. However, the layers do not have to be active or inactive at the same time over

the entire model domain. Within the scope of this thesis, the isopycnal model approach

is used and extended to include the simulation of fluid mud dynamics.

Fluid mud can be described as a viscoplastic fluid e.g. as a non-ideal Bingham fluid.

The rheological behavior changes with time and depends on the cohesive sediment

concentration and shear/deformation rate, to name the most important parameters

[McAnally et al., 2007a; Toorman, 1997]. There are times of sharp as well as of smooth

transitions between different rheological stages in stratified systems. If the fluid mud

behavior is described by a constant density and a constant yield stress it only represents

one specific rheological state. The isopycnal concept leads to a continuous approach for

stratified flow with arbitrary concentration profiles. Accordingly, the characterization of

the flow behavior should be based on a continuous formula. It is this conceptual model

that is considered in this thesis.

The concept and fundamental properties of the developed and extended model for the

simulation of fluid mud dynamics are evaluated in Section 3.
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3 Conceptual Model

3.1 Basic Concept and Properties of the Model

Fluid mud and dilute suspensions differ fundamentally in their specific rheological be-

havior (Section 2.2). Hydrodynamic numeric simulations consider the flow behavior due

to the stress terms of the momentum equations.

The momentum conservation of every viscoelastic material can be described by Cauchy’s

equation of motion given as
dui
dt

=
1

%

∂σj i
∂xj

+ fi (3.1.1)

which is described and derived in Section 2.4.1. The rheological behavior is characterized

by the first term on the right side containing the stress tensor σj i . This term is equal

to −∂pi/∂xi + ∂τj i/∂xj for incompressible fluids. For Newtonian fluids, the internal

stresses (Section 2.4.4) are given as

τi j = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.1.2)

Therefore, the Navier-Stokes equations used for hydrodynamic simulation are a special

case of the Cauchy equations. The same applies to the Reynolds-averaged Navier-

Stokes equations which are obtained by choosing the shear stress tensor as

τi j = (µt + µmol )

(
∂ui
∂xj

+
∂uj
∂xi

)
(3.1.3)

where µt is the turbulent and µmol the molecular dynamic viscosity. A possible realiza-

tion of the general rheological fluid behavior in a numerical model is the introduction of

the rheological viscosity µr which can be determined according to different constitutive

laws, see Section 2.2.1. Thus, the form of the shear stress tensor of the Navier-Stokes

or the Reynolds-averaged Navier-Stokes equations does not change:

τi j = µr

(
∂ui
∂xj

+
∂uj
∂xi

)
. (3.1.4)

It is therefore possible to use conventional 3D-codes applied to river or coastal engi-

neering as well as for the simulation of fluid mud dynamics. Based on a dimensional

analysis, the important components of the internal stress tensor are identified in Sec-

tion 3.3 which demonstrates a suitable approximation of the non-Newtonian stresses

for fluid mud. Later on this is adapted to the numerical model presented in Section 4.

Consequently, a rheological approach has to be identified to describe the flow behavior in

a mud-water system qualitatively and quantitatively. The rheological behavior in terms

of the rheological viscosity µr might be dependent on [Mehta, 1991; Berlamont et al.,

1993; Coussot, 1997]:
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• suspended matter concentration starting from clear water up to sediment bed

• flow shear rates ranging from zero to those for highly turbulent motion

• size distribution of the suspended matter

• temperature and salinity of the water body

• biochemical behavior of the suspended material (flocculation, organic polymer

formation)

In this thesis, it is assumed that the rheological approach is sufficiently described by

two indicators: the bulk density, which is proportional to the suspended matter con-

centration, and the flow shear rate, whose formulation indicates a Newtonian or a non-

Newtonian fluid. The applied rheological model and corresponding parameterizations

are presented in Section 3.4.

The suspended matter concentration is not only an important parameter for deter-

mining the rheology, but also it is used for the numerical discretization scheme. A

high-concentration benthic layer often has a sharp density gradient at the transition to

a layer of lower concentration, known as the lutocline. Therefore, the numerical model

should be able to reproduce a highly stratified flow. Conventional three-dimensional

hydrodynamic models require a very fine vertical resolution in order to reproduce sharp

density gradients and their movement. This can result in a high computational effort

because the entire domain is based on the same vertical grid spacing. There are other

methods of domain decomposition or dynamic grid refinement but they are not neces-

sarily more efficient.

A fluid mud body and the overlying water body behave very differently and interact

at their interface. Therefore, some numerical approaches simulate the fluid mud as a

single-layer coupled with a hydrodynamic model (described in Section 2.5). However,

fluid mud is not stable all of the time, especially in tidal currents. The development

of fluid mud results mostly in a change of the solid concentration which can hardly be

reproduced with a single layer model with one specific density and rheological state.

This thesis pursues an isopycnal numerical approach in which discretization follows the

physical parameter bulk density which directly relates to the suspended matter con-

centration. Thus, a change in stratification is accompanied by a change in the dis-

cretization. The vertical discretization due to isopycnals, layers of constant density, is

described in Section 3.2.

A 3D hydrodynamic isopycnal model of this type has been adapted for the simulation

of fluid mud dynamics in this thesis. A detailed description of the numerical model and

the extensions is given in Section 4. The advection-diffusion equation for suspended

load transport is not solved here; the classic hydrodynamic momentum equations in
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an isopycnal discretization scheme are solved instead. Every density layer represents

a homogeneous suspension with a specific rheological behavior. The numerical model

covers the entire water column from free surface to stationary bed. Mud suspension

transport is realized due to changing thicknesses of the density layers. The rheological

approach is applied to the entire water column. Therefore, the resulting viscosity in

the numerical model is the sum of the rheological and turbulent viscosity. An advanced

turbulence model with damping due to stratification effects is not implemented in the

numerical model as turbulence modeling is not one of the objectives of this work. Thus,

the turbulent viscosity is kept simple here and set to a constant value for each density

layer.

In addition to the fundamental determination of the flow behavior the fluid mud dynam-

ics are described by transport processes (Figure 4). Gravity flow is solved due to the

pressure term of the momentum equation which considers density differences. Shear

flow is caused by vertical, interfacial shear stresses at the isopycnal interface (interfacial

momentum transfer). The vertical transport processes induce mass fluxes at the isopy-

cnal interfaces, thus changing the state of stratification. An approach for the vertical

mass transfer in an isopycnal system is derived in Section 4.3. This approach enables

density layers to vary in thickness by applying settling fluxes or mixing fluxes. A settling

velocity approach with hindered settling is implemented for the formation of fluid mud

(Section 3.7). Consolidation is not considered owing to the fact that the applications

presented later cover only a few days and are therefore not in the time range in which

consolidation of mud occurs. Entrainment (Section 3.6) is introduced for the mobiliza-

tion and mixing of fluid mud due to shear impact. Fluidization due to wave impact is

not considered here as coupling with a wave model is not the aim of this work.

Most of these processes are transformation or exchange processes from dilute suspen-

sions to high-concentration layers to mobile fluid mud layers and up to stationary layers

or vice versa, which can be realized due to interfacial mass fluxes. The basis for in-

cluding those transport processes is established by developing and implementing the

mathematical approach for diapycnal mass transfer. Additional mechanisms can be in-

troduced into the isopycnal numerical model in the same way as for the settling and

entrainment approach.

3.2 Vertical Resolution due to Isopycnals

The discretization scheme has to be able to reproduce sharp density gradients as well

as to form three-dimensional concentration profiles. A z-layer-based model needs a

very high resolution near the river bed to represent sharp density gradients. The bot-

tom depth can vary highly with the increasing model domain and leads to a vertical

resolution in the range of centimeters or decimeters over large areas. This increases
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the computational effort. By comparison, σ-layers have the advantage of following the

topology of the model domain and they guarantee a high near-bed resolution. However,

similar to z-layered discretization, the high resolution covers the entire model domain

and increases the computational effort. A discretization with %-layers enables the res-

olution due to physical phenomena rather than due to geographical conditions to be

adapted. This kind of discretization is defined by layers of constant density - the isopy-

cnal layers - whose thickness changes due to physical processes. The interfaces of the

layers always define a density gradient. The density is related to the concentration of a

suspension, therefore changes in the sediment transport regime automatically have an

impact on the discretization. Such an appropriate discretization concept will be applied

in this thesis.

Sharp density gradients can be resolved by a few layers only based on the predefined

density differences between the layers. Thus, the smaller the density differences, the

thinner the layer for a specific density gradient is, see Figure 11. The maximum num-

ber of isopycnal layers in the model domain and the density classes of the layers are

predefined. Isopycnal approaches are often used for oceanographic problems where

density-driven currents are dominant.

According to the isopycnal principle the constraint

∂%m
∂t

= 0 (3.2.1)

has to be satisfied, where %m is the density of the m-th isopycnal layer and stable

profiles of density / particle content 

suspension of 
low particle 
content

high 
concentrated 
layers

Nature Model

Layer of 
constant 
density

ρ1

ρ5

ρ4

ρ3

ρ2

ρ6

depth

Figure 11: Scheme of the isopycnal approach.

In an isopycnal model the vertical density profile is described by layers of constant density. In this case,

every layer represents a suspension of a specific sediment concentration. Their thickness varies according

to physical processes.
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stratification also has to be guaranteed. The bulk density is given by

% = %w +

(
1−

%w
%s

)
cs (3.2.2)

with the dry density of the sediments %s , the water density %w and the volumetric

sediment concentration cs .

3.3 Approximation for the Internal Stresses for High-concentrated

Mud Suspensions

The non-Newtonian stress tensor is described in Section 2.4.5 and it is shown that the

partial differential character of the tensor differs significantly from the Newtonian stress

tensor. The relevant terms have therefore been derived for the internal stresses of the

Navier-Stokes equations.

The internal viscous stress terms of a non-Newtonian fluid are examined by dimensional

analysis. The velocity and length variables are replaced by dimensionless expressions

x̂ =
x

L
; û =

u

U
; ŷ =

y

L
; v̂ =

v

U
; ẑ =

z

H
; ŵ =

w

W
; (3.3.1)

where both horizontal lengths are characterized by the same length L. The horizontal

velocities are represented by the same characteristic velocity U. Their vertical compo-

nents are classified by H and W . The variables of the three internal stress components

of Equation (2.4.27) are replaced by the dimensionless characteristics

U

L2

[
2
∂

∂x̂

(
ν
∂û

∂x̂

)
+
∂

∂ŷ

(
ν

(
∂û

∂ŷ
+
∂v̂

∂x̂

))]
+
∂

∂ẑ

(
ν

(
U

H2
∂û

∂ẑ
+
W

LH

∂ŵ

∂x̂

))
(3.3.2a)

U

L2

[
∂

∂x̂

(
ν

(
∂û
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(
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(3.3.2b)
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(3.3.2c)

Further transformation of the characteristic factors leads to

U
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∂û
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∂ŷ

))
(3.3.3b)

∂

∂x̂

(
ν

(
U

LH

∂û
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∂ẑ

(
ν
∂ŵ
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by applying the relation U
H = W

H obtained from the dimensionless continuity equation

[Malcherek, 2001]

U

L

(
∂u

∂x
+
∂v

∂y

)
+
W

H

∂w

∂z
= 0. (3.3.4)

Finally, the characteristic factors can be expressed in terms of the length only
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(3.3.5c)

An additional assumption is necessary before the dimensionless parameters are analyzed.

The objective is the simulation of fluid mud dynamics. It is assumed that turbulence

is totally damped due to stratification in high concentration flow or at least the turbu-

lent viscosity is negligible compared to the rheological viscosity. Turbulence becomes

important in the transition area between fluid mud and water body for the calculation

of the correct shear force in this area. However, this is a subject of research itself (e.g.

interaction between rheology and turbulence) and goes beyond the scope of this thesis.

Therefore, the turbulent viscosity is neglected so that only viscous internal stresses are

considered, but being aware that the internal shear will be underestimated in the non-

laminar flow regions.

The rheological viscosity is not a directional quantity. A material can be sheared in one

or more directions. As long as the absolute value of the shear rate vector or tensor

remains the same, then the viscous response will be the same. The movement of a

fluid mud layer in a horizontal direction dominates the movement in a vertical direction.

The variation of the velocity over the vertical is higher than in the horizontal direction.

This also results from the interpretation of the characteristic length. The characteristic

horizontal length L represents the horizontal extent of the fluid mud layer which may

be around several hundred meters. A fluid mud layer thickness ranges from decimeters

to about 1 m which describes the vertical characteristic length H. Consequently, it can

be stated that L � H. Therefore, the viscous stress terms containing the horizontal

velocity derivatives ∂2u
∂z2 and ∂2v

∂z2 in z-direction have the strongest impact on the fluid

behavior. The terms of the derivatives ∂2w
∂x2 and ∂2w

∂y2 have the least influence.

Now that the significant internal stresses are identified with regard to the problem of

interest. The non-Newtonian fluid behavior can be transferred to a numerical model

based on the Navier-Stokes equations which assume the incompressibility approximation
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and a Newtonian fluid. The viscous terms are given by

x-component:
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)
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)
(3.3.6a)
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for the Navier-Stokes equations. The dimensional analysis shows that these terms are

the most important for high-concentration flow such as for shallow water hydrodynam-

ics. Therefore, the same terms will be applied as an approximation for the description

of the non-Newtonian fluid (mud) behavior. A full description of the non-Newtonian

behavior would require all terms of the stress tensor, including the non-linear terms.

However, it would be a problem to solve the equations of motions by considering the

non-linear viscous terms. This approximation for the non-Newtonian stress tensor al-

lows to adopt the rheological behavior of fluid mud on a conventional hydrodynamic

model.

3.4 Rheological Approach for Mud Suspensions

The velocity distribution of highly concentrated mud suspensions is inevitably subjected

to the modeling of the rheological behavior. A brief introduction on the rheology of

mud suspensions is given in Section 2.2. The way to a parameterized rheological model

presented in this section is based on the investigations of Malcherek and Cha [2011].

The rheological model implemented in the numerical model is a parameterized form of

the Worrall-Tuliani model [Worrall and Tuliani, 1964]

τ = τy + µ∞γ̇ + ∆µγ̇cλ, (3.4.1)

which is discussed in detail by Toorman [1997, 1994] for cohesive suspensions. The

viscosity µ∞ is the asymptotic value for γ̇ → ∞ at the structural state of full break-

down of the structure and ∆µ is the viscosity at a specific degree of structure. The first

two terms of this model have the form of the Bingham model with the yield stress τy

and the linear dependence of shear rate and viscosity (viscoplastic behavior). The third

term accounts for time-dependent changes in the structure due to the structural param-

eter cλ. Depending on the shear impact, aggregates can break-up and recover in the

mud suspension but such mechanisms occur gradually and not immediately (thixotropic

behavior). The structural parameter ranges between one and zero:

cλ =

 1 maximum degree of aggregation

0 complete break-up of aggregation
(3.4.2)

3. Conceptual Model 39



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

and is depicted in Figure 12. The rate of change cλ under shear impact is given by

dcλ
dt

= caggr (1− cλ)− cbreak γ̇cλ. (3.4.3)

The parameters cbreak and caggr are empirical constants for the break-up and re-/

aggregation of flocs respectively. The first term is not dependent on the shear impact

whereas the break-down of aggregates (second term) increases with increasing shear

rate.

One solution of the differential equation can be gained from the equilibrium state where

break-up and recovery of aggregates are at equilibrium (no change with time dcλ
dt = 0).

A formulation for cλ then results in

cλ =
caggr

cbreak γ̇ + caggr
. (3.4.4)

This leads to the first order shear stress formulation for the equilibrium structural state

τ = τy + µ∞γ̇ + ∆µγ̇
caggr

cbreak γ̇ + caggr

or τ = τy + µ∞γ̇ + ∆µγ̇
1

cbreak
caggr

γ̇ + 1
. (3.4.5)

where the yield stress is independent of the structural parameter [Toorman, 1997]. This

implies for rheological measurements that the shear stress has to be increased slowly

enough and continuously so that the aggregate bonds are in equilibrium with the applied

shear rate.

Consequently, rheological measurements are required to determine the four parameters

(τy , µ∞, ∆µ and the relation of cbreak
caggr

) in relation to the solid volume concentration.

1=λ 0=λ

full break-up of 
aggregates

maximum 
aggregation

1=λ

0=λ
full break-up of aggregates

maximum aggregation

Figure 12: Aggregation and break-up of flocs.

The maximum degree of aggregation is defined with λ = 1 and λ = 0 indicates the state where all

particle bonds are broken.
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3.4.1 Rheological Measurement of Fluid Mud Samples

Rheological measurements of estuarine muds were carried out by Malcherek and Cha

[2011]. They developed parameterizations for the Worrall-Tuliani model based on these

measurements which is presented in this and the following section.

Ten fluid mud samples were taken from different locations in the estuaries Ems and

Weser. These samples had to be prepared for the rheological measurements by sieving

out particles >63 µm because the rheological measuring device is not capable of mea-

suring sandy material. Besides, measuring the suspensions containing only the clayey

and silty fractions reduces the dependence on the sediment particle distribution. Sand-

mud mixtures are highly complex suspensions due to the different properties of the

constituents.

The following additional analyses of the samples were carried out:

• grain size distribution determined with a laser diffraction particle size distribution

analyzer,

• determination of the ignition loss and

• determination of the dry density with a special device for fine particles and powders

which measures the volume by gas (helium) displacement under temperature-

controlled conditions.

The resulting grain size analysis of the Ems and Weser samples showed almost no

fractions smaller than 1 µm. The median grain size of the samples was in the range of

10 µm with a very small fraction of clay-sized particles. The coefficient of uniformity

ranged from 2.48 to 3.19. A material/soil can be characterized by the uniformity

coefficient in the classes (EN ISO 14688-2, 2004): CU >15 multi-graded, CU =6-

15 medium-graded and <6 even-graded. Therefore, the grain size distribution can be

characterized as even-graded. All samples exhibited very similar results in terms of the

uniformity and the mean grain size and because of that a dependence of the rheological

behavior on the grain size distribution can be neglected. The organic content determined

due to the loss on ignition was about 7% and the dry density was in the range of 2,524

and 2,625 kg/m3.

The aim of the rheological measurements is to find a qualitative and quantitative re-

lation between the viscosity and the shear rate in dependence on the solid volume

concentration. Thus, four different concentrated suspensions were prepared from the

dried samples with the sediment volume concentrations 5.5%, 7%, 8.5% and 10%.

The used rheometer was a MCR 51-Rheometer from Anton Paar. This rheometer

can be applied under several conditions and configurations. Important features are the

kind of shear impact on the sample (controlled shear stress or shear rate, oscillation or
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rotation) while the measuring device is a rotating plate to plate or conus to plate system

and the temperature is adjustable. The minimum possible angular rate is 10-5/min under

controlled shear stress conditions and 10-3/min under controlled shear rate conditions.

The measurements were set-up with a plate to plate configuration under controlled

shear stress conditions and at a constant temperature of 20◦C.

The yield stress (critical stress for initiation of movement/deformation) can be deter-

mined from rheological measurements. Chhabra and Richardson [2008] indicate that

the existence of a true yield stress is often uncertain because no yield stress may exist

at very small shear rates but very high viscosities may do so. It is mostly assumed an

apparent yield stress, which is dependent on the range of the rheological measurement.

Additionally, the measured data fitted to different rheological models will lead to differ-

ent yield stresses.

Berlamont et al. [1993] report from literature review about different methods for the

yield stress determination: apparent yield stress resulting from least squares fitting of

a rheological model, evaluation of the residual yield stress from controlled shear rate

measurements (with meanwhile recovery between the shear stages) by extrapolation of

the flow curve or rheological measurement under controlled shear stress conditions.

Nowadays, the rheometers have become more precise and can be used for very low

shear stresses which has led to progress in the yield stress evaluation [Barnes, 2000;

Chhabra and Richardson, 2008]. The controlled shear stress method is more appropri-

ate than the controlled shear rate method for the evaluation of the yield stress because

the structure of the sample is be better preserved during the testing period (one stage

of shear/stress).

The controlled shear stress method applies a shear stress on the sample which increases

incrementally. The progression to a next shear stress state is approached very slowly

to keep an equilibrium state of aggregation. The yield stress is then evaluated by ex-

trapolation of the data to the point of zero shear rate. This method was applied in

the studies of Malcherek and Cha [2011]. The rheological measurements have led to

flow curves and their related yield stress for every sample of the different concentrated

suspensions. Figure 13 shows an example of the resulting flow curves and the viscosity

curve of one sample. An increasing yield stress proportional to the volume concentra-

tion can be observed. After initiation of movement the shear rate increases only slightly

with rising shear stress. The mud suspensions are a shear thinning material in which the

aggregates bonds slowly break-up during the first stage described. At a certain shear

stress the structure is destroyed entirely. This point of shear stress is reached later

with increasing concentration. The second stage now begins in which even low advanc-

ing shear stresses lead to large deformations (small gradient in the flow curve). The

viscosity-shear rate relation behaves accordingly and the viscosity decreases with the

progressive shear impact. The gap due to structural breaking also becomes apparent.
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s = 10%

s = 8.5%

s = 7%
s = 5.5%

s = 10%

s = 8.5%

s = 7%

s = 5.5%

Figure 13: Example of the results of rheological measurements - flow curve and viscosity curve

with logarithmic scale (modified from Malcherek and Cha [2011]).

The rheological measurements have been carried out for four different degrees of dilution for each sample

(sediment volume concentrations 5.5%, 7%, 8.5% and 10%). The flow curves show an increasing yield

stress with increasing sediment volume concentration indicated by the initiation of deformation (left

panel). The viscoosity decreases with increasing shear rates due to break-up of flocs (right panel).

In a next step these measured data were converted into parameterizations as a function

of the solid volume concentration.

3.4.2 Parameterization of the Worrall-Tuliani Model for Mud Sus-

pensions

The parameterizations identified by [Malcherek and Cha, 2011] were based on rheolog-

ical analysis by taking all ten samples into account as the rheological approach should

be as generally valid as possible. Nevertheless, these parameterizations should still be

understood as a result of these special mud samples. Other sampling campaigns might

get different results with the same method.

The four parameters identified above (τy , µ∞, ∆µ and cbreak
caggr

) are given in relation to

the solid volume content. The yield stress is exponentially dependent on the volume

concentration

τy = a1φ
b1
s (3.4.6)

which is a relation according to Migniot [1989]. The viscosity µ∞ defines the viscosity

for a completely destroyed structure which ranges from the minimum value, the viscosity

of clear water (µ0 = 0.001 Pa s), to increasing magnitudes depending on the particle

content. This viscosity is defined by

µ∞ = µ0exp (b2φs) . (3.4.7)
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The viscosity ∆µ for a specific degree of structure is a linear function of φs

∆µ = a2φs . (3.4.8)

Finally, the relation of the structural parameters is expressed by a non-linear function

cbreak
caggr

= cstruc = a3φ
−b3
s . (3.4.9)

Accordingly, the Worrall-Tuliani model in terms of the predefined parameters results in

τ = a1φ
b1
s + µ0exp (b2φs) γ̇ + a2φs γ̇

1

a3φ
−b3
s γ̇ + 1

. (3.4.10)

This formulation is adjusted to the measured data due to surface fitting for all samples.

The surface fitting relates the shear stress to two parameters: the solid volume con-

centration and the shear rate. An example of surface fitting is illustrated in Figure 14.

The resulting empirical parameters are

a1 = 7021 Pa

b1 = 4.245

a2 = 0.8358 Pa · s

b2 = 14.69

a3 = 0.02193 s

b3 = 0.5808 (3.4.11)

sh
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r 
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P
a
]

particle content [-] shear rate [1/s]

Figure 14: Parameterization due to surface fitting (modified from Malcherek and Cha [2011]).

The shear stress is parameterized as a function of the particle content and the shear rate.

44 3. Conceptual Model



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

and were presented in Knoch and Malcherek [2011]. The fully parametrized formulation

according to Worrall-Tuliani then leads to

τ = 7021 Pa φ4.245s + µ0 exp (14.69φs) γ̇ +
0.8358 Pa · s φs γ̇

0.02193 s φ−0.5808s γ̇ + 1
. (3.4.12)

Accordingly, the rheological viscosity has the following form

µr =
7021 Pa φ4.245s

γ̇
+ µ0 exp (14.69φs) +

0.8358 Pa · s φs
0.02193 s φ−0.5808s γ̇ + 1

. (3.4.13)

The parameterized rheological model describes the shear-thinning behavior and vis-

coplastic behavior of a mud suspension qualitatively and quantitatively as a function of

the solid volume concentration or the bulk density respectively. This approach repre-

sents a continuous formulation from clear water to a high concentrated suspension. For

a particle concentration equal to zero the rheological viscosity is reduced to the viscosity

µ0 of clear water and behaves as a Newtonian fluid (Figure 17 for % =1,000 kg/m3).

In the following, the parameterized quantities used to describe the behavior of mud sus-

pensions are shown as a function of the bulk density, because the isopycnal numerical

model characterizes the mud suspensions in dependence on the bulk density. The yield

stress increases exponentially with the increasing bulk density of the mud suspension,

see Figure 15. The next diagram shows flow curves for different bulk densities (Fig-

ure 16). In this case, the shear rate (intensity) is chosen ranging from 0 to 100 s-1

which is a range recommended by Berlamont et al. [1993] to study sedimentological

applications. Shear rate intensities occur in the range of 0–10 s-1 within the fluid mud

body, whereas in turbulent flow the shear intensity may become much higher. There

can be observed a stronger increase in the shear stress in the low shear rate range than

in the higher shear rate range. At the beginning, the structure of the material is able

to endure higher stresses but this ability decreases with the break-up of the structure

due to increasing shear impact.

The rheological viscosity is shown in Figure 17 as a function of the shear rate and for

different bulk densities. The shear-thinning behavior of fluid mud is represented ac-

cordingly by the decreasing rheological viscosity with increasing shear rates. Again the

rheological viscosity decreases rapidly in the low shear rate range with increasing shear.

The internal structure breaks up during the shear period where the viscosity decreases

strongly. With the complete break-up of the aggregates the viscosity curve progresses

asymptotically to a specific viscosity magnitude.
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Figure 15: Yield stress as a function of the bulk density according to the parameterized

Worrall-Tuliani model.
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Figure 16: Flow curves for different bulk densities according to the parameterized Worrall-

Tuliani model.

The shear stress increases with increasing bulk density and shear rate. The initiation of deformation is

described by the yield stress which increases according to the bulk density.
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Figure 17: Rheological viscosity-shear rate relation for different bulk densities according to the

parameterized Worrall-Tuliani model.

The viscosity decreases with break-up of the internal structure caused by an increasing shear rate. The

viscosity of clear water remains constant and it indicates Newtonian behavior.

3.5 Rheological Viscosity in Three-dimensional Flow

The rheological constitutive laws shown in Section 2.2 consider a medium under simple

shear such as the laminar Couette flow in x-direction. In this case, the velocity u

decreases linearly with depth, the shear stress tensor reduces to the component τxz and

the deformation rate tensor to γ̇xz , respectively. The rheological viscosity is described by

the ratio of the shear stress intensity and shear rate intensity. The rheological viscosity

is then given by

µr =
|τxz |
|γ̇xz |

(3.5.1)

where the shear rate component γ̇xz is equal to ∂u
∂z . All three quantities are scalar

values. The shear rate depends on the stress state. However, in three dimensions both

are described by a tensor, see Equation (2.4.15). An isotropic and homogeneous fluid is

assumed. Therefore, the viscosity of an infinitely small volume is the same in all spatial

directions and it is represented by a scalar value. In other words, the viscosity does not

depend on the direction of the shear, but on the magnitude or shear intensity. Thus,

in three-dimensions the scalar viscosity has to be a function of the magnitudes of the

shear stress and shear rate tensor. A three-dimensional approach for the rheological

viscosity will be derived in this section.

The general constitutive law σ = F (D) of an isotropic material behaves invariant for
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volume conserving and orthogonal coordinate transformations which means the material

behavior is independent from the direction of deformation but depends on its magnitude.

The tensor function F (D) for a non-linear viscous fluid (non-Newtonian) is defined with

[Fredrickson, 1964; Robertson, 2008]

F (D) = µ0E + µ1D + µ2D
2. (3.5.2)

where µi (i = 0, 1, 2) are scalar material functions of the invariants of D. The fluid is

assumed to have no memory such as viscoplastic materials in contrast to viscoelastic

materials.

It follows a detailed consideration on the invariants of symmetric 2nd-order tensors

including the shear stress and shear rate tensor. Invariants of a tensor have following

properties [Bronstein et al., 1997]:

• An invariant of a tensor is a function of tensor components whose scalar value

does not change with rotation of the coordinate system. Examples for these

components are the trace and the determinant of a tensor.

• Invariants are independent of the chosen Cartesian coordinate system.

• Any function of the three principal invariants (see Equation (3.5.3) below) are an

invariant itself.

• A tensor is invariant, in contrdiction to a tensor invariant, if the tensor compo-

nents do not change their value by rotation of the coordinate system (rotational

invariance) or translation (translational invariance) of the origin.

The three principal invariants of a 2nd-order and symmetric tensor B are given by

[Prager, 1961; Malvern, 1969; Fredrickson, 1964]:

IB = tr (B) = bi i = b11 + b22 + b33 (3.5.3a)

IIB =
1

2

[
(tr (B))2 − tr

(
B2
)]

=
1

2

[
I2B − tr

(
B2
)]

=
1

2

[
b2i i − bi jbj i

]
=

1

2

[
(b11 + b22 + b33)

2 −
(
b211 + b222 + b233

)
− 2

(
b212 + b213 + b223

)]
= b11b22 + b22b33 + b11b33 −

(
b212 + b213 + b223

)
(3.5.3b)

IIIB = det (B)

= b11b22b33 + 2b12b13b23 − b11b223 − b22b213 − b33b212 (3.5.3c)

with bi j = bj i . Additionally, the third invariant IIIB can be written as a function of the

trace of the tensor B [Oliveira and Pinho, 1998]

IIIB =
1

6

[
(tr (B))3 − 3tr (B) tr

(
B2
)
+ 2tr

(
B3
)]

(3.5.4)
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and the three terms are given by

(tr (B))3 = b3i i = (b11 + b22 + b33)
3

=
(
b211 + b222 + b233

)
(b11 + b22 + b33)

+ 2
[
b211 (b22 + b33) + b222 (b11 + b33) + b233 (b11 + b22) + 3b11b22b33

]
(3.5.5a)

tr (B) tr
(
B2
)
= bi ibi jbj i

= (b11 + b22 + b33)
[(
b211 + b222 + b233

)
+ 2

(
b212 + b213 + b223

)]
(3.5.5b)

tr
(
B3
)
= bi jbj lbl i

=
(
b311 + b322 + b333

)
+ 3

[
(b11 + b22) b

2
12 + (b11 + b33) b

2
13 + (b22 + b33) b

2
23

]
+ 6b12b13b23. (3.5.5c)

It follows that the scalar material functions of Equation (3.5.2) are expressed in terms

of the three principal invariants of the deformation rate tensor: µi (ID, IID, IIID).

The dependence on the tensor invariants can be further simplified for incompressible

(constant density) materials. The first invariant of the shear rate tensor becomes zero,

and the second and third invariant can be written in reduced form

ID = tr (D) = ∇u = 0 (3.5.6a)

IID = −
1

2
tr
(
D2
)
= −

1

2
γ̇i j γ̇j i (3.5.6b)

IIID =
1

3
tr
(
D3
)
= γ̇i j γ̇j l γ̇l i . (3.5.6c)

In the general constitutive equation (3.5.2) µi depends now only on IID and IIID.

Furthermore, the first term can be expressed with µ0E = −pE and only the deviatoric

stress τ is considered in the following (see Equation (2.4.21)). Accordingly, the devia-

toric rate of deformation is equal to the rate of deformation for incompressible fluids.

The constitutive equation results now in

τ = µ1 (IID, IIID)D + µ2 (IID, IIID)D2 (3.5.7)

which describes a Reiner-Rivlin fluid [Graebel, 2007]. The first term contains the (rhe-

ological) viscosity of the units N · s/m. In the second term the material parameter

µ2 has the unit N · s2/m. According to Robertson [2008] and [Graebel, 2007] any

Reiner-Rivlin fluid can be well described by using the following reduced form

τ = µ1 (IID, IIID)D for µ1 ≥ 0 (3.5.8)

which is called the constitutive equation of a generalized Newtonian fluid. Conse-

quently, the rheological viscosity can be expressed by a function of the second and third

invariant of the shear rate tensor: µr (IID, IIID) = µ1 (IID, IIID).

3. Conceptual Model 49



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

In one-dimensional or laminar two-dimensional flow the third invariant vanishes with

det (D) = 0 or γ̇i j γ̇j l γ̇l i = 0. In three-dimensional flow conditions such as turbulent

flow the third determinant does not vanish except for time-averaged quantities [Oliveira

and Pinho, 1998].

Most of the rheological measurements are carried out in one- or two-dimensional shear.

The dependence of the viscosity on the third invariant can therefore not be quantified

[Robertson, 2008]. The influence of the third invariant is difficult to measure and to

the knowledge of the author there are no data available for high concentrated cohe-

sive suspensions to determine the relationship between µr and IIID. Thus, the third

invariant is neglected in the following. A general tensor formulation of the shear stress

for non-Newtonian fluids can be written as [Malvern, 1969; Robertson, 2008; Graebel,

2007]

τ = µr (IID)D. (3.5.9)

The second invariant of the deformation rate tensor expressed in terms of the velocity

gradients results in

IID = −2

((
∂u

∂x

)2
+

(
∂v

∂y

)2
+

(
∂w

∂z

)2)

−
(
∂u

∂y
+
∂v

∂x

)2
−
(
∂u

∂z
+
∂w

∂x

)2
−
(
∂v

∂z
+
∂w

∂y

)2
.

(3.5.10)

This expression reduces for two-dimensional flow in the xz-plane with velocities u (z) 6=
0 and v = w = 0 to IID = − (∂u/∂z)2. This results in the same formulation of the

rheological viscosity as shown in the example at the beginning of this section. The

simple shear example is now evaluated for an ideal plastic fluid, the Bingham fluid, to

derive later the rheological viscosity as a function of IID for different approaches of the

material behavior. A Bingham fluid in simple shear starts to move once the shear stress

intensity |τxz | exceeds the yield stress τy . This is the one-dimensional yield condition

τy ≥ |τxz | for γ̇xz = 0. Thus, the constitutive relation for a Bingham fluid is given by

|τxz | = τy + 2µB |γ̇xz | (3.5.11)

for one-dimensional shear. After exceeding the yield stress the fluid behaves like a New-

tonian fluid with a constant viscosity µB, the Bingham viscosity. The one-dimensional

rheological viscosity formulation then results in

µr =
|τxz |
|γ̇xz |

=
τy
|γ̇xz |

+ 2µB (3.5.12)

by taking the intensities of the shear stress and shear rate into account.

Von Mises proposed a yield condition for an ideal plastic and incompressible material

[Prager, 1961]

τ2y ≥ IIτ = −
1

2
τi jτj i for D = 0 (3.5.13)
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which is valid for three-dimensional shear. The shear stress intensity is determined by

the second invariant of the shear stress tensor IIτ . Based on this and by considering

the von Mises yield condition, an approach for plastic material behavior for arbitrary

deformation rates or shear rates is depicted [Prager, 1961; Malvern, 1969]

2µBγ̇i j =


0 for 1− τy√

|IIτ |
< 0

τi j

(
1− τy√

|IIτ |

)
for 1− τy√

|IIτ |
≥ 0

. (3.5.14)

The Equation (3.5.14) for non zero deformation is squared

4µ2Bγ̇
2
i j = τ2i j

(
1−

τy√
|IIτ |

)2
for D 6= 0. (3.5.15)

This leads to a formulation in terms of the second invariants:

4µ2BIID = IIτ

(
1−

τy√
|IIτ |

)2
=
(√
|IIτ | − τy

)2
(3.5.16)

with γ̇i j γ̇i j = 2IID and τi jτi j = 2IIτ . Finally, the viscosity is given by

µr =
τ

D
=

τy√
|IID|

+ 2µB (3.5.17)

for the three-dimensional case. Different expressions for the rheological viscosity can

be developed in accordance with rheological constitutive laws:

µr (IID) =
τy√
|IID|

+ 2µB for a Bingham fluid (3.5.18a)

µr (IID) =
τy√
|IID|

+K
√
|IID|

(b−1)
for a generalized Newtonian power-law fluid

(3.5.18b)

µr (IID) =
τy√
|IID|

+ 2bK
√
|IID|

(b−1)
for a Herschel-Bulkley fluid (3.5.18c)

µr (IID) =
τy√
|IID|

+ 2µ∞

+
∆µ

Cbreak
Caggr

√
|IID|+ 1

for a Worrall-Tuliani fluid. (3.5.18d)

The empirical parameter K is the consistency coefficient. The empirical exponent

b denotes the flow index. The dynamic viscosity µ∞ describes the viscosity at fully

broken structure. The second invariant of the Worrall-Tuliani approach is located in the

denominator in particular. The term
√
|IID| represents the intensity of the shear rate
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independently of the direction of action. Multiplied by the empirical constant Cbreak
Caggr

,

this term describes the break-up of aggregates with increasing shear forces.

The flow regime of a river or estuary is dominated by vertical gradients of horizontal

velocity. Thus, a sufficient approximation for IID is obtained by neglecting derivatives

of the vertical velocity component because the horizontal velocity gradients are much

greater than the vertical velocity gradients. In addition, the horizontal derivatives of

the horizontal velocity components are very small. Using these assumptions, the shear

rate intensity expression reduces to

IID = −

[(
∂u

∂z

)2
+

(
∂v

∂z

)2]
. (3.5.19)

Accordingly, the rheological viscosity of a Worrall-Tuliani fluid in three-dimensional flow

results in

µr =
τy√∣∣∣(∂u∂z )2 + (∂v∂z )2∣∣∣ + 2µ∞ +

∆µcaggr

cbreak

√∣∣∣(∂u∂z )2 + (∂v∂z )2∣∣∣+ caggr

. (3.5.20)

The effect of turbulence is modeled with a comparable approach for the turbulent

viscosity. For example, the mixing length model describes the turbulent viscosity with

µt =
lm
%

√
|IID| =

lm
%

√√√√∣∣∣∣∣
(
∂u

∂z

)2
+

(
∂v

∂z

)2∣∣∣∣∣ (3.5.21)

as a function of the shear rate intensity and the mixing length lm [Malcherek, 2001;

Schlichting and Gersten, 1997]. Similarly, the shear rate intensity is approximated by

vertical gradients of horizontal velocity, because they express the maximum shearing.

Therefore, the effect of increasing turbulence or increasing rheological viscosity is the

same in the Navier-Stokes equations, i.e. damping of the current velocity. However,

with regard to the diffusion of suspended particles, the level of mixing is increased by

turbulence but reduced by an increase of rheological viscosity.

If the rheological behavior of fluid mud becomes similar to a plastic solid (e.g. con-

solidated mud) then also the other components of the second shear rate invariant can

become significant. Furthermore, the third invariant should be taken into account in

the function of the viscosity.

3.6 Mobilization of Mud Suspensions

The mobilization processes of fluid mud depend on the condition and concentration

of the mud as well as on the impact on it, see Section 2.3 and in detail McAnally

et al. [2007a], Kranenburg [1994] and Mehta et al. [1989]. While erosion refers to
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the mobilization of consolidated mud beds, entrainment is the transition from a higher

concentrated layer to a layer of lower concentration. The latter one is also known as

resuspension or redispersion. Both are induced by shear flow velocities and turbulent

forces. Fluidization describes the transition of consolidated mud to mobile mud due

to wave impact. Wave impact is most effective in shallow water, e.g. mud flats and

along the shoreline. The simulation of fluidization requires additional coupling to a wave

module, which is beyond the scope of this thesis. Entrainment is the process of vertical

mixing which is the focus of this thesis. In particular, fluid mud under the influence of

tidal currents is vertically transported by entraining processes.

Entrainment can be considered in different ways depending on the conceptual approach

of the numerical fluid mud model. Most approaches need parameterizations which

are functions of the degree of density stratification characterized by the Richardson

number. Vertical turbulent mixing is damped by the stratification at the lutocline, but

the breaking of internal waves and entrainment lead to vertical mixing. This vertical

exchange at the lutocline can be realized by an additional vertical viscosity term, which

is described by Guan et al. [2005] in a three-dimensional σ-layer model, for example.

In numerical models with discrete fluid mud layers, which are either single-layer models

coupled with a hydrodynamic model or an isopycnal model, an entrainment mass flux

has to be defined for the exchange between the fluid mud and the overlying layer. In

an isopycnal approach with constant density layers, both the water layer and the fluid

mud layer will decrease, but a third layer of lower concentration will occur in between.

Some entrainment flux approaches are presented below.

McAnally et al. [2007a] suggests different approaches for the dimensionless entrainment

coefficient E for the first entrainment case

E =
Φent

u∗,wm
(3.6.1)

where u∗,wm is the friction velocity at the interface of fluid mud and water layer and

Φent = dH/dt is the entrainment rate. It was observed that, with increasing stratifica-

tion, the entrainment coefficient decreases because turbulence becomes less dominant

in stratified flows. The degree of stratification is expressed by the Richardson number.

The entrainment coefficient can be formulated as a function of the bulk Richardson

number Ri∗

Ri∗ =
(%w − %mud )

%0

gHw
u2∗,wm

(3.6.2)

with the reference density %0, the depth Hw and the density of the upper water layer

%w . The reference density is set equal to %w . In the following, the index w is used for

the water layer, mud for the fluid mud layer and wm for the interface of both layers.

Different entrainment coefficients are proposed as a function of the bulk Richardson
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number [McAnally et al., 2007a]

E = f (Ri∗)
− 1

2 or E = f (Ri∗)
− 1

4 . (3.6.3)

An entrainment rate expression based on the turbulent kinetic energy equation was de-

veloped by Kranenburg and Winterwerp [1997]. This is a solution for the first entrain-

ment case with a two-layer system comprising a mixed water layer above a quiescent

fluid mud layer (entraining fluid mud into the turbulent water body above, see Sec-

tion 2.3.3). Mud is entrained into the water layer due to shear. The turbulent kinetic

energy equation is integrated over the depth of the turbulent mixed layer and results in:

0 = Cq
d

dt

(
Hwuw

dH

dt

)
︸ ︷︷ ︸

(I)

− 2Cs
(
u2∗,wm − u2∗,y

)
(uw − uwm)︸ ︷︷ ︸

(II)

− Cs
dH

dt

[
(uw − uwm)2 −Cyu2∗,y

]
︸ ︷︷ ︸

(II)

−Cs
(
u2∗ − u2∗,y

)
(uw − uwm)︸ ︷︷ ︸

(III)

− Cσ

[(
u3∗ + u3∗,wm

)2/3 − u2∗,y] (u3∗ + u3∗,wm
)1/3︸ ︷︷ ︸

(IV )

+
dH

dt

gHw
%w

(%s − %w )
%s

(cmud − cw )︸ ︷︷ ︸
(V )

. (3.6.4)

The sidewall effects and settling are neglected here. Cq, Cs , Cy and Cσ are empirical

constants. The shear velocities are u∗,wm at the interface of water and fluid mud and u∗

of the main flow at the free surface. The suspended sediment concentration is denoted

by c and a related index. The terms of the integrated turbulent kinetic energy equation

are

(I) the storage term which is only important in weakly stratified flow,

(II) the shear production term at the interface,

(III) the shear production term at the free surface of the upper layer,

(IV) the stirring term including turbulent viscous effects,

(V) the buoyancy term described as a function of the Ri∗-number.

The strength of the fluid mud layer is taken into account by the yield stresses shear

velocity u2∗,y . The turbulent viscous effects are expressed by the relation uwm
uw

. If turbu-

lence is insignificant uwm tends to zero. In case of turbulence is dominant, uwm reaches

the value of uw .

For soft mud beds, the term of coefficient Cy can be neglected because it is very

small compared with the buoyancy term. However, it should be included if erosion of

consolidated fluid mud occurs. The first case of non-consolidated muds and a strong
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stratified flow is now considered. The storage term is set to zero. Then the entrainment

rate is given by

Φent =
dH

dt
=(

Cs (uw − uwm)
[
2
(
u2∗,wm − u2∗,y

)
+
(
u2∗ − u2∗,y

)]
+ Cσ

[(
u3∗ + u3∗,wm

) 2
3 − u2∗,y

]
(
u3∗ + u3∗,wm

) 1
3

)(
−Cs (uw − uwm)2 +

gHw
%r

(%s − %r )
%s

(cwm − cw )
)−1

.

(3.6.5)

Further simplification can be achieved by neglecting the shear production term (III) at

the free surface. It results in the entrainment rate according to Winterwerp et al. [2002]

Φent =

2Cs (uw − uwm)
〈
u2∗,wm − u2∗,y

〉
+ Cσ

〈(
u3∗ + u3∗,wm

) 2
3 − u2∗,y

〉 (
u3∗ + u3∗,wm

) 1
3

Cs (uw − uwm)2 + gHw
(%mud−%w )

%w

.

(3.6.6)

where the terms in angular brackets are set to zero if they become negative. When

multiplied by the sediment concentration of the fluid mud layer cmud = %s
%mud−%w
%s−%w

the mass entrainment rate is obtained. The empirical constants were determined in

experiments by Winterwerp and Kranenburg [1997] and Kranenburg and Winterwerp

[1997] and can be set to Cq = 5.6, Cs = 0.25 and Cσ = 0.42.

The shear velocity of the interface can be described as a function of a friction parameter

fwm with

u2∗,wm = fwm (uw − umud )
2

(3.6.7)

or as a function of the viscosity

u2∗,wm = νwm (νt , νr )
∂u

∂z
= νwm (νt , νr )

uw − umud
∆z

. (3.6.8)

where u2∗,y represents the strength of the fluid mud layer and indicates therefore a critical

shear stress.

The yield stresses shear velocity is defined as

u2∗,y =
τy
%mud

. (3.6.9)

The yield stress is determined as a function of the mud concentration with the pa-

rameterized Worrall-Tuliani model (3.4.12). This is the critical shear stress velocity for

entrainment.

The entrainment rate approach of Equation (3.6.6) is analyzed in Figure 18. The en-

trainment rate is a function of the shear velocity difference
(
u2∗,wm − u2∗,y

)
(with u∗ = 0),

the velocity difference (uw − uwm) (with uwm = umud the mean fluid mud velocity) and
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the water layer depth Hw . However, the entrainment rate is not dependent on the fluid

mud layer depth. The top diagram shows the entrainment intensity Hmud ,∆t/Hmud ,0
(depth after the time period ∆t / initial depth) versus the velocity quotient umud/uw for

different velocities of the water layer. The entrained amount increases with increasing

interfacial shear or decreasing velocity quotient umud/uw . The bottom diagram shows

the relationship between entrainment rate and water layer depth for different velocity

differences of the adjacent layers. The entrainment rate decreases with reducing water

layer depth. The entrainment rate curve runs asymptotically with increasing water layer

depth.

The following entrainment approach assumes the second entrainment case (entraining

water into the fluid mud body below, see Section 2.3.3). A parameterized approach for

the entrainment rate of fluid mud was introduced by Whitehouse et al. [2000]

Φent =
Cf umud

(1 + 63Ri2∗ )
3
4

= Cf umud

1 + 63

(
(%w − %mud )

%w

gHmud

(umud − uw )
2

)2−
3
4

(3.6.10)

and, based on comparisons with filed data, he recommends setting the coefficient Cf

in the order of magnitude 1.0. In this case, the bulk Richardson number is defined as a

function of the fluid mud layer depth Hmud . Whitehouse et al. [2000] recommend that

entrainment only takes place for Ri∗ < 10. Furthermore, the entrainment rate becomes

very small for Ri∗ > 10.

An additional threshold is introduced for this entrainment case to take the rheological

behavior into account. The fluid mud resistance against entrainment can be specified

by the yield stresses shear velocity u2∗,y (Equation (3.6.9)). Entrainment is thus initiated

if |u∗,wm| > |u∗,y | with the interfacial shear velocity u∗,wm.

The entrainment rate Φent is a function of the fluid mud layer depth Hmud , the differ-

ence of the velocities of the adjacent water and fluid mud layer (uw − umud ) and the

mean velocity of the fluid mud layer. Their relationship is analyzed in the diagrams of

Figure 19. The top diagram shows the relationship between the fluid mud layer depth

quotient Hmud ,∆t/Hmud ,0 (depth after the time period ∆t / initial depth) and the ve-

locity quotients uw/umud for different velocities of the water layer. No entrainment

occurs for Hmud ,∆t/Hmud ,0 = 1. The entrainment intensity increases with increasing

mean velocity of the fluid mud layer and decreasing velocity quotient. The bottom

diagram represents the entrainment rate versus the fluid mud layer depth for different

velocity differences (umud − uw ). The entrainment rate increases with the difference

of the velocity which describes the shear impact at the water-fluid mud interface. In

addition, the entrainment rate decreases asymptotically with increasing fluid mud layer

depth.

Both approaches include parameterizations, which make the simulation results rather
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Figure 18: Analysis of the entrainment model according to Winterwerp et al. [2002].

The top diagram shows the relationship of the quotient of the fluid mud layer depth Hmud ,∆t/Hmud ,0

and the velocity quotient umud/uw for different mean velocities of the water layer. The bottom diagram

shows the entrainment rate versus the water layer depth. The entrainment rate increases with increasing

shear or differences of the velocity. Moreover, the entrainment rate decreases asymptotically with the

water layer depth.

sensitive to the chosen parameters. Therefore, advanced calibration and comparison

with field data are needed. At present, the isopycnal numerical model introduced in

Section 4 does not include a sophisticated turbulence model which considers turbu-

lence damping by sediment concentration, for example. Thus, the driving force for

entrainment - turbulence in the overlying water column - will be underestimated.
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Figure 19: Analysis of the entrainment model according to Whitehouse et al. [2000].

The top diagram shows the relationship of the quotient of the fluid mud layer depth Hmud ,∆t/Hmud ,0 and

the velocity quotient uw/umud for different mean velocities of the fluid mud layer. The bottom diagram

shows the entrainment rate versus the fluid mud layer depth. The entrainment rate increases with

increasing shear or differences of the velocity. Moreover, the entrainment rate decreases asymptotically

with the fluid mud layer depth.
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3.7 Settling of Mud Suspensions

There are various approaches to determining the settling velocity of cohesive sediments.

The settling velocity is dependent on the state of flocculation (floc size), the specific

weight of the particle or floc, the suspended matter concentration and cohesive forces,

to name a few of the parameters. The settling velocity can be expressed as a function

of the particle concentration cs to consider the flocculation process. This can be done

in a simplified manner with the power law

ws,p = kcms (3.7.1)

with the empirical coefficients k and m. This parameterization for settling is imple-

mented in the numerical model by setting the empirical coefficients k = 0.00024 and

m = 1.17 according to Schulze [1990]. The approach results in a settling velocity that

increases with the concentration.

Further aspects of flocculation and their dependence on turbulence can be taken into

account with an additional term introduced by van Leussen [1994] and Malcherek [1995]

ws = ws,p
1 + aG

1 + bG2
(3.7.2)

with the empirical parameters a and b and the dissipation parameter G =
√
ε/ν which

represents the turbulent state. The turbulent dissipation rate ε can be determined,

for example, from a two-equation k-ε-turbulence model. The progressive break-up of

flocs due to increasing turbulence is considered with an increase of G, resulting in a

decreasing settling velocity. This approach is not applied in the following studies as an

advanced turbulence model has not yet been implemented.

Another aspect of flocculation is hindered settling. As the concentration increases, the

flocs impede each other in the settling process, thus reducing their average settling

velocity.

Winterwerp and van Kesteren [2004] specified the following settling velocity formula

with regard to hindered settling

ws = ws,p
(1− φ∗)n (1− φs)

(1− 2.5φf )
(3.7.3)

where the background settling velocity can be determined by the power law, φs = cs/%s
is the solid volume concentration of primary particles, φ∗ = min [1,φf ] is the threshold

for consolidation, the exponent n accounts for non-linear effects and φf = cs/φgel is

the solid volume concentration of mud flocs.

The parameter φf is dependent on the gelling concentration φgel . The gelling concen-

tration describes the state of a suspension in which the flocs settle on the bed and come

into contact with each other. They form a structure in which the space between them
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diminishes and there is a simultaneous build-up of resistance. When the gelling con-

centration is reached, settling is suppressed and consolidation starts. Figure 20 shows

the settling velocity with hindered settling as a function of the bulk density of the mud

suspension for various gelling concentrations. This indicates that the settling velocity is

rather sensitive to the chosen gelling concentration. The settling velocity increases with

increasing bulk density in the lower density range. Hindered settling then becomes more

dominant and reduces the settling velocity with further increasing concentration of the

suspension. Until the settling velocity becomes zero when the gelling concentration is

reached. Afterwards the high concentrated suspension starts to consolidate.

A consolidation model is not implemented although the gelling concentration is some-

times reached in the applications of the Sections 5 and 6. The simulations cover some

tide cycles or some days which is a too short time period for consolidation to take effect.

In this case, neglecting the consolidation is physically not correct, but can be neglected

for pragmatical reason. However, consolidation needs to be considered for simulations

of longer time periods.hindered settling formulation according to Winterwerp and Kesteren 2004
settling velocity for different gelling concentrations
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Figure 20: Settling velocity with regard to hindered settling for different gelling concentrations

according to Winterwerp and van Kesteren [2004].

The settling velocity increases with the gelling concentration and with increasing bulk density in the low

density range. In the higher density range, the settling velocity decreases with increasing density due to

hindered settling. Once the suspension concentration has reached the gelling concentration the settling

velocity becomes zero.
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4 The Isopycnal Numerical Model

The numerical realization of the simulation of fluid mud dynamics is achieved by an

isopycnal numerical method. A three-dimensional isopycnal model for the simulation of

stably stratified baroclinic circulation was developed by Casulli [1997]. The fundamental

property of isopycnal models is a vertical discretization by layers of constant density - the

isopycnals. This is comparable to σ-models where the vertical is discretized according

to geometrical characteristics instead of a physical parameter as in this case. The

isopycnal model is based on the TRIM3D model [Casulli and Cheng, 1992] which is

a three-dimensional hydrodynamic model for structured horizontal grid resolution with

z-layers. The Reynolds-averaged shallow water equations are solved numerically by a

semi-implicit method [Casulli and Cattani, 1994] and result in an efficient and stable

code. The basic properties of the model are:

• calculation on a structured grid

• vertical discretization in %-coordinates

• uniform density for each isopycnal layer

• momentum exchange between isopycnal layers

• no mass exchange between isopycnal layers

• stable density stratification at any time (%1 > %2 > . . . > %M > 0)

• drying and wetting

• a two-dimensional model results by defining only one isopycnal layer

The 3D isopycnal approach of Casulli [1997] is extended in Appendix A to include a

horizontal unstructured discretization scheme according to Casulli and Walters [2000].

An implementation of this model approach was provided by Prof. V. Casulli of the

University of Trento, Italy. Moreover, the 3D isopycnal approach for unstructured grids

is further developed by considering a vertical discretization with z-layers in addition to

the isopycnal discretization. The combination of isopycnal and z-layer-based vertical

resolution can lead to a single isopycnal layer resolved by one or more z-layers or a single

z-layer resolved by one or more isopycnals. This can be advantageous for an appropriate

resolution of the flow field of the entire water column. High-density gradients due to

suspended sediment accumulations and fluid mud formations near the bottom can be

resolved with the isopycnal layers. In this region, the isopycnal layers can become very

thin so that they enable to realize the stratification. On the other hand the water body

(low-concentration area with smaller density gradients) is primarily discretized by the
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static z-layers. The numerical method is described for a vertical discretization scheme

by a combination of z-layers and %-layers in Appendix A.

The governing equations and the basic principles of the three-dimensional isopycnal

model will be described in Section 4.1. It is shown how fluid mud dynamics are sim-

ulated with such a model and which extensions are needed for that purpose. The

numerical method is demonstrated on a one-dimensional model vertically resolved by

isopycnal layers to simplify the mathematical description. The numerical approximation

and solution algorithm are then presented in Section 4.2.1 and 4.2.2 respectively. The

model approach and implementation are extended to include the simulation of shear-

dependent viscosity with a non-Newtonian approach (Section 4.1) and the vertical mass

transfer between isopycnal layers (Section 4.3). Finally, the properties of the numerical

method are summarized in Section 4.4.

4.1 Governing Equations of the Three-dimensional Isopycnal Model

The isopycnal circulation model is based on a (x , y , %)-coordinate system. The system

is illustrated in Figure 21. Each density layer represents a suspension of constant den-

sity which corresponds to a specific suspended sediment concentration. The bottom

isopycnal layer is referred to as m0 and the surface layer as M.

Based on the general equations of motion (2.4.10) and the continuity equation (2.4.18),

three governing equations result from two assumptions. An incompressible Newtonian

fluid is assumed. The density is therefore constant and can be separated from the

x

y

um

u

ρ1-layer

unstructured grid

rigid bottom

ρ2-layer

ρ4-layer

Mη

0m
η

0m
ηΔ0η

tmη

M = 4

Figure 21: Isopycnal model for three-dimensional flows.

The vertical domain is discretized by isopycnal layers (%-layer) and the horizontal domain by an unstruc-

tured grid. The layered system is stably stratified with (%1 > %2 > . . . > %M > 0). The isopycnal surfaces

are denoted with ηm for the m-th isopycnal layer and the rigid bottom with η0. The velocities um are

layer-averaged quantities.
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system of equations. The second assumption is the hydrostatic pressure approximation.

Furthermore, the momentum equations are Reynolds-averaged and layer-averaged for

each isopycnal layer. The density classes and the maximum number M of isopycnal

layers are predefined. The isopycnal layers and their adjacent layers are specified by the

following indices:

m = m0, . . . ,M isopycnal layer from bottom to surface

mb next active isopycnal layer below the m-th layer

mt next active isopycnal layer above the m-th layer

This results in a system of M two-dimensional shallow water equations for each isopycnal

layer, ranging from ηmb to ηm of the dimensions (x , y , %). The momentum equations,

which are already discretized, are given by

∂um
∂t

+ um
∂um
∂x

+ vm
∂um
∂y

=−
∂ph,m
∂x

+
∂

∂x

(
νhm
∂um
∂x

)
+
∂

∂y

(
νhm
∂um
∂y

)
+
τx ,m+ 1

2
− τx ,m− 1

2

%m (ηm − ηmb)
(4.1.1a)

∂vm
∂t

+ um
∂vm
∂x

+ vm
∂vm
∂y

=−
∂ph,m
∂y

+
∂

∂x

(
νhm
∂vm
∂x

)
+
∂

∂y

(
νhm
∂vm
∂y

)
+
τy ,m+ 1

2
− τy ,m− 1

2

%m (ηm − ηmb)
(4.1.1b)

The second and third terms on the left side represent the advection terms in horizontal

direction for the m-th layer. The velocities um and vm are isopycnal layer-averaged

quantities. The surface or subsurface elevation of the m-th isopycnal layer is given by

ηm and η0 is the bathymetric depth.

The first term on the right side represents the pressure term. The hydrostatic pressure

ph is normalized by a reference density %r and consists of the barotropic pressure and

the atmospheric pressure pa (pressure per density) at the free surface

ph,m = g

(
M

∑
l=m

%l − %lt
%r

ηl

)
+ pa. (4.1.2)

The normalized barotropic pressure considers the pressure from the surface M to the

current isopycnal layer m. The density above the water surface is defined by %M+1 = 0.

The gravitational transport is determined by the pressure term. It indicates increasing

gravitational forcing with increasing differences in the density of the isopycnal layers.

The second to fourth terms on the right side characterize the internal shear stresses.

An approximation for the non-Newtonian flow behavior of high-concentration suspen-

sions is derived in Sections 3.1 and 3.3. Based on this approximation, the flow behavior

is described by the rheological viscosity νr ,m = µr ,m/%m which is a function of space
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x, time t, density % which corresponds to the suspended sediment concentration and

shear rate intensity |IID|. The horizontal and vertical viscosity components (νhm and

νvm) are functions of the rheological viscosity νr and the turbulent viscosity νt . The

detailed dependence and interaction of the two viscosity components is not yet known

and has to be specified in future work. In this study, it is assumed that the horizontal

and vertical viscosities can be treated as a sum of both

νhm = νr ,m + νht,m and νvm = νr ,m + νvt,m. (4.1.3)

The rheological viscosity has no vectorized components and its horizontal and vertical

values are equal. The rheological viscosity is determined by constitutive formulations

(for a further description see Sections 3.4 and 3.5). The turbulent viscosity is taken

as constant for the m-th layer. It has to be ensured that the horizontal and vertical

viscosities are non-negative as the viscosity terms will otherwise have an accelerating

effect on the advective terms.

The interfacial shear of two adjacent isopycnals is described by the vertical shear stress

term (last term on the right side). These isopycnal interfacial shear stresses for the x-

and y -component are determined by

τx ,m+ 1
2

%m
= νv

m+ 1
2

umt − um
(ηmt − ηmb)

,
τx ,m− 1

2

%m
= νv

m− 1
2

um − umb
(ηmt − ηmb)

, (4.1.4)

τy ,m+ 1
2

%m
= νv

m+ 1
2

vmt − vm
(ηmt − ηmb)

and
τy ,m− 1

2

%m
= νv

m− 1
2

vm − vmb
(ηmt − ηmb)

. (4.1.5)

The surface boundary condition is given by

τx ,M+ 1
2

%M
= γa (ua − uM) and

τy ,M+ 1
2

%M
= γa (va − vM) (4.1.6)

and the bottom boundary condition is given by

τx ,m0− 1
2

%m0

= γbum0 and
τy ,m0− 1

2

%m0

= γbvm0 (4.1.7)

with the non-negative friction factors γa for wind friction and γb for bottom friction.

The wind velocities are specified as ua and va.

The vertical velocity component cancels from the momentum equations because of

the depth-averaging per isopycnal layer. The vertical movement is represented by the

variation of the isopycnal surfaces.

The free surface equation in (x , y , %)-coordinates completes the governing equations

and is given by

∂ηm
∂t

+
∂

∂x

(
m

∑
l=1

(ηl − ηl−1) ul

)
+
∂

∂y

(
m

∑
l=1

(ηl − ηl−1) vl

)
= 0. (4.1.8)
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The development of the isopycnal surface elevation (surface or sub-surface) is de-

scribed by the change of the elevation with time and the sum of the horizontal fluxes

below the surface ηm. The thickness of the isopycnal layers can vary in time and space.

The layer can disappear and reappear if drying and wetting occur.

Vertical transport processes such as settling and mixing change the degree of strat-

ification in a suspension. In an isopycnal model approach this requires mass transfer

between the isopycnal layers. Therefore, vertical fluxes are applied to the isopycnal

interfaces which are determined according to parameterizations of transport rates. The

layer thicknesses change according to the mass fluxes. The free surface equation then

results in

∂ηm
∂t

+
∂

∂x

(
m

∑
l=1

(ηl − ηl−1) ul

)
+
∂

∂y

(
m

∑
l=1

(ηl − ηl−1) vl

)
−Φin

m +Φout
m = 0. (4.1.9)

where Φin
m and Φout

m are the sum of the inflow and outflow rates through the interfaces of

them-th layer. Fluxes through the rigid bottom and through the surfaceM are excluded.

Moreover, a layer of zero thickness cannot be the origin of a transport flux, but the

layer can become active due to transport flux into the layer. The mass transferred

from one layer to an adjacent layer is related to the different volumes resulting from

the difference in the densities of the two layers. A diapycnal mass transfer approach

is therefore developed in Section 4.3 with regard to volume and mass conservation.

The approach is described by a simple three-layer system in Section 4.3.1 and is then

extended to consider a system of M ≥ 3 isopycnal layers in Appendix B.

The governing equations, 4.1.1 and 4.1.9, lead to the three unknowns um, vm, ηm. A

semi-implicit method is applied to the governing equations to obtain a solvable system

of equations as is done by Casulli [1997]. The numerical method is demonstrated in

the next section by a vertical one-dimensional model with an isopycnal discretization

scheme.

4.2 One-dimensional Isopycnal Model Vertically Resolved by

%-layers

In this section, the numerical method will be illustrated by a vertically resolved one-

dimensional model approach (1D%) set up to simplify the discrete formulations. The

extended 3D numerical method for a combined vertical discretization of %- and z-layers

is developed in Appendix A. In the following, the vertical domain is resolved only by

%-layers.

The simplifications are based on the governing equations (4.1.1) and (4.1.9) for the

three-dimensional isopycnal formulations with hydrostatic assumption. Basically, an

infinitely extended horizontal space is assumed and therewith the quantities do not
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change in the x- and y -directions. The following assumptions lead to a 1D% model

approach:

• The terms with horizontal velocity gradients are omitted by assuming an infinitely

extended horizontal space.

• The only non-zero horizontal velocity is the longitudinal component um (vm = 0).

• The pressure gradient remains in the governing equations representing a driving

force of the flow.

This results in an one-dimensional approach with the unknown quantities: the layer-

averaged velocities um (t) and isopycnal surface elevation ηm (t). The momentum

equation is written as follows

∂um
∂t

= −
1

%r

∂pm
∂x

+
τx ,m+ 1

2
− τx ,m− 1

2

%m∆ηm
. (4.2.1)

where ∆ηm = ηm−ηmb is the isopycnal layer thickness. The shear stress at the isopycnal

interfaces is denoted by m+ 1/2 for the upper interface and by m− 1/2 for the lower

interface. The pressure gradient in x-direction is replaced by [Uittenbogaard, 2003]

1

%r

∂pm
∂x

=
ū − ūp

tr
+
τx ,M+ 1

2
− τx ,m0− 1

2

%̄ (ηM − η0)

=
ū − ūp

tr
+

τa − τb
%̄ (ηM − η0)

(4.2.2)

where ūp (t) is the prescribed depth-averaged velocity,

ū (t) = (ηM − η0)
−1 ∫ ηM

η0
um (z , t)dz is the calculated depth-averaged velocity, tr the

relaxation time and %̄ is the depth-averaged density. The forcing is described by the

first term. The second term balances the momentum equation because the first term

can become zero when approaching a steady state. The term represents the external

friction. The bed shear stress (τb) can be calculated, for example, according to Niku-

radse by assuming a logarithmic flow profile and using the prescribed velocity ūp. The

surface shear stress (τa) can likewise be determined by applying the depth-averaged

wind velocity. The rigid bottom elevation is denoted by η0.

The free surface equation reduces according to the assumptions to

∂ηm
∂t
−Φin

m + Φout
m = 0. (4.2.3)

Transport fluxes between isopycnal layers due to mixing and settling are essential for

the variation of the isopycnal thicknesses in the 1D% model. An explicit approach for

diapycnal mass and volume transfer is developed for a simple three-layer system (M = 3)

in Section 4.3.
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The resulting governing equations of the 1D% model are given by

∂um
∂t

= −
ū − ūp

tr
−

τa − τb
%̄ (ηM − η0)

+
1

%m (∆ηm)

[
νv
m+ 1

2

umt − um
(ηmt − ηmb)

− νv
m− 1

2

um − umb
(ηmt − ηmb)

]
(4.2.4a)

∂ηm
∂t

= Φin
m −Φout

m (4.2.4b)

These equations are already discrete formulations due to the isopycnal vertical dis-

cretization. The interfacial shear stresses are expressed by the vertical viscosity terms

according to Equation (4.1.4). The boundary conditions for the surface and bottom

are given by the first Equation of (4.1.6) and (4.1.7), respectively. In the following, the

processes which can (cannot) be realized with this 1D% approach are summarized:

• Internal shear is described by the vertical viscosity term of Equation (4.2.4a) (third

term on the right side).

• The isopycnal surface or isopycnal layer thickness varies according to the vertical

mass fluxes Φin
m and Φout

m .

• The shear forces between the isopycnal layers influence the transport rates between

them.

• Thus, the horizontal derivatives of the velocity components (second and third

terms of Equation (4.1.1a)) are neglected, advection cannot be calculated with

this model.

• Gravitational transport is not modeled, but the influence of gravitational effects

can be prescribed by the pressure gradient formulation of Equation (4.2.2).

4.2.1 Numerical Approximation

The time discretization for the governing equations is realized with the semi-implicit

method, which is described for an isopycnal hydrodynamic model in Casulli [1997].

The space is already vertically discretized by %-coordinates and the horizontal space

is extended infinitely; the time discretization is described in this section. The density

layers or isopycnal layers are variable in vertical space and time. The %-layers can appear

and disappear or, in other words, can be dry or wet but the maximum number of M

layers and their specific density are predefined. The discrete notations of the indices of

the isopycnal layers are as follows

m = mn0, . . . ,Mn isopycnal layer from bottom to surface

mnb next active isopycnal layer below the m-th layer

mnt next active isopycnal layer above the m-th layer

M total number of the isopycnal layers

4. The Isopycnal Numerical Model 67



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

where n denotes the time step. An overview of the vertical structure of the model is

given in the left panel of Figure 22. The thickness of an isopycnal layer m is defined by

∆ηnm = ηnm − ηnm−1

 > 0 active layer

= 0 non-active layer.
(4.2.5)

The momentum equations are divided into an implicit and an explicit part to deter-

mine the velocities of the new time step n + 1. The vertical viscosity term is solved

implicitly because the bottom and surface stresses are known quantities. This leads to

the following equation for the unknown velocity of the isopycnal layer m

un+1m = F (unm) +
∆t

∆ηnm

[
νv ,nm+1/2

un+1m+1 − un+1m

∆ηnm+1/2
− νv ,nm−1/2

un+1m − un+1m−1
∆ηnm−1/2

]
(4.2.6)

derived from the momentum equations (4.2.1). The horizontal velocity is calculated in

the center of an isopycnal layer. The locations of the calculated quantities are indicated

in the vertical structure of Figure 22 (right panel).

The boundary condition for the vertical shear at the free surface is taken as

νv ,n
Mn+ 1

2

un+1Mn+1 − u
n+1
Mn

∆ηn
Mn+ 1

2

= γn+1a

(
un+1a − un+1Mn

)
(4.2.7)

and the bottom boundary condition is described by

νv ,n
mn0−

1
2

un+1mn0

∆ηn
mn0−

1
2

= γn+1b un+1mn0
. (4.2.8)
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Figure 22: Scheme of the 1D% isopycnal model vertically resolved by %-layers.

The left panel indicates the index notation of the vertical discretization. The isopycnals can vanish and

reappear and their thickness can vary with time. The right panel shows the locations of the quantities

which will be determined in the vertical structure.
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The function F (unm) (first term of Equation (4.2.6)) contains all explicit and known

terms from the momentum equations. The explicit function can be written as

F
(
unk,m

)
= unm −

∆t
tr

(
ūn − ūp,n+1

)
−
τn+1w − τn+1b

%̄
(
ηnMn − ηn0

) . (4.2.9)

The second and third terms represent the prescribed forcing.

The surface elevation of the m-th layer at time step n+ 1 can be determined from the

free surface equation (4.2.3) by

ηn+1m = ηnm + ∆t
(

Φin,n
m −Φout,n

m

)
. (4.2.10)

Finally, a linear system of 2M equations is obtained with the unknowns ηn+1m and un+1m .

The way to a solvable system is described in the next section.

4.2.2 Solution Algorithm

In the previous section, the differential isopycnal Reynolds-averaged Navier-Stokes equa-

tions (1D%) were applied to a semi-implicit discretization scheme. The linear system of

the discretized governing equations (4.2.6) and (4.2.10) is transferred to a more clearly

matrix notation.

The discretized formulation of the momentum equation (4.2.6) needs to be manip-

ulated by multiplying it by the layer thickness ∆ηnm and moving parts of the pressure

term and the viscous term to the left side

∆ηnmu
n+1
m − ∆t

[
νv ,nm+1/2

un+1m+1 − un+1m

∆ηnm+1/2
− νv ,nm−1/2

un+1m − un+1m−1
∆ηnm−1/2

]
= ∆ηnmF (unm)

(4.2.11)

Some reorganization of the left side leads to(
∆ηnm +

∆tνv ,nm+1/2

∆ηnm+1/2
+

∆tνv ,nm−1/2
∆ηnm−1/2

)
un+1m

−
∆tνv ,nm+1/2

∆ηnm+1/2
un+1m+1 −

∆tνv ,nm−1/2
∆ηnm−1/2

un+1m−1 = ∆ηnmF (unm) (4.2.12)

and permits a matrix notation for the normal velocity un+1m and the vertical viscosity

components for an intermediate layer m

anm,m = ∆ηnm +
∆tνv ,nm+1/2

∆ηn
m+ 1

2

+
∆tνv ,n

m− 1
2

∆ηn
m− 1

2

and anm,m±1 = −
∆tνv ,n

m± 1
2

∆ηn
m± 1

2

. (4.2.13)

The matrix formulation for the set of Mn momentum equations results in

An ·Un+1 = Gn. (4.2.14)
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The newly-established matrices are described in the following. For simplicity, the adja-

cent isopycnal layers above or below the m-th layer are defined as m± 1 which indicates

• the next active layer if the matrix only considers active isopycnals (mn0, . . . ,Mn)

or

• the next layer, regardless of whether it is active or non-active, if all defined isopy-

cnals (1, . . . ,M) are considered.

The matrix for the unknown horizontal velocities is specified by

Un+1 =



un+1Mn

...

un+1m
...

un+1mn0+1

un+1mn0


. (4.2.15)

This vector has the size Mn. The explicit terms are all combined in the vector Gn which

has the following form

Gn =



∆ηnMnF
(
unMn

)
+ ∆t · γn+1a · un+1a,Mn+1

...

∆ηnmF (unm)
...

∆ηnmn0F
(
unmn0

)


. (4.2.16)

and has the same size as the velocity vector Un+1. The wind friction is taken into

account for the free surface layer Mn.

The vertical viscosity term leads to a tridiagonal block matrix of Mn×Mn inner matrices

An =



anMn,Mn anMn,Mn−1 · · · 0

anMn−1,Mn anMn−1,Mn−1 anMn−1,Mn−2
...

. . .

anm,m+1 anm,m anm,m−1
. . .

... anmn0+1,m
n
0+2

anmn0+1,m
n
0+1

anmn0+1,m
n
0

0 · · · anmn0 ,m
n
0+1

anmn0 ,m
n
0


.(4.2.17)
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Each row of the matrix represents a specific isopycnal layer. The component for the

surface layer Mn is given by

aMn,Mn = ∆ηnMn + γn+1a ∆t +
∆tνv ,n

Mn− 1
2

∆ηn
Mn− 1

2

(4.2.18)

and for the bottom layer mn0 by

amn0 ,m
n
0
= ∆ηnmn0 +

∆tνv ,n
mn0+

1
2

∆ηn
mn0+

1
2

+ γn+1b ∆t. (4.2.19)

The components anm,m−1 and am,m+1 of the secondary diagonals of matrix An are

related due to anm±1,m = anm,m±1. All components of matrix An are non-negative values.

Therefore, the eigenvalues of the tridiagonal symmetric matrix which correspond to the

values of the main diagonal are also non-negative. The matrix can be classified as

positive definite.

The composition of M free surface equations (4.2.4b) can be transformed into the

matrix notation by

Sn+1 = Sn + ∆tPn (4.2.20)

which is a linear system of M equations. The isopycnal elevation matrix is an one-

dimensional matrix

Sn+1 =



ηn+1M

ηn+1M−1
...

ηn+1m
...

ηn+11


. (4.2.21)

The vector Pn contains the transport rates at the isopycnal interfaces

Pn =



Φin,n
M −Φout,n

M

Φin,n
M−1 −Φout,n

M−1
...

Φin,n
m −Φout,n

m
...

Φin,n
1 −Φout,n

1


. (4.2.22)

Both vectors have the size M comprising all defined isopycnal layers because inflow

enables a non-active layer to become active by diapycnal transport. By contrast, outflow

can only origin from an active layer.
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The matrix notation leads to two linear equations

Un+1 = (An)
−1

Gn (4.2.23a)

Sn+1 = Sn + ∆tPn (4.2.23b)

which can be directly solved for the horizontal velocities un+1m (first equation) and the

isopycnal elevations ηn+1m (second equation) of the new time step.

4.3 Diapycnal Mass Transfer

The simulation of vertical exchange processes such as deposition, erosion, entrainment

and consolidation is related to changes in the density gradient over depth. From the

isopycnal point of view, this requires an adjustment of isopycnal layers and implies

growth and reduction of the thickness of the density layers as well as their formation

and disappearance. These mechanisms are realized due to mass and volume transfer

between the isopycnal layers by simultaneous conservation of mass and volume.

The isopycnal layers are coupled through momentum exchange and interact due to in-

ternal shear stresses at their interfaces in the isopycnal model presented above. In the

following, the isopycnal model approach will be extended to include mass exchange be-

tween isopycnal layers by considering a purely isopycnal approach with Nz = 1. Without

these transfers, every isopycnal layer would act in the same way as a two-dimensional

hydrodynamic model.

The concept for diapycnal mass transfer by coinstantaneous volume conservation is an

adjustment of the adjacent interface. Mass transfer from one layer to the next is con-

nected to a specific volume of suspension. For example, the mass (P · ∆t ·Φm,m+1 · %m)
transferred from layer m to layer m+ 1 is connected to the volume (P · ∆t ·Φm,m+1),

where Φm,m+1 is a transport rate from layer m to layer m+ 1 with the unit m/s. The

position of the interface (m,m+ 1) changes according to this volume. Because of the

lower density in layer m + 1, the volume loss of layer m is greater than the volume

increase of layer m+ 1

P · ∆t ·Φm,m+1 6= P · ∆t ·Φm,m+1 ·
%m
%m+1

(4.3.1)

with continuous mass flow at the interface. To fulfill volume conservation, an ad-

justment of this mass difference is achieved by balancing the fluxes at the interface

concerned and the next neighboring interface. In the case of downward flux from layer

m to layer m− 1, the depth of layer m decreases and layer m− 1 increases. For mass

conservation, the position of the interface above (m,m+ 1) is adjusted and compen-

sates the mass difference. The depth of the (m+ 1)-th layer also increases.

This concept leads to the restriction of a minimum of three defined isopycnal layers. In

the following Section 4.3.1, a solution for the mass transfer in a three-layer system is
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demonstrated. This solution is extended to an arbitrary number of isopycnal layers in

Section B.

4.3.1 Basic Explicit Approach for Mass and Volume Balancing

A minimum of three layers is required for mass transfer. A system of a bottom layer

of density %1, an intermediate suspension layer of density %2 and a clear water layer of

density %3 is established. The stratification is stable with %1 > %2 > %3. The depth of

the water column remains constant, but the interface between the free water surface

and rigid bed is movable due to mass exchange, see Figure 23. This system only allows a

primary mass flux from the bottom layer into the second layer and a downward mass flux

from the second layer into the bottom layer. At the upper interface, only compensatory

fluxes can apply because the top layer contains clear water.

Accordingly, the total depth remains constant while the layer thickness can change.

n
3H

n
2H

n
1H

33,2t ρ⋅Φ′⋅Δ
1n

3H
+

1n
2H
+

1n
1H
+21,2t ρ⋅Φ⋅Δ

n
3H

n
2H

n
1H

1n
3H
+

1n
2H
+

1n
1H
+

primary flux 
from layer 2 to 1

primary flux
from layer 1 to 2

layer 3

layer 2

layer 1

12,1t ρ⋅Φ⋅Δ

22,3t ρ⋅Φ′⋅Δ

layer 3

layer 2

layer 1

Figure 23: Mass transfer approach for a mixed system and a stratified system based on a

three-layer example with stable stratification constraint.

Left panel: A three layer system is totally mixed when only the second layer is active. A deposition flux

then leads to stratified system. This is gained by applying a flux from the second layer into the higher

concentrated layer 1. At the same time, a compensatory flux is applied to the upper interface of layer 2

for volume and mass conservation. Thus, the thickness of the second layer decreases and the first and

third layer increase accordingly until the layer thickness becomes zero. Right panel: A three layer system

has the maximum degree of stratification when only the first and the third layer are active. The system

starts to mix by applying an upward flux from the bottom layer. Then the second layer becomes active

and increases with time. At the same time, the thickness of the first and third layer decreases. The

compensatory flux from layer 3 into layer 2 is determined according to the volume and mass conservation

demand.
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This assumption guarantees volume conservation for the entire water column. The

volume or layer thickness balance is

Hn1 +Hn2 +Hn3 = Hn+11 +Hn+12 +Hn+13 (4.3.2)

where the index n indicates the current time step and n+ 1 the new time step. There

are two restrictions for a layer thickness. They are non-negative values (Hm ≥ 0) and

the layer thickness is not greater than the total depth of the water column

H1,H2,H3 ≤
3

∑
m=1

Hm (4.3.3)

where Hm is the thickness of the m-th layer. Mass conservation is guaranteed by the

following balance

P (Hn1 · %1 +Hn2 · %2 +Hn3 · %3) = P
(
Hn+11 · %1 +Hn+12 · %2 +Hn+13 · %3

)
(4.3.4)

where P is the area of the water column under consideration.

Two situations for primary fluxes are distinguished in this system. The first case starts

with a fully uniform density %2 and stratifies due to downward mass transfer from layer

2 to the underlying layer 1, see left panel of Figure 23. This primary mass flux is the

product of Φ2,1 · %2, where Φ2,1 represents the transport rate in m/s of the suspension

%2. A compensatory flux Φ′2,3 from layer 2 to the next upper layer 3 must now be

introduced for mass and volume conservation. The left side of Equation (4.3.4) is

written in terms of the fluxes to determine the compensatory flux

3

∑
m=1

Hnm%m =
3

∑
m=1

Hn+1m %m

= (Hn1 + ∆tΦn
21) %1 + (Hn2 − ∆t (Φn

21 + Φ′n23)) %2 + (Hn3 + ∆tΦ′n23) %3.

(4.3.5)

The compensatory flux is now described

Φ′n23 = Φn
21

%2 − %1
%3 − %2

. (4.3.6)

as a function of the three layer densities concerned and the downward flux that causes

it.

The second case is initially a fully stratified system, see right panel of Figure 23. For a

three-layer system it means that only layer 1 and 3 are present at the beginning. When

the mixing process begins, the in-between layer grows due to mass transfer from layer

1. The compensatory flux takes place at the upper interface, but goes from layer 3 to

layer 2. The compensatory flux can be determined in a similar way and has the following

form

Φ′n32 = Φn
12

%2 − %1
%3 − %2

. (4.3.7)
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These are the compensatory fluxes for mass transfer at the interface (1, 2).

All the fluxes in the system under consideration have now been defined. The three layer

thicknesses for the time step n+ 1 result in

Hn+11 = Hn1 + ∆t (+Φn
21 −Φn

12) (4.3.8a)

Hn+12 = Hn2 + ∆t
(
−Φn

21 + Φn
12 −Φn

21

%2 − %1
%3 − %2

+ Φn
12

%2 − %1
%3 − %2

)
(4.3.8b)

Hn+13 = Hn3 + ∆t
(
+Φn

21

%2 − %1
%3 − %2

−Φn
12

%2 − %1
%3 − %2

)
. (4.3.8c)

In the balance equation of the intermediate layer the first and second fluxes are located

at interface (1, 2) and the third and fourth fluxes at interface (2, 3).

The example of three layers represents a special case. On the one hand, it consists

of the minimum number of layers required for diapycnal mass transfer. On the other

hand, the interface to be adjusted according to the primary flux can be clearly identified.

The mass transfer approach is extended for the three-dimensional isopycnal model with

M ≥ 3 density layers in Appendix B.

4.4 Properties of the Numerical Method

The properties and restrictions of the 1D% model are as follows:

• uniform density for each isopycnal layer

• momentum exchange between isopycnal layers

• vertical mass exchange between isopycnal layers

• density stratification must always be stable

• drying and wetting of isopycnal layers

• vertical discretization with %-layers

• shear dependent viscosity, which is calculated by a parameterized rheological ap-

proach

• interaction of the isopycnal layers due to interfacial shear

• no variation in horizontal direction (no advection, no horizontal internal shear

stresses)

• reproduces only the vertical dynamic.
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The simulation of fluid mud dynamics is realized in a similar way for the three-

dimensional isopycnal model which permits investigations of the development, transport

and formation of high-concentration layers in complex model domains. The numerical

model is applied to verification test cases (Section 5) and to two model sections of the

Ems Estuary (Section 6). This emphasizes the properties of the numerical method and

the realization of the simulation of fluid mud dynamics. The applications are carried

out with the 3D numerical model in x , y , %-coordinates for unstructured grids. Readers

interested in the details of the 3D isopycnal method are referred to Appendix A and

Appendix B.

The basic properties of this three-dimensional model approach are summarized below:

• calculation on an unstructured grid

• uniform density for each isopycnal layer

• momentum exchange between isopycnal layers

• vertical mass exchange between isopycnal layers

• density stratification must always be stable

• drying and wetting of isopycnal layers

• vertical discretization with %-layers

• a two-dimensional depth-averaged model results if only one isopycnal layer is de-

fined

• shear dependent viscosity, which is calculated by a parameterized rheological ap-

proach

• interaction of the isopycnal layers due to interfacial shear

The numerical model approach presented in this thesis includes flooding and drying of

the isopycnal layers. Layers, representing a suspension of a specific concentration such

as fluid mud, are not necessarily active over the entire model domain.

The low-concentration isopycnal layers in particular may reach a thickness of several

meters in estuaries. There, an additional z-layer discretization can support the vertical

isopycnal discretization to achieve a better three-dimensional resolution. This will be

worth considering in further investigations but, in the present thesis, the z-layers are neg-

ligible for high-concentration fluid dynamics. In this case, the density layer thicknesses

of the highly concentrated suspensions are in the range of centimeters to decimeters

where the isopycnal discretization is most effective. However, the numerical method for

a three-dimensional unstructured isopycnal model vertically discretized by a combination
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Figure 24: Scheme of the 3D isopycnal model vertically resolved by z- and %-layers.

The vertical domain is discretized by isopycnal layers (%-layer) and z-layers. An unstructured grid resolves

the horizontal domain. The isopycnal surface is denoted by ηi ,m of the m-th layer and element i and the

velocities uj ,k,m are defined at the edge j of an element. The isopycnal layers can intersect a z-layer or

vice versa. The isopycnals can vanish and reappear.

of z- layers and %-layers is derived and presented in Appendix A. A scheme of this 3D

numerical model is depicted in Figure 24. The 3D model in x , y , %-coordinates results

from this method by taking Nz = 1.
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5 Model Verification and Performance

In this section, the functionality of the developments on the three-dimensional isopycnal

numerical model is described. The numerical model is proved on the capability to

reproduce particular processes, phenomena and the behavior of fluids and especially for

fluid mud. Therefore, the test cases are kept as simple as possible and the model set-up

is reduced to the physical process or phenomenon of interest.

The first verification test case (Section 5.1) deals with internal dynamics of stratified

flows, where an analytical solution is compared to results of the numerical model. The

propagation of internal waves is investigated at the boundary of two stably stratified

layers in a basin. The second test case (Section 5.2) verifies the vertical transport

approach. In a sedimentation tank transition from a totally mixed system to decom-

position of the suspension by density dependent sedimentation is shown. Vertical and

horizontal transport are considered in a stratified system of clear water and fluid mud

layers with the third study (Section 5.3). In this case, entrainment is induced by move-

ment of a fluid mud layer over a ground sill. The last two studies are more complex and

focus on phenomenons of stratified and fluid mud flow. They show the different flow

behavior of mud suspensions by considering the rheological viscosity. The last study

(Section 5.4) demonstrates gravity-driven fluid mud flow down an inclined plane.

Some of these studies has already been presented in a former publication in Knoch and

Malcherek [2011].

5.1 Interfacial internal Waves

In stratified flows with sharp vertical density gradients one expects internal waves at

interfaces of density layers. The horizontal discretization scheme has to be verified for

this phenomenon. The wave celerity cw in stratified flows can be calculated analytically.

Stokes developed a general approach for the propagation of waves. By considering an

idealized system of two density layers, this approach can be simplified. The following

assumptions are made [Lamb [1932]; Pond and Pickard [1983]]:

• an inviscid fluid, which implies shear free, turbulence free and friction free flow,

• a stable stratification,

• a sharp density gradient at the interface between the density layers (which is

guaranteed due to the isopycnal approach),

• the isopycnal surface and interface are shear free, and

• the wave length must be much greater than layer-thicknesses (waves in shallow

water).
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The stratification has to be strong enough to damp turbulence totally and to achieve

laminar flow, which is part of the assumptions for the analytical solution. This is fulfilled

by a gradient Richardson number in the range of 0.1 to 0.3 and higher [Whitehouse

et al., 2000], as determined from

Ri =
g (∂%/∂z)

% (∂u/∂z)2
=
g∆%h1
%∆u2

(5.1.1)

The density % and the current velocity u are determined at depth z above the bottom.

In Table 2 the gradient Ri-number is calculated for all applied test cases. It shows that

the degree of stratification is high enough to reach a laminar flow state. The general

solution for the wave celerity reduces now to

cw =

√
gh1h2

|%1 − %2|
%1h1 + %2h2

(5.1.2)

by regarding the assumptions above where h is the layer depth with index 1 for the lower

layer and 2 for the upper layer.

kg/m³ kg/m³ - - - m/s m/s %
1 1005 1000 1/300 0.005 13.6 0.35 0.34 -3.48
2 1010 1000 1/300 0.010 18.6 0.49 0.48 -3.62
3 1030 1000 1/300 0.029 19.6 0.85 0.81 -4.34
4 1030 1000 1/600 0.029 19.6 0.85 0.83 -2.76
5 1080 1000 1/300 0.074 15.3 1.37 1.30 -5.54
6 1000.1 1000 1/300 0.0001 13.4 0.050 0.048 -3.42

analytical 
wave 

celerity

numerical 
wave 

celerity
Test  deviationdensity of 

layer 1
density of 

layer 2
initial 

inclination
gradient 

Ri-number

Table 2: Analytical and numerical results of the wave celerity for different test configurations.

The model set-up for this test case consists of a basin of 600 m length and 1 m width

with a horizontal discretization of 5 m. The total water depth is 10 m, and two density

layers of 5 m depth each are defined. The initial interface of the two layers has a slope

of 1/300; see first panel of Figure 25. With the start of the simulation, an interfacial

wave propagates from right to left (second panel). After some time the wave reaches

the left boundary and propagates backwards (third panel).

The wave celerity can be extracted from the time series of the interfacial movement at

specific locations. This test case is performed with different density gradients at the

interface; see second and third column of Table 2. Test cases 3 and 4 have the same

density gradient, but case 4 starts with an interface slope of 1/600. In addition, the

analytical and numerical wave celerities as well as their deviations are given in Table 2.

The deviation varies between about -3 % and -5 %, so that the numerical results slightly

underestimate the analytical solution.
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Figure 25: Internal waves of test case 3 at initial state, 200 s and 600 s.

The initial interface of the two fluids has a slope of 1/300. A standing wave is induced by gravitational

forcing.

The time series of the interfacial elevation are shown in Figure 26. The diagrams show

the interfacial movement at the left and the right boundary of the model over one wave

period. A phase shift and a slightly decreasing amplitude can be observed which explains

the calculated deviation. The underestimated analytical solution of the wave celerity

indicates damping in the system, even though viscosity and friction were neglected.

The reason for the deviations can be of geometrical origin as the width of the system

is not infinite and horizontal discretization influences the numerical result. Thus, the

deviations can be attributed to numerical dispersion. Mass transfer is neglected between

isopycnal interfaces. Therefore numerical diffusion can be excluded for the isopycnal

numerical approach. With test case 6 the stability of the system is tested by reducing

the density difference to 0.1 kg/m3. The numerical solution remains stable. The density

difference could not be set to zero, because of the isopycnal approach.

The total mass and volume of the system is detected during the simulation. As an

example it is drawn for test case 3 in the first panel of Figure 27. Than the accretion
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and loss of them are calculated in relation to the initial total mass and volume (second

panel). The model set up excludes mass exchange between the isopycnals, and there

are no mass fluxes going in or out of the system. As a result there should be no change

in total mass and volume. The mass losses in the order of 10-8 % can be attributed to

computational accuracy and are small enough to be neglected.
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Figure 26: Time series of the interfacial movement at the left (blue lines) and right boundary

(orange lines).

A phase shift and a decreasing amplitude can be observed in the simulation results in comparison to the

analytical solution. The deviations increase with simulation time.
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Figure 27: Observation of the total mass and total volume during the simulation (test case 3).

First panel: Changes of total mass and volume. Second panel: Variation of loss and accretion of the

total mass and volume in percent. The model set up excludes mass exchange between the isopycnals,

and there are no mass fluxes going in or out of the system. As a result there should be no change in total

mass and volume. The deviations in the order of 10-8 % can be attributed to computational accuracy

and are small enough to be neglected..

5.2 Vertical Mass Transfer in a Sedimentation Tank

One class of vertical transport processes of mud suspensions are settling and deposition.

Every vertical mass transport process affects the elevation of the isopycnal interfaces.

In Section 4.3 a diapycnal mass transfer approach is introduced, which leads to an

algorithm where layers can form, vanish or merge into each other. The performance

of this algorithm is presented for a fully mixed system in a sedimentation tank. A

stratification process is forced by mass fluxes which are obtained from a settling velocity

approach (see Equation (3.7.3)) with hindered settling and a gelling concentration of

66.0 kg/m3.

Although the full three-dimensional numerical approach is applied, the model set up and

conditions result in a one-dimensional problem. There is only transport in z-direction

considered, and the horizontal model dimension does not influence the result. So the

complexity of the system is reduced to the considered process for verification of the

implemented mass transfer approach.
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Initially the tank of 10 m×0.5 m width, and 3 m height is filled with a suspension of

1025 kg/m3 density. The model is set up with 35 isopycnal layers with a density range

from 1000 kg/m3 to 1050 kg/m3. The simulation time step is 4 s. The density steps

between the isopycnal layers are constant (1.5 kg/m3). Figure 28 shows the vertical

section at different times, in which every isopycnal layer has a different color. The first

panel shows the initial state with a homogeneous suspension. After starting the simu-

lation mass is transferred from top to bottom of the column. The suspension becomes

more dense at the bottom and as a result new layers of increasing density are formed.

At the same time the suspension dilutes at the surface by emerging layers of lower

densities (compare the second to fifth panels).

The settling velocity approach (Equation (3.7.3)) which considers hindered settling pro-

duces an increase of the settling velocity up to a mud suspension density of 1008 kg/m3.

Further increase of the density, results in decreasing settling velocity. This leads to a

non-uniform stratification in the water column. The clear water layer increases fast and

at the bottom the denser layers increase rapidly during the first hours. But than the

transport process slows down over time. Very thin emerging layers can be observed

at the transition area between clear water and the intermediate layer of 1025 kg/m3

density, see Figure 29.

The development of density distribution over time and depth is shown in Figure 30.

Figure 28: Sedimentation tank at initial state and after a few hours.

The model is set up with 35 predefined isopycnal layers with equal density differences between consecutive

layers. The density classes correspond to the densities in the color scale. Initially the sedimentation tank

is fully mixed. Settling starts by transferring mass into layers of higher densities near the bottom. The

thickness of the clear water layer increases at the same time. The settling process slows down in the

high-concentration region by virtue of hindered settling.
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Figure 29: Transition area between mud suspension layers and clear water layer.

Very thin layer become active between the clear water layer and the higher concentration layers due to

the mass exchange.

Every step in the plots indicates a transition between density layers. Similar concentra-

tion profiles for hindered settling were gained from laboratory experiments with mud and

mud-sand suspensions by Dankers [2006] and Toorman [1999]. These experiments show

comparable results for sedimentation and self-weight consolidation of mud suspensions.

The presented results show, that merely by implementing a settling mechanism the

isopycnal model is able to simulate a system such as a sedimentation tank. This exam-

ple confirms that vertical transport processes can be reproduced by this mathematical

approach in general. Mass fluxes are applied to the isopycnal interfaces and due to

compensatory fluxes at the adjacent interface volume and mass conservation can be

guaranteed. The mass and volume variation is analyzed by neglecting advection and

the pressure term. With it the reason of deviations can be attributed to the verti-

cal mass exchange only. The volume variation is lower than 5 · 10−5 % and the mass

variation is below 3 · 10−4 % and tends to zero during the simulation.
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Figure 30: Simulated density distribution over depth and time.

Each graph indicates a new time step. The initial density distribution is constant over depth with

1025 kg/m3. The stratification near the bottom increases with time due to the settling process. The

interface between the clear water layer and the suspension layer drops down at the same time.

5.3 Flow over a Ground Sill

This test case examines the stratified flow over a ground sill by involving the physical pro-

cess of entrainment. It is a two-dimensional problem in the x- and z-directions, whereas

the process of the sedimentation tank (Section 5.2) was a one-dimensional problem in

the z-direction. Both investigate the vertical mass transfer between isopycnals, but the

present study also includes horizontal movement.

The model set-up consists of a 600 m long and 30 m wide channel. A 3 m high ground

sill is located at 300 m along the length. The horizontal grid resolution is 5 m x 1.2 m.

At the closed boundary on the left, a velocity is induced by the definition of a clear

water source. At the open boundary on the right, the water surface and the isopycnal

interfaces are kept at the initial level. This results in a flow direction from left to right,

see Figure 31. Three different simulations are set up and they are described in Table 3.

The initial system is defined by two density layers, these being a clear water layer and a
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mud suspension layer at the bottom. The top and bottom layers are 7.5 m and 2.5 m

thick respectively. This is the same in all three simulations, but the density gradients

are different. The ground sill is illustrated in gray; it is not erodible.

simulation initial rheological internal

number density gradient viscosity entrainment Courant number

(1) 1 kg/m3 const. 10-6 m2/s no 0.06

(2) 80 kg/m3 Worrall-Tuliani no 0.55

(3) 80 kg/m3 Worrall-Tuliani yes 0.55

Table 3: Simulation overview for the test case flow over a ground sill.

flow direction clear water

fluid mud

open boundary:

static surface 
and interfaces

closed boundary:

clear water source

[m]

Fließrichtung
Wasser

Fluid Mud

offener Rand:
statische Oberfl. 

und Interface

geschlossener Rand:
Klarwasserquelle, kein 

Fluid-Mud-Eintrag

[m]

no fluid mud inflow

Figure 31: Initial density distribution in a longitudinal cross-section.

Flow is initiated by a clear water source at the right boundary whereas no fluid mud inflow occurs. The

ground sill is indicated in gray.

The first simulation does not consider the rheological viscosity of mud suspensions and

the density gradient is kept relatively small at 1 kg/m3. This results in an internal

Courant number of 0.06 with a time step of 1 s.

In the second simulation, a fluid mud layer is defined at the bottom with a density of

1080 kg/m3, as shown in Figure 31. The internal Courant number increases to 0.55.

The rheological properties of the fluid mud layer and the other suspension layers are

now determined by the Worrall-Tuliani formulation of Equation (3.4.12). No turbulent

viscosity is applied in this study.

In addition to the second simulation, the third simulation considers entrainment. There

are six isopycnal layers defined by the densities 1000, 1010, 1030, 1045, 1060 and

1080 kg/m3. Fluid mud is entrained into the overlying water layer by flowing over

the ground sill. The entrainment rate is calculated by Equation (3.6.6) for the first

entrainment case with a constant critical yield stress of 0.1 N/m2 for the initiation of

entrainment. Settling of fluid mud is neglected.

A low-stratified system is produced in simulation (1) by applying a density difference

of 1 kg/m3. The resulting velocity patterns are shown in Figure 32. The velocity

is calculated as isopycnal layer-averaged quantity. The ground sill narrows the cross-

section so that the flow accelerates in this region. Then, in simulation (2), the density
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gradient is increased to 80 kg/m3 and the viscosity is dependent on the sediment

concentration and shear intensity instead of being constant. The velocity results are

given in Figure 33. The movement of the bottom layer now becomes much slower and

more viscous because of the higher density and rheological viscosity of that layer. It

results in a strong stratified flow with high interfacial shear. The flow of the water

body accelerates less above the ground sill compared with simulation (1) because the

thickness of the fluid mud layer is nearly the same as the height of the ground sill. The

fluid mud layer narrows the flow section over the total length and the flow increases

over the total length. The velocity of the water body in simulation (2) is higher than

in simulation (1) where the bottom layer moves with a velocity similar to that of the

water layer.

Likewise, simulation (3) includes entrainment of the mud layer into the water layer. The

density gradient and rheological viscosity approach are the same as in simulation (2)

so that the velocity results are comparable, see Figure 34. At the beginning of the

simulation, the fluid mud piles up in front of the ground sill (first three panels of

Figure 35). The interfacial shear increases in this region in particular. Without applying

the entrainment process, simulation (1) and (2), the bottom layer piles up in front of

the ground sill and drops down behind it. After a while, the bottom layer overflows

over the ground sill. The fluid mud layer now mixes into the water layer due to applied

entrainment fluxes at the interface.

The shear rate intensity indicates the magnitude of the vertical velocity gradient between

the isopycnal layers. As the shear intensity grows, the ability for entrainment and the

entrainment rate itself both increase. Entrainment is realized due to mass transfer

from the fluid mud layer to layers of lower concentration. This activates new isopycnal

layers which emerge between the fluid mud and the clear water layer, see Figure 35. In

front of the ground sill in particular the mixing process intensifies and the rheological

viscosity decreases (compare last three panels of the Figures 36 and 35). Furthermore,

a thin lower-concentration mud suspension layer appears along the channel. These

lower-concentration layers now move with their own velocity above the fluid mud layer.

The Figures 37, 38 and 39 show the shear rate intensity of the three simulations. At

the beginning of the simulation all three model set-ups show similar results for the shear

intensity (first panel). The velocity gradient between the bottom and water layer is the

lowest in simulation (1) where the shear rate intensity exceeds 0.009 s-1 in some regions

only. The difference in the velocities of the water and the fluid mud body increases in

simulation (2) and accordingly the shear rate intensity also increases. The magnitude

hardly varies along the channel and increases temporarily in front of the ground sill. In

simulation (3), fluid mud is entrained in regions where the shear rate intensity exceeds

the internal resistance of the fluid mud which is dependent on the yield stress. Thin

layers develop between the fluid mud and water layer due to entrainment. They produce
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high shear intensities at the interface with the water layer (>0.6 s-1) because they move

with their own velocity and have a very small thickness.

The study verifies that the implemented vertical mass transfer approach of Section 4.3 in

combination with horizontal movement produces physically plausible results. However,

comparison with field data is required for further validation of possible entrainment

approximations.

Such ground sills of consolidated material are often found in front of harbor basins.

They cause fluid mud accumulation inside the basin because of the depth difference.

Moreover, they can also lead to resuspension of fluid mud as this example indicates.
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Figure 32: Isopycnal layer-averaged velocity (absolute values) in the longitudinal cross-section

of simulation (1) without constant viscosity, without entrainment and with low bottom layer

density.

The ground sill narrows the flow cross-section which accelerates the flow in this region.
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Figure 33: Isopycnal layer-averaged velocity (absolute values) in the longitudinal cross-section

of simulation (2) with rheological viscosity, without entrainment and with fluid mud as bottom

layer.

The fluid mud layer narrows the flow cross-section for the water layer over the total length of the channel.

This increases the water layer velocity over the total length compared with simulation (1).
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Figure 34: Isopycnal layer-averaged velocity (absolute values) in the longitudinal cross-section

of simulation (3) with rheological viscosity, with entrainment and with fluid mud as bottom

layer.

The stratified flow pattern are comparable to simulation (2), but here entrainment occurs in the region

of the ground sill. New density layers appear and they move with their own velocity above the fluid mud

layer.
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Figure 35: Density distribution in the longitudinal cross-section of simulation (3).

Increasing shear rates lead to entrainment in front of the ground sill where new isopycnal layers of lower

density appear.
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Figure 36: Rheological viscosity in the longitudinal cross-section of simulation (3) with en-

trainment.

New isopycnal layers of lower concentration appear due to entrainment with a decreased viscosity com-

pared to the fluid mud layer.
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Figure 37: Shear rate intensity in the longitudinal cross-section of simulation (1) without

constant viscosity, without entrainment and with low bottom layer density.

A small velocity gradient between bottom and top layer results in very low shear rate intensities (shear

intensity lower than 0.009 s-1 is colored in light gray).
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Figure 38: Shear rate intensity in the longitudinal cross-section of simulation (2) with rheo-

logical viscosity, without entrainment and with fluid mud as bottom layer.

The shear rate intensity increases with increasing differences in the velocities of the fluid mud and the

water body, see Figure 33 (shear intensity lower than 0.009 s-1 is colored in light gray).
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Figure 39: Shear rate intensity in the longitudinal cross-section of simulation (3) with rheo-

logical viscosity, with entrainment and with fluid mud as bottom layer.

Very thin density layers appear at the transition between fluid mud and clear water (shear intensity lower

than 0.009 s-1 is colored in light gray).
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5.4 Fluid Mud Movement on an Inclined Plane

In a channel with an inclined bed it will be demonstrated that the horizontal transport

phenomena and the horizontal discretization scheme are capable of simulating the flow

of fluid mud. The straight channel is set up with a slope of 0.1 %. Four mud suspensions

of different concentrations are discharged at the left boundary and flow down the slope.

The predefined densities of these isopycnal layers vary in four different model set-ups.

They are given in Table 4. Gravity flow and the effects of the fluid mud rheology are

studied on different scenarios of simulation (1) and on a comparison of simulations (1) to

(4) with different density distributions. These processes will be observed by minimizing

other effects. Therefore, mass transfer between the isopycnal layers is not considered

and the turbulent viscosity is kept constant for the entire domain. The scenarios differ

in including the gravitational forces due to density differences and the effect of the

rheological behavior of cohesive mud suspensions. The rheological behavior is described

by the parameterized Worrall-Tuliani approach of Equation (3.4.13). If the rheological

behavior of fluid mud is neglected the rheological viscosity is set to 10-6 m2/s for the

entire system. The gravitational forcing according to density differences is modeled by

the following pressure term

− g
∂

∂x

(
M

∑
l=m

%l − %lt
%r

ηl

)
(5.4.1)

for the m-th isopycnal layer of the momentum equation (x-component), see Equa-

tion (A.1.1). The term is given by

− g
∂

∂x
ηM (5.4.2)

when neglecting the density differences influencing the flow. Therefore, the gravity acts

on the water column as if only one isopycnal layer has been defined.

The density distribution of the highly concentrated layers is in the range of 1005 to

1080 kg/m3 (see Table 4). The water layer has a density of 1000 kg/m3. This applies

to all scenarios of the simulation set-up (1). The simulation results are shown in Fig-

ure 40.

In the first scenario (1a) neither density differences nor rheological effects are consid-

ered. The discharged fluid mud now propagates very slowly and spreads significantly

in the vertical direction. The layers flow above each other with increasing velocities.

The velocity is therefore much higher near the surface and at the layer fronts. The

bottom friction decelerates the movement when the different layers are in contact with

the bottom.

Simulation (1b) includes the variable rheological viscosity. This does not influence the

Newtonian water layer but the structural viscosity of the fluid mud layers. The rheo-

logical viscosity changes according to the density and decreases with increasing shear
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simulation

number

density of mud layers

[kg/m3]

isopycnal density

differences

[kg/m3]

rheological

viscosity approach

gravitational

effects due

to density

differences

(1a) 1005/ 1010/ 1030/ 1080 5/ 5/ 20/ 50 const. 10-6 m2/s no

(1b) Worrall-Tuliani app. no

(1c) const. 10-6 m2/s yes

(1d) Worrall-Tuliani app. yes

(2) 1010/ 1030/ 1080/ 1150 10/ 20/ 50/ 70 Worrall-Tuliani app. yes

(3) 1005/ 1010/ 1020/ 1030 5/ 5/ 10/ 20 Worrall-Tuliani app. yes

(4)
1000.1/ 1000.2/ 1000.3/

1000.4
0.1/ 0.1/ 0.1/ 0.1 Worrall-Tuliani app. yes

Table 4: Simulation overview for the test case flow on an inclined plane.

rate intensities – the shear-thinning behavior of mud suspensions. Without this struc-

tural behavior each isopycnal layer would have a constant viscosity. However, with

the implemented rheological approach the viscosity varies within a certain range in an

isopycnal layer. In particular, this becomes clearer in Figure 42 with a different color

scale. The horizontal propagation of the two layers with lower concentrations (1005

and 1010 kg/m3) is comparable to simulation (1a) because their rheological viscosity is

only slightly higher than in simulation (1a). The viscosity of the two layers with higher

concentrations is much higher and both move with a similar velocity magnitude. The

vertical stratification becomes more even and stable. Accordingly, the horizontal move-

ment now dominates over the vertical spread for the two highly concentrated layers

(1030 and 1080 kg/m3).

The third scenario (1c) includes the gravitational forces due to density differences but

neglects the rheological viscosity which describes the shear-thinning and structural be-

havior. The results show that the gravitational flow is responsible for the downslope

propagation in comparison with scenarios (1a) and (1b). Each layer moves with its own

velocity due to the differences in the density of the isopycnal layers. The layers cover

significantly different distances after an hour of downslope movement. Bottom friction

slows down the bottom layer in particular.

The last scenario (1d) considers both gravity flow and the rheology of mud suspensions.

Again, the rheological viscosity increases with the density of the isopycnal layers, but

also varies inside a layer due to changes in the shear intensity. The high rheological vis-

cosities decelerate the average downslope flow and the layer fronts are closer together.

However, the fluid mud layers now appear more as a compact fluid mud body interacting

due to the interfacial shear stresses. This shows that both processes are necessary to

reproduce a realistic and plausible high-concentration flow on an inclined plane.
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Figure 40: Propagation of high-concentration layers - variations of simulation set-up (1) (first

column: density; second column: velocity; third column: viscosity in logarithmic scaling).
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Figure 41: Simulation results of model run (2), (1d), (3) and (4) (first column: density; second

column: velocity; third column: viscosity in logarithmic scaling).
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The model set-ups of simulations (1d), (2), (3) and (4) differ in the density distribution

of the four mud suspensions, see Table 4. The simulation results are given in Fig-

ure 41. The average density of the mud layers decreases from the top panel (simulation

(2)) to the bottom panel (simulation (4)) of Figure 41. Moreover, the differences in

the density of the isopycnal layers also decrease. The definition of the pressure term

(Equation (5.4.1)) indicates increasing acceleration of the mud layers with increasing

density differences. This can be observed in the varying propagation time of the fluid

mud body. Accordingly, the fluid mud front advances the farthest for simulation (2)

and slows down further in simulation (1), (3) to (4).

The structural viscosity counteracts the progressive movement of the fluid mud body

by deceleration due to increasing viscosities with simultaneously increasing densities.

Model run (4) exhibits similar results to run (1a) due to the fact that the density dif-

ferences of run (4) are rather small and are omitted from the pressure term in run

(1a). Moreover, the rheological viscosity is set to 10-6 m2/s in simulation (1a) and

the resulting viscosities differ only slightly from the magnitudes of run (4). This causes

similar velocity pattern to those described for simulation (1a) above. The parameter

variations of the seven model runs lead to plausible results. This is evaluated on:

• the influence of gravity and structural viscosity on the downslope flow by activating

or deactivating these processes,

• the effects of the gravitational forces by varying the density differences,

• the effects of the structural (rheological) viscosity by varying the density differ-

ences.

simulation (2)simulation (1d)

Figure 42: Rheological viscosity illustrated with a different color scale compared to Figures 41

and 40 for simulation (1d) with lower suspension densities and simulation (2) with higher sus-

pension densities.

The viscosity varies inside an isopycnal layer as a function of the shear impact and it increases with

increasing density according to the implemented rheological approach.
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6 Application to the Ems Estuary

The Ems Estuary is located between the borders of Germany and the Netherlands.

The domain and the bathymetry can be seen in Figure 43. The estuary extends from

the weir at Herbrum, where the tidal signal ends, to the outer coast line with some

offshore islands. This part of the Ems river is about 100 km long. A large tidal bay, the

Dollard, with an area of 100 km2 is located to the south of Emden. The Dollard and

wide sections of the mouth of the estuary contain tidal flats with predominantly muddy

sediment distribution. There is a deepened shipping channel between Papenburg and

Borkum and the depth of the waterway is shown in Figure 44. The width of the river

is 60 m at the weir, increasing to 120 m at Papenburg and 600 m at the mouth. The

discharge at Herbrum weir can vary between 20 and 400 m3/s and the most frequent

discharge is about 60 m3/s.

Ems Estuary

North Sea

A

B

BAW

Figure 43: Overview of the Ems Estuary (A: Region of sectional model from Rhede to Herbrum,

B: Region of sectional model from Dukegat to Herbrum).
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Figure 44: Bathymetry along the center line of the Ems waterway (data according to Smile

Consult [2006]).

The tidal range increases from 2.20 m at Borkum to 3.50 m at Papenburg. The tidal

curve has become highly asymmetrical in the lower Ems due to channel deepening. The

asymmetry is characterized by a steep flood tide gradient and short flood phase, a long

slack water period from flood to ebb and a shallower ebb tide gradient and longer ebb

phase. This leads to a flood-dominated system with strong flood currents and much

weaker ebb currents. Thus, suspended sediments were transported upstream due to

tidal pumping. The suspended particles, mostly muddy sediments, accumulate in the

wide turbidity maximum zone and form dynamic fluid mud layers. However, fluid mud

layers do not occur only in the maximum turbidity zone, they can also be found in the

lower Ems.

For more hydrological and morphological information see Krebs and Weilbeer [2008],

Weilbeer [2005] and Winterwerp [2011]. The lower Ems Estuary has a serious oc-

currence of suspended mud and fluid mud. The turbidity has increased over the last

decades. Schrottke [2006] showed that fluid mud layers with thicknesses of around

2 m or more can develop in the maximum turbidity zone, with concentrations up to

300 kg/m3 or densities up to 1190 kg/m3. Sediment echo sounder measurements (Fig-

ure 7) show a strongly stratified water body. Two to three layers of different densities

were detected, each layer being around one meter in thickness.

In the following, some of the characteristic fluid mud dynamics in the Ems are inves-

tigated by system studies of sectional models. They have been chosen to focus on

specific areas. Besides, the computational code is not parallelized and the computa-

tional effort is reduced in this way. The model boundaries are chosen with respect to

the available boundary value data. The first model domain extends from Rhede to the

Herbrum weir in order to study the effects of tidal pumping and tidal movement of the

lutocline (Section 6.1). The second system study is concerned with stratified flow and

siltation in a harbor basin which is studied on the Emden Outer Harbor (Section 6.2).

The model domain extends from Dukegat (seaward boundary) to Herbrum.
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6.1 Model Section from Rhede to Herbrum

The model section of the Ems Estuary investigated here covers the area from the tide

gauge at Rhede to the weir at Herbrum. The location of the model area is indicated in

Figure 45 along with the bathymetry and grid resolution of the model. The upstream

section is divided into the river arm leading to the weir at Herbrum and the harbor basin

of a sluice which has a ground sill at the mouth of the basin. The sediment transport

in this region is dominated by mud suspensions. The fine sediments are mainly carried

into this region by tidal pumping. Muddy sediments accumulate in the harbor basin.

Discharge is applied at the weir Herbrum by a source containing only clear water. The

open boundary at Rhede is controlled by prescribed water levels. Suspensions of different

concentrations are brought into the model domain at the open boundary. The isopycnal

interfaces are triggered in the same way as the water surface. They move with the tidal

signal, but with half of the tidal range.

bathymetry

sluice

harbor basin

ground sill

weir 
Herbrum

Rhede

gauge Rhede

10 13 16 19 22 25 28

grid

di
sc

ha
rg

e

position 1

Figure 45: Bathymetry and grid of the sectional model extending from Rhede to Herbrum.

A fresh water discharge is applied at the weir at Herbrum. A tidal signal is given at the open boundary

at Rhede.
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Three simulations were carried out with different boundary values, see Table 5. The first

simulation (1) was forced by realistic boundary conditions. Simulation (2) differs from

the first one due to reduction of the discharge. It is set at a constant 25 m3/s. The

third simulation (3) was performed with a symmetrical M2-tide instead of the real tidal

signal. This enabled the effect of the asymmetrical tide wave compared with the uniform

sine wave to be analyzed. The discharge is the same as in simulation (1). The initial

density levels are uniformly allocated in the entire model domain and they are presented

in Figure 46 and in Table 6. The density values result from the 16 predefined isopycnal

layers. They range from clear water, dilute suspension, concentrated suspension, fluid

mud to freshly consolidated mud.

The simulations cover several tide cycles. The simulation time step is limited due to

the time step criterion of Equation (A.3.22) and the explicit solution for vertical mass

transfer. Studying variations of the time step leads to a time step of 10 s which gives

sufficiently accurate results.

In the following, the simulation results will be presented for a longitudinal profile follow-

ing the channel center line and for selected locations. The topography of the profiles

as well as the positions are illustrated in Figure 47.

The vertical transport processes considered are entrainment and settling (hindered

settling). The horizontal transport is driven by currents and gravitational forces.

simulation boundary value: boundary value:

number discharge water level M

1 measured data ∼50-60 m3/s measured data of gauge Rhede 16

2 25 m3/s measured data of gauge Rhede 16

3 measured data ∼50-60 m3/s M2 tide 16

Table 5: Simulation overview for the model Rhede to Herbrum.

harbor basin
Rhede

discharge

Figure 46: Initial density distribution of the longitudinal section in the channel center line.

The density increases from bottom to top. The initial distribution is constant over the entire domain.

Entrainment is determined according the Kranenburg and Winterwerp [1997] approach
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layer density mud isopycnal

number concentration elevation

[kg/m3] [kg/m3] [m]

16 1000 0.00 -1.15

15 1005 8.03 -1.33

14 1010 16.06 -1.51

13 1020 32.12 -1.68

12 1030 48.18 -1.86

11 1040 64.24 -2.04

10 1050 80.30 -2.22

9 1060 96.36 -2.40

8 1070 112.42 -2.58

7 1080 128.48 -2.75

6 1090 144.55 -2.93

5 1100 160.61 -3.11

4 1110 176.67 -3.29

3 1120 192.73 -3.47

2 1130 208.79 -3.64

1 1150 240.91 -4.00

Table 6: Initial density distribution over depth with an initial water level of -1.15 m.

with the coefficients Cs = 0.50 and Cσ = 0.42 (Equation (3.6.6)). The critical shear

stress for entrainment is defined by the yield strength of the mud suspensions (Equa-

tion (3.4.11)). The settling velocity with hindered settling is calculated by a formulation

according to Winterwerp described in Section 3.7. The gelling concentration is set at

40 kg/m3. Consolidation takes place in the time range of weeks and months. This

process will not have effect during the simulation of a few tide cycles. Consolidation

can therefore be neglected in this case.

The rheological behavior of the mud suspensions is simulated by the parameterized

Worrall-Tuliani model presented in Equation (3.4.13). The fluid properties are approx-

imated through the rheological viscosity, see Section 3.5. The rheological viscosity

approach is applied to every isopycnal layer because it is valid for clear water as well as

for fluid mud and soft consolidated mud. A yield stress equal to zero is obtained for

clear water and increases exponentially with increasing concentrations, see Figure 15.

Accordingly, the rheological viscosity decreases to the molecular viscosity of clear water.

An increase in the mud concentration as well as a decrease in the shear impact leads

to an increase in the rheological viscosity. This is shown in Figure 17. The horizontal

turbulent viscosity is set to a constant 10-6 m2/s and the vertical turbulent viscosity to

10-2 m2/s.
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Figure 47: Bathymetry of the longitudinal profile (upper panel) and top view of the profile

with indicated positions for result output (lower panel).

The model is calibrated by variation of the bottom roughness which compensates for

turbulence damping in the system. The geometrical bottom roughness (ks) according to

Nikuradse is varied by ∼ 9.0 · 10−2, ∼ 7.0 · 10−3 and ∼ 2.5 · 10−7 m. The model set-up

corresponds to simulation (1). Figure 48 shows the simulated water levels in comparison

to field data at the Herbrum position. The bottom roughness ks ≈ 7.0 · 10−3 m fits

best and is applied to all simulations.

In Figure 49 the effect of the mud concentration and the rheological viscosity is analyzed

on the water level elevation. The water level at the Herbrum position is compared for

three simulations with the measured data. The first simulation (a) considers only

one isopycnal layer of clear water (% = 1000 kg/m3) which results in a 2D depth-

averaged simulation. Both the turbulent and the rheological viscosity are taken as

constant with νht = 10 -6m2/s, νvt = 10 -2m2/s and νr = 10 -6m2/s. In addition, the

second simulation (b) includes transport of mud suspensions by defining 16 layers. The

initial density conditions are shown in Figure 31 and Table 6. Based on simulation (b),

simulation (c) takes account of the rheological viscosity which is dependent on the mud

properties.

In all simulations, the up- and downstream flow during ebb and flood is slightly too

strong and fast which indicates that the bottom and/or internal friction in the system

is/are too low. The simulation with clear water fits well to the measured high water
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Figure 48: Simulated water levels by variation of the bottom roughness and comparison with

measured data at Herbrum.

The model set-up with bottom roughness ks ≈ 7.0 · 10−3 m fits best and is applied to all simulations.
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Figure 49: Simulated water levels with variable rheological properties and comparison with

measured data at Herbrum.

The following three model set-ups are compared: (a) system with clear water (one %-layer); (b) system

with mud suspensions (16 %-layer) with constant rheological viscosity (10 -6m2/s); (c) system with mud

suspensions (16 %-layer) with rheological viscosity dependent on mud properties.

level. Both simulations with fluid mud show an increased high water level compared to

simulation (a) and the measured data. The low water level is underestimated in all three

simulations, whereas simulation (a) has the lowest low tide. Simulation (b) and (c) lead

to very similar results for the water level although the rheological viscosity in simulation

(c) is dependent on the rheology of the suspensions. Furthermore, the rheological

viscosity is most effective at times of low currents. Dominating gravity current effects

can cause the similar results due to the great differences in density between the layers. In

addition, the density range is wide, being from 1000 to 1150 kg/m3. Another possible

reason is that the average velocity is already attenuated by the constant turbulent

viscosity and the effect of the rheological viscosity is overshadowed.

The time series of the simulated water level are pictured in Figure 50 for the three

positions Rhede, position 1 and Herbrum as well as the measured data at Herbrum. The

diagram of simulation (1) illustrates the characteristic asymmetrical tide. At the Rhede

position, the water level is equivalent to the input data. A comparison of simulated and

measured data shows satisfying results at the downstream position at Herbrum. The

tide wave deforms due to the transition from Rhede to Herbrum during ebb tide. The
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Figure 50: Simulation results of the water level at the Herbrum position for simulations (1),

(2) and (3) and comparison with measured data at Herbrum.

The tidal wave deforms due to transition from Rhede to Herbrum. The lower fresh water discharge

of simulation (2) leads to a lowering of the low tide in comparison with simulation (1). The first two

simulations are dominated by an tidal asymmetry with a short flood phase and a long ebb phase, whereas

simulation (3) is subject to symmetrical tide conditions.

low tide rises due to the freshwater inflow at Herbrum. Simulation (2) was run with

a lower discharge of constantly 25 m3/s, which leads to a much lesser increase in the

low water. The high tide, however, nearly keeps its shape. The symmetrical M2-tide

deforms in low as well as in high water through the transition from Rhede to Herbrum

(simulation (3), third panel). A reason for the increase in high water is the gentler

and longer flood gradient. Therefore, the water has more time to retain compared to

the realistic tide curve of the simulation (1). The increase in low water from Rhede to

Herbrum corresponds to the other two simulations.

The time series of the mean velocity and water level at position 1 are presented in

Figure 51. The results give a qualitative but not quantitative impression on the flow

dynamics. They are only representative of the deep channel. The influence of the

symmetry of the tidal signal and discharge on tidal pumping becomes apparent when
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the velocity conditions of the three simulations are compared. The simulation (1)

under realistic tide conditions with a discharge of about 60 m3/s leads to ebb and flood

currents in the same range of magnitude. During the simulation, the inflow at Herbrum

decreases to about 40 m3/s. The magnitude of the flood current increases accordingly

and it becomes higher than during ebb tide. The tidal pumping takes now effect and

leads to a dominating upstream transport. This effect is intensified in simulation (2)

because the inflow is further reduced to 25 m3/s. In this case, the flood current is twice

as high as the ebb current.

The symmetrical M2-tide in simulation (3) produces an ebb current-dominated system

because the discharge intensifies the ebb current. The duration is longer and the velocity

magnitude is higher than the flood currents. The flood currents become slightly stronger

after 40 h due to the reduced discharge. Predominantly upstream transport due to tidal

pumping is prevented by the tidal symmetry which will be shown in the following results

for the mud suspension transport.

The mud suspension transport is represented by the density layers. Their correspond-

ing suspended particle concentrations are listed in Table 6. Due to the isopycnal ap-

proach, a strong stratification is possible during all tide phases. The density distribution

is shown in Figure 52 for simulation (1), Figure 53 for simulation (2) and Figure 54 for

simulation (3). These plots represent the longitudinal section in the center line of the

channel. Therefore, the results are only representative for this section. The simulation

results reveal fluid mud formations comparable to the measured density gradients in

Figure 7. The mud suspension layers are influenced by the tide and move with the

tidal current. At flood tide, the mud suspension layers are carried in the direction of

the harbor basin. The mud suspensions advance rapidly and cover a wide area in the

flood-dominated conditions of simulations (1) and (2). The tidal pumping effect is

more pronounced in simulation (2) because of the predominant flood currents. The

tidal symmetry leads to a longer ebb phase with much higher ebb currents compared

to the flood currents. Moreover, the upstream fluid mud progress is noticeably shorter

which can be observed by comparing panel four of the Figures 52, 53 and 54. This

indicates the noticeable effect of tidal pumping induced by the tidal asymmetry.

Internal waves can be induced by bathymetry gradients along the channel. The longi-

tudinal section between the ground sill and position 1 is illustrated in Figure 55. The

currents reverse during slack water at high tide, but this mechanism takes longer in the

fluid mud body than in the water body. Internal waves are now generated due to gradi-

ents in the topography and the opposing currents. The internal waves propagate in the

direction of the ebb current. Likewise, internal waves were observed during flood tides

in the longitudinal section of the Ems Estuary in the area of the Emder Fahrwasser.
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Figure 51: Water level and mean velocity (absolute values) at position 1.

The tidal pumping effect becomes apparent when the velocity results of simulation (1) (top panel),

simulation (2) (middle panel) and simulation (1) (bottom panel) are compared. Simulation (1) and (2)

show a long ebb phase and a short flood phase but with higher velocity magnitudes which results in

predominantly upstream transport. This effect is intensified by reducing the upstream fresh water inflow

(compare simulation (2)). The magnitude of the flood currents increases and that of the ebb currents

decreases compared with simulation (1). However, the tidal symmetry results in an ebb tide-dominated

system which leads to downstream-dominated transport.
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begin of flood

flood

flood

slack water

ebb

ebb

Figure 52: Density distribution of the longitudinal section in the channel center line of simu-

lation (1).

Panels one to three are at flood tide, panel four at slack water and panel five and six at ebb tide.

Entrainment occurs from the near bottom fluid mud layer especially during flood tide.
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Figure 53: Density distribution of the longitudinal section in the channel center line of simu-

lation (2).

The tidal pumping effect is intensified due to reduced fresh water inflow.
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Figure 54: Density distribution of the longitudinal section in the channel center line of simu-

lation (3).

The symmetrical tidal signal and a high discharge (∼40–60 m3/s) lead to an ebb-dominated transport

by contrast to simulation (2) (Figure 53).
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Figure 55: Internal waves in the fluid mud layer traveling with the ebb current.

The internal waves are induced at interfaces with high-density gradients due to gravitational effect.

116 6. Application to the Ems Estuary



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

The harbor basin is filled with mud during flood tides and only some of the fluid mud

moves out during ebb tides. The ground sill in front of the harbor basin prevents

the fluid mud being moved out of the basin entirely where it accumulates at times

of low currents. The fluid mud layers become more compact after three tide cycles.

Thus the thicknesses of the density layers, 1030 kg/m3 and 1090 kg/m3, increase and

other layers either vanish or decrease in thickness. This is indicated in Figure 56 by a

comparison of the results at the beginning and after three tide cycles. Further settling

and consolidation will need longer simulation times and the parameterizations of the

settling and entrainment approach have to be validated.

Figure 56: Mud accumulation in the harbor basin - results of simulation (2).

The high concentration layers at the bottom were mixed at the beginning of the simulation, but the

average density of the fluid mud body increases with time.

The velocity and rheological viscosity distribution illustrate the specific rheological

behavior of the mud suspensions. They are presented in Figures 57 and 58 for simulation

(1), and in Figures 59 and 60 for simulation (2). The rheological behavior of fluid

mud and mud suspensions is described in Sections 2.2.4 and 3.4. The parameterized

Worrall-Tuliani approach is applied in the numerical model. This approach considers

structural effects which lead to an increase in the rheological viscosity with an increasing

suspended particle concentration and decreasing shear impact. A general impression of

the viscosity as a function of density and shear rate is given in the diagram of Figure 17.

In nature, the cohesive suspended particles accumulate to build up aggregates and these

aggregates can form a structure due to the build-up of contacts. The internal structure

is responsible for the resistance of the mud. This mechanism is parameterized by the

constitutive law according to Worrall-Tuliani in the numerical model.

Therefore, high velocity gradients lead to the break-up of the particulate structure which

reduces the rheological viscosity of the mud suspension. This can be observed during

the flood tide and especially at the beginning of increasing flood currents, see the first

and second panels of the figures. The resistance of the fluid mud increases (increase

in the rheological viscosity) because of hindered settling and decreasing shear rates by

reaching slack water. The higher concentrated layers maintain their movement longer
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ebb

ebb

Figure 57: Isopycnal layer-averaged velocity of the longitudinal section in the channel center

line of simulation (1). Stratified flow occurs during flood and ebb tide. The inertia and resistance

against the change of flow direction is stronger in the high-concentration mud suspension layers (see

panels four and five).
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Figure 58: Rheological viscosity of the longitudinal section in the channel center line of simu-

lation (1). The viscosity decreases in periods of high shear forces (see panels one, two and six) whereas

the internal structure can build up during slack water and the viscosity increases again (see panel three).
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Figure 59: Isopycnal layer-averaged velocity of the longitudinal section in the channel center

line of simulation (2). Stratified flow occurs during flood and ebb tide. The inertia and resistance

against the change of flow direction is stronger in the high-concentration mud suspension layers (see

panels four and five).
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Figure 60: Rheological viscosity of the longitudinal section in the channel center line of simu-

lation (2). The viscosity decreases in periods of high shear forces (see panels one, two and six) whereas

the internal structure can build up during slack water and the viscosity increases again (see panel three).
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than the clear water layer above due to the different viscous behavior and density effects

(panel three and four).

A strongly stratified flow is formed during ebb tide. Panels five and six show the ebb

currents where the velocity of the highly concentrated layers is much lower than that

of the low-concentration layers. Moreover, the rheological viscosity increases with the

increasing particle concentration.

Nevertheless, the gravitational effects due to the strongly stratified flow influence the

system. The internal Froude number often becomes less than unity which indicates that

gravitational flow predominates.

Entrainment of mud is induced due to turbulent shear forces of the overlying water layer.

The isopycnal model does not yet include a sophisticated turbulence closure model so

that the shear impact is underestimated. The shear rate intensity is determined with

the formulation of Equation (3.5.19). The simulation results are shown in Figure 61.

Hence, these are interfacial values; they effect the entire adjacent layer and the figures

present the quantity per isopycnal layer. The shear rate intensity is an indicator of

entrainment. The higher the shear rate intensity, the higher is the entrainment rate.

However, the internal resistance of the suspension (the yield stress) has to be exceeded

for entrainment to be initiated. The initiation of entrainment occurs particularly at the

beginning of ebb tides and during flood tides where the velocities rapidly increase. En-

trainment can be observed in panels two and three of Figure 52 in the area between the

harbor basin and the advancing fluid mud front. In this area, the lower concentration

layers (1005–1020 kg/m3) are growing due to entrainment from the higher concen-

tration layers below. The shear rate intensity is lowest during slack water at high tide

(see panel two) but there are still velocity gradients between the layers of different mud

concentration.

The fluid mud transport and development under tidal currents are evaluated qualitatively

by comparing the simulation results with observations of the lutocline development ac-

cording to Wang [2010]. This is illustrated in Figure 62. The observations were carried

out over several tidal cycles at a specific location in the turbidity zone of the Ems Estu-

ary (Leerort). The simulation results are taken from position 1. Apart from the different

locations, the hydrodynamic conditions are not the same. Therefore, only a qualitative

comparison is possible. However, both, simulation and observation, show the typical

asymmetrical tide with high flood currents, long slack water at high tide as well as a

long ebb phase. The different discharge conditions of the simulations emphasize the

effect of variable hydrodynamic conditions. The observed lutocline was obtained from

ADCP measurements by analyzing the backscatter signal. A high backscatter gradient

indicates a high-density gradient in the water column. The suspended matter concen-

tration just below the lutocline is in the range of 30 kg/m3 (density ≈1020 kg/m3)

during slack water at high tide, as reported by Wang [2010]. The concentration in-
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flood

slack water

ebb

Figure 61: Shear rate intensity of the longitudinal section in the channel center line of simu-

lation (1).

The shear rate intensity increases with increasing velocity gradients with respect to depth. This is the

case especially during flood where fluid mud is entrained dependently on the shear rate intensity.

creases downward to the bottom. The simulated density stratification is followed by

the subsurface elevation of the density layers. The lutocline is defined as the transition

between Newtonian and non-Newtonian behavior which is accompanied by a sharp den-

sity gradient. This corresponds to the density layer with 1030 kg/m3 of the simulations

which is indicated in red in the graphics.

The suspended matter becomes mixed into the water column during flood tide. The

observations show low backscatter gradients in the entire water column. This mixing

process is represented in the model results due to the rapid increase in the layer thick-

nesses (subsurfaces) of the mud suspensions. The increasing layer thicknesses result

from higher concentration layers being mixed with lower concentration layers due to

entrainment and horizontal transport. A highly stable stratified system is then achieved

in both cases during slack water. The fluid mud is carried downstream with the ebb

currents which decreases the lutocline elevation. The intensifying ebb velocities pro-

gressively lower the lutocline level which is reproduced both in the simulations and in

the observations. At the same time, the sharp transition between fluid mud and water

body vanishes. The shapes of the simulated and observed lutoclines are very similar
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Figure 62: Tidal dynamic of the lutocline - comparison between simulation results (upper two

panels) and observations which result from 300 kHz ADCP measurements (lower panel).

The density corresponding to the lutocline is 1030 kg/m3 for the simulations. The lutocline is indicated

by a high backscatter gradient in the measurements. It should be noted that the simulated and measured

data are related to different locations and different hydrological situations. However, the characteristic

development of the lutocline is very similar. (illustration of observations used with permission of Wang

[2010]).

and reveal comparable reactions to the tidal flow although the mixing process should

be intensified in the simulations.

Concluding Remarks

The numerical model is able to simulate tidal-influenced fluid mud dynamics in a more

complex topographic domain. The rheological viscosity approach predicts plausible re-

sults with respect to the velocity and density distribution. The comparison of the sim-

ulated and observed development of the lutocline leads to satisfying results. Owing to
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the isopycnal approach, a highly stratified multi-layered flow is achieved during ebb tide

and slack water. The density layers interact due to interfacial shear stresses, momen-

tum transfer and mass transfer which enables formation, development and movement

of the stratified fluid mud flow to take place. The density-driven flow is induced by

the differences in the densities of the isopycnal layers which influence the flow at slack

water in particular and results in internal waves caused by bottom gradients. The shear

rate intensities increase during ebb and flood currents because the velocity differences

are highest in that period. However, the shear intensities may be much higher when

considering a turbulence closure model which would lead to higher entrainment rates.

Further validation of the parameterized entrainment approach is needed for this matter.

The interfaces of the density layers are controlled at the open boundary at Rhede.

They move with half of the water-surface amplitude. This steering assumption should

be replaced by measured data for the dynamic movement of the lutocline in more

advanced and realistic studies. These measurements should investigate the movement

as well as the density gradient of the lutocline. In addition, the detection of more

density horizons between the lutocline and the cohesive bed is needed for data input

and validation of the model.
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6.2 Model of Emden Harbor

Flow regimes of estuarine harbor basins are influenced by tidal currents, density effects

due to salinity and suspended particle concentrations, the geometry of the harbor and

the tidal conditions (in particular, the tidal range). Large-scale vortices are initiated

depending on the flow direction of the river at the harbor entrance, see Figure 63. The

tidal currents induce water exchange between the basin and the river depending on the

tidal range. Additionally, density effects induce near-bottom inflow of the denser fluid

and near-surface outflow of the low-density fluid (low suspended particle concentration

and low salinity) during the flood tide. The flow directions reverse during ebb tide. The

actual flow patterns are a superposition of all three effects. Nasner [2004] reports from

observations in different German brackish harbors that the intensity of the velocity is

lower during ebb tide than during flood tide which increases the tendency for siltation

to occur in the harbor basins. Once the suspended sediment has been transported into

the harbor basin, the probability of it being deposited is quite high owing to the very

low currents.

flood

ebb

fresh water

saline water
fluid mud

Figure 63: Scheme of basic flow pattern in a harbor basin located in the brackish zone of an

estuary.

Flow regimes of estuarine harbor basins are influenced by tidal currents, density effects due to salinity

and suspended particle concentration, the geometry of the harbor and the tidal conditions.

In this section, a system study is carried out on the Emden Outer Harbor with the fluid

mud model. The harbor is located in the brackish water zone of the Ems Estuary, see

Figure 64. The model domain extends from Dukegat, the open seaward boundary, to

the weir at Herbrum, the closed boundary.

The boundary values are prescribed by measured data for the discharge at the weir at

Herbrum and the water level at the open boundary. The model runs on a unstructured

grid with increasing grid refinement in the harbor basin. Its vertical domain is discretized

with eight isopycnal layers.

Nasner and Pieper [2009] carried out measurements in the Emden Outer Harbor to

improve the knowledge of siltation mechanisms in harbor basins. Fluid mud samples

were taken in the Emden Outer Harbor at four different depths and at six different

positions. The results were averaged over the six positions and give information on the
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Figure 64: Bathymetry and grid of the sectional model from Dukegat to Herbrum.

A fresh water discharge is applied at the weir at Herbrum. A tidal signal is given at the seaward open

boundary.

density over depth. The range of the measured densities at four different horizons is as

follows:

• high-frequency horizon - lutocline: 1020 to 1070 kg/m3

• middle of fluid mud layer: 1060 to 1110 kg/m3

• above low-frequency horizon: 1090 to 1140 kg/m3

• below low-frequency horizon - consolidated mud

layer:

> 1200 kg/m3

The densities of the isopycnal layers are based on these measurements and are given in

Table 7. Moreover, Table 7 and Figure 65 show the initial elevation of the isopycnal

surfaces. The following parameters and processes specific to fluid mud are considered

in the numerical simulations: the rheological viscosity varying with time and space,

described by Equation (3.4.13), entrainment according to Equation (3.6.10) with the

coefficient Cf = 0.01 and the settling velocity is determined by Equation (3.7.3) with

regard to hindered settling and a gelling concentration of 40 kg/m3. The simulation

covers a period of two days, therefore consolidation is negligible in this simulation.

Density currents are induced by differences in the density of the isopycnal layers. The

density of the isopycnals is related to suspended sediment concentrations according to
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layer

number
density

mud con-

centration

isopycnal

elevation

[kg/m3] [kg/m3] [m]

8 1000 0.0 -0.47

7 1002 3.2 -7.00

6 1010 16.1 -8.50

5 1020 32.1 -8.75

4 1040 64.2 -9.00

3 1050 80.3 -9.30

2 1070 112.4 -10.50

1 1100 160.6 -11.00

Table 7: Initial density distribution over depth with an initial water level of -0.47 m.

the conceptual model (Section 3). Therefore, salinity effects are not considered in this

study.

Simulation results of the velocities for the water body (-5 mNN horizon) and for the

fluid mud body (-10mNN horizon) are presented in Figure 66. The results show the

horizontal large-scale vortices at the entrance of the harbor during flood and ebb tide

as they are described above. These vortices develop in the water layer as well as in the

fluid mud body. The vortex in the fluid mud body is retained for longer than in the

water body during slack water. This occurs on account of the viscous behavior and the

barrier at the entrance of the harbor.

The water volume in the harbor adjusts to the tidal range. Thus, the basin empties

after high tide and refills after low tide. This can be observed at the end of slack water

where either inflow or outflow dominate and the vortex at the entrance has not yet built

up. The barrier inhibits the near-bottom inflow and outflow which can be observed in

the slice through the fluid mud body at a depth of -10 m.

Figure 65: Initial vertical density distribution in the center line of the harbor basin.
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Figure 66: Simulated velocity pattern in the entrance to the Emden harbor basin.

(left side: z-slice through water body, right side: z-slice through fluid mud body near the bottom; the

size of the vectors indicates the intensity)
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In Abb. 29 ist die letzte Flutstromphase, Kenterung und einsetzende Ebbestrom-

phase in der Ems dargestellt. An den Profilen vor und in der Hafeneinfahrt sind 

die oben und unten entgegengesetzten Dichteströmungen erkennbar. Auch für die-

se Tidephase mögen die Treibkörpermessungen vom Juli 2000 in 1,5 und 6,0 m 

Wassertiefe die in Abb. 29 aufgetragenen Strömungsbilder für vergleichbare Tide- 

und Oberwasserbedingungen verdeutlichen und ergänzen (Abb. 30).  

Abb. 28: Flutströmungen im Vor- und Außenhafen in Emden am 18./19.07.2000 Figure 67: Observed drift paths during flood currents.

(in red: drift path at a depth of 1.5 m below the water surface; in green: at a depth of 6.0 m below

the water surface; in blue: at a depth of 9.0 m below the water surface) (from Nasner [2004], with

permission of the editor KFKI)

Investigations on tracking drift paths in the Emden Outer Harbor were carried out by

Nasner [2004, 1997]. The observed drift paths of tracers show near-surface outflow

and a near-bottom vortex which transports denser water into the harbor during flood

tide (left panel of Figure 67). Thus, the simulated and observed near-bottom flow

patterns are comparable whereas the near-surface results differ. Similar flow patterns

were observed during a second period at the end of the flood phase, see the bottom

panel of Figure 68. However, the observations at the beginning of the flood phase reveal

a vortex over the entire water column (top panel of Figure 68) which are comparable

to the simulated flow patterns (top panel of Figure 66).

Nasner and Pieper [2009] indicated the importance of a barrier forming at the entrance

to a harbor basin. Such barriers prevent fluid mud from flowing out of the harbor basin.

The height of the barrier is reduced in a second simulation run to study these effects.

The velocity results are given in Figure 69 where the right panel shows the results

with an increased barrier height and the left panel shows the results with a reduced
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Figure 68: Observed drift paths during flood currents.

(in red: drift path at a depth of 1.5 m below the water surface; in blue: at a depth of 6.0 m below the

water surface) (from Nasner [1997], with permission of the editor KFKI)

barrier height. The reduced barrier height intensifies near-bottom fluid (mud) exchange

between the harbor basin and the river. Moreover, the flow increases at the rear of the

basin during ebb as well as during flood tide. Further analysis of the residual transport

over several tide cycles would be required to ascertain whether the imbalance changes

between the inflow and outflow of suspended sediments and whether it influences the

siltation in the harbor.
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Figure 69: Comparison of simulated velocity patterns in the fluid mud body at a depth of -9m

with different ground sill heights at the entrance to the Emden harbor basin.

(left side: increased barrier height, right side: reduced barrier height; the size of the vectors indicates

the intensity)
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top view of profile

RUN 0907m

Figure 70: Isopycnal layer-averaged velocities in the profile along the harbor basin with increased

barrier height. (The vectors indicate the direction of the velocity but not the magnitude.)

In addition, the velocity distribution is shown in a profile along the harbor basin with an

increased barrier height in Figure 70 and a reduced barrier height in Figure 71. These

results are only representative for this section. The water body is represented by two

isopycnal layers and the fluid mud body by six layers, but not all layers are active all

along. Their velocities are determined as layer-averaged values. The horizontal vortex

develops in the region of the harbor entrance (indicated in the figure). Therefore, the

flow directions become ambiguous in the profile view. Although the absolute velocities

are rather small in the region behind the horizontal vortex, the flow directions become

apparent. Fluid mud flows further into the harbor basin during flood tide (first panel)

which corresponds to the observed drift paths in Figure 67 (left panel). At the beginning

of the ebb tide, the fluid mud flows in the direction of the river while the water layer

still fills up the basin (second panel). A further decrease in the water level then leads
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top view of profile

RUN 0907o

Figure 71: Isopycnal layer-averaged velocities in the profile along the harbor basin with reduced

barrier height. (The vectors indicate the direction of the velocity but not the magnitude.)

to outflow over the entire water column. The change from outflow to inflow can be

observed after slack water at low tide. Stratified flow becomes apparent not only in

the different flow directions but also in the differences in the magnitude of the velocity.

The near-bottom velocities increase in the harbor basin when the height of the barrier

is reduced (see Figures 70 and 71). This effect can also be observed in the horizontal

flow pattern of Figure 69.

The density distribution in particular shows the effect of changes in the height of the

barrier, see Figure 72. The fluid mud layer maintains a specific thickness during the

entire tidal cycle owing to the barrier (left panel). The fluid mud exchange between

harbor basin and river is intensified by reducing the barrier height as described above.

During ebb tide, the mud flows almost completely out of the harbor, apart from the

deeper region at the harbor entrance. By contrast, the fluid mud thickness is similar in
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Figure 72: Simulated density distribution in the profile along the harbor basin.

The thickness of the fluid mud body decreases during ebb tide due to the reduced barrier height (right

panel) compared with the results with a greater barrier height (left panel).

both simulated scenarios at high tide (third panel). Observations show higher fluid mud

thicknesses compared with the modeled thicknesses and the fluid mud reaches into the

rear of the harbor, see Figure 73. This may result from long-term mud accumulations

and consolidation processes which could not be achieved by the simulation of two tidal

cycles. Moreover, the simulation shows shortcomings concerning the suspended sedi-

ment transport with the upper water body by which cohesive material can be transported

into the rear of the basin.
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Figure 73: Observed fluid mud layer thicknesses in the Emden Outer Harbor by echo sounder

measurements with different frequencies (provided by Nasner [2004], modified figure).
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Concluding Remarks

It can be demonstrated that this system study can contribute to improving the under-

standing of constructional effects on fluid mud dynamics by using such a model.

The differences between the simulated and observed velocities can result from different

discharge situations, differences in the actual tidal range, the thickness of the fluid

mud body in the simulations being lower than the observed thickness and certainly from

neglecting salinity in the numerical simulation. The harbor is located in the brackish zone

which leads to additional stratification due to salinity. The simulated density-induced

flow pattern results only from the suspended particle concentration. These near-bottom

and near-surface flow patterns in opposite directions remain longer in the observations

which may indicate that the contribution of the salinity to the density effect is greater

than that of the suspended particle concentration. Further investigations with a better

representation of the water body would be required to improve the density effects.

Nevertheless, the simulation results are plausible and explainable with respect to these

aspects.

The development of fluid mud is triggered by the initial conditions and by the boundary

conditions of the model run. Therefore, improvement of the simulated formation and

occurrence of fluid mud in the model domain can be achieved, for example, by:

• improvement of the initial conditions based on observations of the occurrence and

the layer thicknesses of fluid mud

• simulation of a longer period of time to achieve an equilibrium and a realistic

situation based on a model set-up not necessarily based on observations

The current implementation of the numerical model has the status of a research code.

It will require additional work on serial optimization and parallelization to achieve more

efficient simulation times. The simulations presented give an impression of the compu-

tational effort: the model (13433 vertices, 25269 polygons and 38701 sides) runs with

a real time to run time relationship of 1:1.7 to 1:7 on a computer with a xeon processor

using one CPU of a node. The range of the run time period depends on the output data

and output intervals and on the parameterized physical processes under consideration.
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7 Conclusions and Perspective

The aim of this thesis is the numerical simulation of the flow behavior, transport, forma-

tion and resuspension of fluid mud to enhance the understanding of fluid mud dynamics.

This has been realized by a hydrodynamic model in isopycnal coordinates. The exten-

sion of an existing numerical model contributes to achieving a better understanding of

fluid mud dynamics in coastal areas, estuaries and harbors.

This section summarizes the achievements of this thesis and gives recommendations

for future research.

Achievements of this thesis

The occurrence of fluid mud is observed in single layer as well as in multi-layer systems.

The fluid mud body can vary from a few decimeters to several meters in thickness.

These high concentration layers lead to stable stratified flow in a low-concentration

suspension when mixing is insignificant. Then strong density gradients exist between

the water body and the fluid mud body. For this reason, an isopycnal numerical approach

becomes promising. The developments for the simulation of fluid mud dynamics are

therefore based on a three-dimensional hydrodynamic isopycnal model approach. The

characteristics of the numerical method are as follows (Section 4, Appendix A and B):

• isopycnal discretization enables a three-dimensional resolution of the fluid mud

body with a low degree of discretization and little computational effort

• the isopycnal approach resolves the density stratification and the velocity profile

within the fluid mud body

• layer thicknesses vary with the transition to different states of suspension, the

formation, resuspension, settling and advective and gravitational transport of fluid

mud

• the numerical implementation is based on a numerical discretization in vertical

direction by z- and %-layers, in horizontal direction by unstructured grids and in

time

• communication of the isopycnal layers is realized due to momentum transfer,

vertical mass transfer and interfacial shear stresses

The implementation of the three-dimensional discretization scheme has been verified by

a comparison between simulated and analytically determined propagation of an internal

standing wave (Section 5.1).
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The vertical transport processes, which lead to formation and resuspension of fluid

mud, are predominated by hindered settling and entrainment. This requires the thick-

ness of the density layers to vary with time and in accordance with the actual mass

transport rates. Vertical mass transfer between isopycnal layers was derived for a

three-dimensional system (x , y , %) by conserving volume and mass (Section 4.3 and

Appendix B). The functionality of the extended numerical model was evaluated as fol-

lows:

• By applying a settling velocity formulation with hindered settling (Section 5.2),

the mass transfer approach has lead to reasonable results for a sedimentation

tank in which the transition from a well-mixed system to a stratified system was

reproduced.

• The mixing of a stratified system has been studied in the stratified flow over a

ground sill (Section 5.3). The interfacial shear intensity increases near the ground

sill, initiating the entrainment of fluid mud into the water body above.

A method was presented for the integration of non-Newtonian flow behavior in a

numerical model based on the Reynolds-averaged Navier-Stokes equations. The model

has the capability to simulate the non-Newtonian flow of fluid mud by introducing a rhe-

ological viscosity to parameterize the rheology depending on shear impact and particle

concentration. The rheological model describes the structural break-up and recovery of

aggregates in a mud suspension (Section 3.4). Furthermore, only the relevant internal

stress terms of the stress tensor are taken into account in the momentum equation.

The rheological viscosity is no longer a constant such as the molecular viscosity but is

now a time-dependent and process-descriptive parameter. It is possible to apply differ-

ent rheological models in this way. Such rheological parameterizations can also be used

for the transport of mud in pipelines or the determination of the nautical depth.

The isopycnal numerical model described above was extended by using the rheological

viscosity in the same way as the turbulent viscosity in the Reynolds-averaged Navier-

Stokes equations. Although the rheological viscosity determines both the Newtonian

and non-Newtonian flow behavior of suspensions, the character of the differential mo-

mentum equations remains unchanged. Internal friction and interfacial shear stresses

are now related to the rheological behavior of the mud suspension and are taken into

account in the numerical solution.

The rheology of fluid mud is described as a viscoplastic shear-thinning fluid by applying

a parameterized Worrall-Tuliani model (Section 3.4.2). The model considers a yield

stress and the break-up and recovery of the microscopic structure (aggregates of cohe-

sive sediments). These parameters are calculated as a function of the shear impact and

solid volume concentration. The entire water column is modeled with this approach

as it not only covers the non-Newtonian behavior of high-concentration suspensions
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but also the Newtonian behavior of low-concentration suspensions and of clear water.

The shear-thinning behavior has been studied phenomenologically and it was feasible to

reproduce the shear-thinning behavior in the study of the Ems river section from Rhede

to the weir at Herbrum in which stratified flow in a tidal influenced system was inves-

tigated (Section 6.1). The influence of the rheological behavior on high-concentration

flow was analyzed by a study of flow on an inclined plane (Section 5.4). This effect

was compared to the influence of gravitational forcing due to density differences which

has shown to be the dominant process for this test case.

Fluid mud dynamics under the influence of tidal currents have been investigated on

two model domains of the Ems Estuary (Section 6):

• Fluid mud formation, advective and gravitational transport and resuspension are

periodic processes in tidal systems.

• Strong stratified flow develops during slack water at high tide and during ebb tide

in the fairway.

• The rheological viscosities determined as a function of the shear rate and density

show plausible results and influence the velocities of the stratified flow.

• A qualitative comparison of the simulated fluid mud formations and the observed

development of the lutocline shows similar results (Section 6.1).

• Simulation of tidal and density-induced currents result in similarly stratified flow

patterns observed by measurements in the Emden Outer Harbor (Section 6.2).

These applications demonstrate that the developed numerical model approach enables

the simulation of three-dimensional fluid mud dynamics.

Recommendations for Future Research

The developed numerical model is capable to simulate fluid mud dynamics in systems

such as harbor basins and river sections where high-concentration flow and fluid mud

formations predominate the system.

The numerical model applies an appropriate resolution of the fluid mud body according

to isopycnal layers which is presented in Sections 5 and 6. Each isopycnal layer repre-

sents a single phase fluid/suspension with a specific particle concentration and specific

rheological properties. The isopycnal layer may become very thin or even reach zero

thickness depending on the transport and development of the cohesive mud suspensions.

The three-dimensional isopycnal model is applied to the entire water column from the

consolidated bed to the free surface in the model applications of this thesis. The

simulation of the dynamics of highly concentrated mud suspensions shows reasonable
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results. However, the numerical approach limits the flow to a stable stratification. This

assumption does not always applies in highly turbulent flows with suspended sediments.

In particular, the presence of suspended sediment transport and baroclinic processes

may result in an unstable stratification in estuaries. It will need further investigations

on the simulation of the low concentrated water body to enable the comprehensive

modeling of estuarine systems. Basically, there are three possible solutions to obtain a

more sophisticated model of the water body.

• The first solution can be obtained by implementing the approach for non-

Newtonian shear stresses in an established hydrodynamic model with Cartesian

coordinates with z- or σ-layers. The flow behavior of fluid mud is then described

by parameterizations of the rheological viscosity such as it is done in this thesis.

In this case, the main issue will be the realization of strong stratifications which

directly influences the internal shear stresses. This will require very fine verti-

cal resolutions (centimeters to decimeters) in regions where high-concentration

suspensions can occur in the model domain.

• The second solution can be achieved by coupling the isopycnal model with an ex-

isting and established hydrodynamic model such as UnTRIM [Casulli and Walters,

2000; Casulli and Lang, 2004], Telemac [Hervouet and Bates, 2000; Electricité

de France, 2000] or Delft3D [Lesser et al., 2004; Gerritsen et al., 2007]. The

isopycnal numerical model functions then as a module representing the fluid mud

body. The suspended sediment and salt transport simulation is performed by

the hydrodynamic model. The isopycnal fluid mud module would become active

in case of fluid mud formation by exceeding the threshold from Newtonian to

non-Newtonian flow or a specific mud concentration. The module will only be

activated in model domains with cohesive sediment accumulations which reduces

the computational effort for large model domains with different transport regimes

such as those in estuaries.

• The third concept comprises a holistic model approach by modeling the domain

from consolidated bet to water surface in once. In Section A, the conceptual

model was derived for a three-dimensional method with a vertical discretization

by z- and %-layers. This method can be used to resolve the water body with

the addition of a z-layer-based discretization inside an isopycnal layer. The z-

layer resolution is usually in the range of 0.5 m to 2.0 m. This resolution is too

coarse to permit discretization of the fluid mud body. The additional density layers

therefore enable the thin and highly variable high-concentration suspensions to be

simulated as it is presented in this thesis (see Figure 24). Following this approach,

further developments are required to simulate suspended sediment transport and

salt transport by solving the advection-diffusion equation. This transport will
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also affect the density distribution. A possible solution is to allow small density

differences within an isopycnal layer as long as the average densities of the adjacent

isopycnal layers guarantee stable stratification. Accordingly, the 3D vertical mass

transfer approach (Appendix B) has to be extended for a vertically resolved system

by z- and %-layers.

All three concepts will require further developments, research and software engineering

work for comprehensive modeling of estuarine systems.

The first concept is the most pragmatical solution of the three concepts and requires

limited work on further developments. However, strong stratified flow is difficult to

maintain in z- and σ-layer based models [Rennau and Burchard, 2009]. These dis-

cretization schemes can lead to unwanted numerical mixing. In case of σ-layers, a

numerical, baroclinic pressure gradient error occurs which can produce wrong velocities

[Mellor et al., 1998] (work on improvements e.g. Liu and Huang [2008]). Hence, it

has to be proven that the high vertical resolutions are sufficient to reach and preserve

strong stratifications. In addition, the computational effort can rapidly increase as a

consequence of the high resolutions. The practicability depends therefore not only on

the realization of strong stratifications but also on the available computer capacities.

The third concept (scalar transport by allowing small density differences inside isopy-

cnals and combined vertical resolution by z- and %-layers) has the highest complexity

and uncertainties from the current perspective. The advantage of this concept is the

holistic approach by modeling the water body and fluid mud body in one system which

means being independent from effects of model coupling. At the same time, it is taken

advantage of the properties of the z- and %-layer discretization. This model concept

will need a lot of additional developments and implementations for the simulation of

low-concentration hydrodynamics to reach a comparable state such as the advanced

3D hydrodynamic models mentioned above.

Coupling of the isopycnal fluid mud model with an advanced hydrodynamic model (sec-

ond concept) appears to be a promising and practicable solution for modeling fluid mud

dynamics in practical applications of estuarine environments. This enables still to utilize

the optimal vertical discretization for each problem – isopycnals for fluid mud dynamics

and z- or σ-layers for low-concentration hydrodynamics – but independently applied.

In this case, the communication of the models will require further investigations on

both software engineering and description of physical processes. One aspect thereof is

described in the next paragraph.

Following the second concept, further investigations into an implicit mass transfer

approach may be advantageous. The explicit approach, derived in Section 4.3 and

Appendix B, requires rather small time steps to be accurate.

This thesis focuses on the interfacial and internal friction resulting from the rheological

behavior. However, the internal shear stresses are also influenced by turbulence.

7. Conclusions and Perspective 143



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

In nature, fluid mud flows become laminar as the turbulence is destroyed due to density

stratification. On the other hand, rheology changes from non-Newtonian to Newto-

nian behavior as the mud concentration decreases in the water body and turbulence

may arise at the same time. Turbulence interacts with the suspended particles due to

turbulence damping and buoyancy effects which influence the settling velocity. Thus,

in the highly concentrated, stratified areas, the flow behavior is characterized by the

rheological viscosity whereas the turbulent viscosity is dominant in low-concentration,

mixed areas. Both rheology and turbulence are modeled with a similar conceptual

model as described above. They are taken into account through a viscosity and result

in a deceleration of the average velocity with increasing viscosities (internal friction).

However, their physical effect is contradictory. Whereas the rheological viscosity leads

to laminar and stratified flow as its magnitude increases, increasing turbulent viscosity,

on the other hand, intensifies turbulent mixing and may cause unstable stratifications.

Accordingly, research on the interaction between rheological and turbulent viscosity will

be important for progressive fluid mud and suspended sediment transport modeling.

The focus should be on the transitional area between fluid mud and dilute suspension as

well as on the formation process and the resuspension of fluid mud as both quantities

may reach considerable magnitudes during resuspension or entrainment. A general ap-

proach using the viscosity should combine rheology and turbulence modeling and take

account of the solids concentration, shear conditions and structural mechanisms (e.g.

flocculation) for the overall water body.

The improvement of the turbulence model will also affect the entrainment of fluid mud

which is basically induced by turbulent interfacial shear stresses. Another aspect worth

investigating is the influence of fluid mud formation in large areas and of sizable thick-

ness on the internal friction in estuarine systems. Turbulence will be damped during

periods of high stratification and internal friction is built up by the rheological viscosity.

The shear-thinning behavior of fluid mud may then lead to relatively small rheological

viscosities once the fluid mud moves with the tidal currents. Compared to the mag-

nitudes of the rheological viscosities, the turbulent viscosities can reach much higher

magnitudes in a turbulence-dominated system. This aspect and the reduced bottom

friction of the water body flowing above the fluid mud body may lead to a larger tidal

range in estuaries (see description of tidal dynamics in Malcherek [2010]).

Further process-based improvements and validation of the fluid mud model will require

additional comparisons with laboratory studies and field measurements. Observa-

tion of the development of fluid mud involves measurements not only of the lutocline

movement but also of the density stratification below the lutocline and the velocity

distribution inside the fluid mud body. These types of measurement are subject of on-

going research into highly dynamic systems as it is difficult to perform measurements

in a highly concentrated medium. These measurements should allow to relate specific
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observed phenomena to physical processes. In tidal systems, the physical processes

are strongly related to the tidal cycle. Therefore, it is necessary to obtain continuous

information in tidal systems (e.g. at least one tidal cycle).

An additional impact on fluid mud or consolidated mud, in particular, is induced by

waves which become important in shallow areas such as tidal flats. Waves can initiate

the fluidization of consolidated mud so that the mud reverts to a fluid state. This

means that further investigations into the quantitative description of the rheological

viscosity in relationship to the oscillatory wave impact are required. The rheology can

be characterized by viscoelastic behavior which may be measured under oscillating shear

conditions. In this case, the consolidated mud bed exhibits elastic behavior on exposure

to short and periodic shear impact whereas the mud behaves as a viscous fluid once it

has been fluidized. Modeling the wave impact will additionally require the coupling with

a spectral wave model. The impact of the waves can be described by the relationship

between shear stress and the wave amplitude and wave period in a similar way as it is

applied for wave-induced sediment transport [Malcherek and Knoch, 2006].

The characteristic flow behavior of fluid mud can be reproduced by considering a mud

suspension comprising only cohesive sediments and water. However, there are several

aspects from which we can learn and gain a better understanding of the flow behavior

under different conditions. Some of these aspects are biology, dissolved oxygen and

mud-sand mixtures (considering grains larger than 63 µm).
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Appendices

A 3D Unstructured Isopycnal Model with Combined

Vertical Discretization of z-layers and %-layers

A.1 Governing Equations

In this section, the numerical method is presented for a (x , y , z , %)-coordinate model on

an unstructured horizontal grid resolution. A scheme of this model is shown in Figure 24

of Section 4.4. The governing equations and the basic principle of the isopycnal model

are described in Section 4.1. The isopycnal approach is combined with the concept for a

vertical z-layer-based discretization scheme according to Casulli and Walters [2000]. In

the following, the resulting numerical approximation and solution algorithm are derived.

The combination of isopycnal and z-layer-based vertical resolution can lead to a single

isopycnal layer resolved by one or more z-layers or a single z-layer resolved by one or

more isopycnals. An implementation of this model approach was provided by Prof.

V. Casulli of the University of Trento, Italy. Furthermore, the model approach and

implementation are extended for the simulation of shear-dependent viscosity with a

non-Newtonian approach and for vertical mass transfer between isopycnal layers which

is introduced for an unstructured 3D approach in (x , y , %)-coordinates. According to

Section 4.1, a definite number M of isopycnal layers with a specific density is predefined.

The governing equations are discretized for the parameter %. Now the momentum

equations of the four parameters (x , y , z , %) result in

∂um
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∂um
∂x

+ vm
∂um
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where z ranges from ηmb to ηm. These are the isopycnal, Reynolds-averaged mo-

mentum equations after applying the hydrostatic pressure assumption and assuming

an incompressible Newtonian fluid. The last two terms represent the internal stresses

of a Newtonian fluid (see Section 2.4.4) which is indicated by treating the viscosity,

in this case the horizontal component, as a constant. However, in the following, the
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viscosity is considered as variable in space and time and dependent on the shear rate.

The viscosity consists of two components, these being the function of the rheological

viscosity νr = f (x, t, %, |IID| , ...) determined by rheological constitutive formulations

(for a further description see Section 3.4 and 3.5), and the turbulent viscosity νt , which

is set constant for the m-th layer. The dependence and interaction of the two viscos-

ity components is not yet known and has to be specified in future. In this thesis t is

assumed that the horizontal and vertical viscosities can be treated as a sum of both

νhm = νr ,m + νht,m and νvm = νr ,m + νvt,m. (A.1.2)

The rheological viscosity has no vectorized components and its horizontal and vertical

values are equal.

The stress terms need to be adapted for the simulation of the behavior of high-

concentration suspensions, which is non-Newtonian. The non-Newtonian fluid behavior

is approximated by means of the rheological viscosity and the most important internal

stress components, identified by dimensional analysis in Section 3.3. With this approx-

imation, the solution algorithm is still applicable. This leads to a reformulation of the

viscosity terms of Equation (A.1.1)
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∂

∂x

(
νhm
∂um
∂x

)
+
∂

∂y

(
νhm
∂um
∂y

)
+
∂

∂z

(
νvm
∂um
∂z

)
(A.1.3a)

. . .+
∂

∂x

(
νhm
∂vm
∂x

)
+
∂

∂y

(
νhm
∂vm
∂y

)
+
∂

∂z

(
νvm
∂vm
∂z

)
. (A.1.3b)

The free surface equation is derived by integrating the continuity equation

∂um
∂x

+
∂vm
∂y

+
∂wm
∂z

= 0 (A.1.4)

with respect to the m-th layer thickness. As the sum of the spatial velocity derivatives

is taken to be zero, its integral is also zero. The integral covers the thickness ∆ηm =

ηm − ηmb of the current isopycnal layer m and results in

0 =
∫ ηm

ηmb

(
∂um
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dz
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By considering the Leibniz-Law the equation is modified to [Malcherek, 2001]
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The kinematic conditions for the surface and bottom of the m-th layer are

wm =
dηm
dt

=
∂ηm
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∂ηm
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∂y

(A.1.7a)

wmb =
dηmb
dt

=
∂ηmb
∂t

+ umb
∂ηmb
∂x

+ vmb
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. (A.1.7b)

They can be extracted from Equation (A.1.6)
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This results in the conservative form of the free surface equation for the m-th layer
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Considering the total depth from the rigid bottom η0 to the m-th surface ηm it leads

to
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This expression describes the surface movement of an isopycnal layer m by considering

the fluxes through the fluid column.

To complete the governing equations, the boundary condition at the free surface is

defined by

νvM
∂uM
∂z

= γa (ua − uM) and νvM
∂vM
∂z

= γa (va − vM) (A.1.11)

where ua and va are the horizontal wind velocity components. The boundary condition

at the bottom is given by

νvm0

∂um0

∂z
= γbum0 and νvm0

∂vm0

∂z
= γbvm0 (A.1.12)

with the current isopycnal bottom layer m0. The friction factors of the unit m/s are

defined as follows

γa = fa

√
(ua − uM)2 + (va − vM)2 and γb = fb

√
u2m0

+ v2m0
(A.1.13)

where fa and fb are dimensionless friction coefficients.

The interfacial shear stresses for the upper (m+ 1/2) and lower boundary (m− 1/2)

of the m-th layer are

νvm
∂um
∂z

= γm+ 1
2
(umt − um)− γm− 1

2
(um − umb) and (A.1.14a)

νvm
∂vm
∂z

= γm+ 1
2
(vmt − vm)− γm− 1

2
(vm − vmb) (A.1.14b)

with the interfacial non-negative friction factor γm± 1
2

.
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A.2 Numerical Approximation

The time discretization for the governing equations is realized with the semi-implicit

method, which is described for the isopycnal hydrodynamic model on structured grids in

Casulli [1997] and for the unstructured, z-layer-based and hydrodynamic model UnTRIM

in Casulli and Walters [2000]. The numerical approximation and solution algorithm

for the unstructured isopycnal model can be developed by combining the isopycnal and

unstructured methods. The space is discretized in three dimensions by four parameters.

The space is horizontally defined by the coordinates (x , y ) and vertically by z and %-

coordinates. The z-layers are static and predefined. The density layers or isopycnal

layers are variable in space and time and by intersection of a z-layer they can divide

the z-layer into two or more than two z-layers according to the intersections. The %-

layers can appear and disappear or, in other words, can be dry or wet but the maximum

number of M layers and their specific density are predefined. The discrete notations of

the indices of the isopycnal layers and z-layers and their relationship are as follows

m = mn0,i , . . . ,Mn
i isopycnal layer from bottom to surface

mnb,i next active isopycnal layer below the m-th layer

mnt,i next active isopycnal layer above the m-th layer

M total number of the isopycnal layers

k = kn0,i , . . . ,Nni z-layers from bottom to surface

knb,i ,m, . . . , knt,i ,m range of the z-layers inside an isopycnal layer

with kn0,i = knb,i ,mn0,i
and Nni = knt,i ,Mn

i

Nz total number of z-layers

where i indicates the polygon and n the time step.

An overview of the vertical structure of the model is given in Figure 74 and Figure 75.

The thickness of an isopycnal layer of the i-th polygon is specified by ∆ηni ,m = ηni ,m −
ηni ,mnb,i

. The z-layer thickness ∆znj ,k,m is defined for each isopycnal layer m from k =

1, . . . ,Nz by considering intersecting isopycnal layers and non-active layers. This leads

to the following definition

∆znj ,k,m =


znj ,k,m − znj ,k−1,m if knb,j ,m ≤ k ≤ knt,j ,m active layer

0 if k < knb,j ,m non-active layer

0 if k > knt,j ,m non-active layer .

(A.2.1)

At an isopycnal interface (m,mnt,j) the depth difference is determined by

∆znj ,kn
b,j ,mn

t,j
,mnt,j

= znj ,kn
b,j ,mn

t,j
,mnt,j
− znj ,knt,j ,m,m. (A.2.2)

The horizontal domain is defined by an unstructured orthogonal grid with
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Figure 74: Vertical structure of isopycnals combined with z-layers.

The bottom layer is defined by the indices k0,i indicating the z-layer and mn0,i indicating the active

isopycnal layer at the bottom of the i-th polygon and at time step n. The surface layer is described

accordingly by the indices Ni and Mn
i . The bottom and top z-layer of the m-th layer are knb,i ,m and

knt,i ,m, respectively. The z-layer thickness is described by ∆zni ,k,m and the isopycnal layer thickness by

∆ηni ,m.
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Figure 75: Definition of the z-layer and %-layer at isopycnal interfaces.

The next active isopycnal layer above the m-th layer is mnt,i for the i-th polygon and at time step n and

the next active layer below the m-th layer is mnb,i , respectively. The top most z-layer inside the m-th

layer is knt,i ,m and the bottom z-layer is knb,i ,m, respectively.
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i = 1, 2, 3, . . . ,Np polygons and j = 1, 2, 3, . . . ,Ns sides. Each polygon has e =

1, 2, . . . ,Ei sides and at least three sides (Ei = 3). The horizontal velocity compo-

nents u and v are obsolete for the unstructured grid and a velocity component uj ,k,m

normal to side j , of the k-th z-layer and the m-th isopycnal layer is introduced instead,

see Figure 76.

A.2.1 Momentum Equation

The momentum equations are divided into an implicit and an explicit part to determine

the velocity of the new time step n+ 1. By reason the isopycnal definition, the density of

every prism (volume element) is known. Therefore, the barotropic pressure is calculated

implicitly. The vertical viscosity term can also be determined implicitly because the

interfacial bottom and surface stresses are known quantities. This leads to the following

equation for the unknown velocity of the j-th side, the z-layer k and the isopycnal layer m

un+1j ,k,m = F
(
unj ,k,m

)
− g

∆t
δj

Mn
j

∑
l=m

([%l − %lnt,j
%r ,j

] [
Θ
(
ηn+1
i(j ,2),l

− ηn+1
i(j ,1),l

)
+ (1−Θ)

(
ηni(j ,2),l − η

n
i(j ,1),l

)])
︸ ︷︷ ︸

hydrostatic barotropic pressure

+
∆t

∆znj ,k,m

νv ,nj ,k+1/2,m u
n+1
j ,k+1,m − u

n+1
j ,k,m

∆znj ,k+1/2,m︸ ︷︷ ︸
shear at upper interface

−νv ,nj ,k−1/2,m
un+1j ,k,m − u

n+1
j ,k−1,m

∆znj ,k−1/2,m︸ ︷︷ ︸
shear at lower interface

 (A.2.3)

derived from the momentum equations (A.1.1). The shear stresses at an isopycnal

interface result from Equation (A.1.14). They are specified for the upper interface

(m,mnt,j) by

νv ,n
j ,knt,j ,m+

1
2 ,m

un+1j ,kn
b,j ,mn

t,j
,mnt,j
− un+1j ,knt,j ,m,m

∆zn
j ,knt,j ,m+

1
2 ,m

(A.2.4)

and for the lower interface (m,mnb,j) by

νv ,n
j ,knb,j ,m−

1
2 ,m

un+1j ,knb,j ,m,m
− un+1j ,kn

t,j ,mn
b,j
,mnb,j

∆zn
j ,knb,j ,m−

1
2 ,m

(A.2.5)

The boundary condition for the vertical shear at the free surface is set to

νv ,n
j ,Nnj +

1
2 ,M

n
j

un+1j ,Nnj +1,M
n
j
− un+1j ,Nnj ,M

n
j

∆zn
j ,Nnj +

1
2 ,M

n
j

= γn+1a,j

(
un+1a,j − u

n+1
j ,Nnj ,M

n
j

)
(A.2.6)
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λj δj
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Figure 76: Location, indices and interpolation of the horizontal velocity.

The velocity of the j-th side is defined at position j (i , e). There are four velocity neighbors given for

each side. Two neighbors, jn (j , 1) and jn (j , 2), are located perpendicular to side j in ±δj distance. The

other two neighbors, jn (j , 3) and jn (j , 4), are located in ±λj distance. The adjacent polygons of side j

are defined with i [j (i , e) , 1] and i [j (i , e) , 2].

and the bottom boundary condition is described by

νv ,n
j ,kn0,j−

1
2 ,m

n
0,j

un+1j ,kn0,j ,m
n
0,j

∆zn
j ,kn0,j−

1
2 ,m

n
0,j

= γn+1b,j u
n+1
j ,kn0,j ,m

n
0,j

. (A.2.7)

F is an explicit function of unj ,k,m and can be determined by different formulations, the

simplest being to set F equal to unj ,k,m. In this case, the function is solved with the

Eulerian-Lagrangian method for the advective terms [Cheng et al., 1993] and contains

the explicit terms from the momentum equations

F
(
unj ,k,m

)
= u∗nj ,k,m︸ ︷︷ ︸

advection

+ ∆tfcv∗nj ,k,m︸ ︷︷ ︸
Coriolis term

−
∆t
δj

(
pna,i(j ,2) − p

n
a,i(j ,1)

)
︸ ︷︷ ︸

atmospheric pressure

+
∆tνh

δ2j

(
u∗njn(j ,1),k,m − 2u∗nj ,k,m + u∗njn(j ,2),k,m

)
+

∆tνh

λ2j

(
u∗njn(j ,3),k,m − 2u∗nj ,k,m + u∗njn(j ,4),k,m

)
︸ ︷︷ ︸

horizontal viscosity terms

(A.2.8)
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where u∗nj ,k,m is the horizontal velocity normal to side j at the end of the Lagrangian

trajectory and its tangential component v∗nj ,k,m. The horizontal viscosity terms are dis-

cretized in the direction normal to side j by considering distance δj and tangential to

side j by considering the distance λj . Further details are shown in Figure 76 as well as

the positions of the neighboring velocities ujn(j ,e),k,m.

These are the discretized equations with constant viscosity formulation. They have to

be reformulated by considering the viscosity as a function (the rheological viscosity).

The viscosity will now be discretized in space and time, too. The vertical viscosity is

defined at the center of a prism and is derived over the vertical z-layer distance ∆znj ,k,m.

The interpolation of the vertical viscosity to position k ± 1/2 can be done with

νv ,nj ,k±1/2,m =
1

4

(
νv ,n
je(j ,1),k,m

+ νv ,n
je(j ,2),k,m

+ νv ,n
je(j ,1),k±1,m + νv ,n

je(j ,2),k±1,m

)
, (A.2.9)

and the location is illustrated in three-dimensions in Figure 77. The indices je (j , 1) and

je (j , 2) indicate the adjacent polygons of side j . Accordingly, the explicit expression

F
(
unj ,k,m

)
changes to

F
(
unj ,k,m

)
= u∗nj ,k,m + ∆tfcv∗nj ,k,m −

∆t
δj

(
pna,i(j ,2) − p

n
a,i(j ,1)

)
+

∆t
δ2j
ν∗h,n
je(j ,1),k,m

(
u∗njn(j ,1),k,m − u

∗n
j ,k,m

)
−

∆t
δ2j
ν∗h,n
je(j ,2),k,m

(
u∗nj ,k,m − u∗njn(j ,2),k,m

)
+

∆t
λ2j
ν∗h,n
jt(j),k,m

(
unjn(j ,3),k,m − u

∗n
j ,k,m

)
−

∆t
λ2j
ν∗h,n
jb(j),k,m

(
u∗nj ,k,m − u∗njn(j ,4),k,m

)
(A.2.10)

with the horizontal viscosity ν∗h,ni ,k,m being determined at the end of the Lagrangian tra-

jectory at time step n.

A.2.2 Free Surface Equation

The surface elevation of the m-th layer at time step n + 1 can be determined from

the free surface Equation (A.1.10). A semi-implicit volume discretization is applied by

introducing the implicitness factor Θ which ranges from zero to one. The discretized

formulation results in

Pi
ηn+1i ,m − η

n
i ,m

∆t
= −Θ

Ei

∑
e=1

si ,eλj(i ,e) m

∑
l=1

Nnj

∑
k=1

∆znj(i ,e),k,lu
n+1
j(i ,e),k,l


− (1−Θ)

Ei

∑
e=1

si ,eλj(i ,e) m

∑
l=1

Nnj

∑
k=1

∆znj(i ,e),k,lu
n
j(i ,e),k,l

(A.2.11)
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Figure 77: Locations and interpolation of the vertical viscosity.

The viscosity is defined at the center of a prism. The adjacent viscosities of side j in the layer k of the

isopycnal layer m are given with νv
je(j ,1),k,m

and νv
je(j ,2),k,m

. The viscosity νvj ,k−1/2,m is interpolated from

these components and the adjacent components of the (k − 1)-layer.

and some transformation leads to the formulation of the prism volume of the new time

step or the isopycnal elevation of the new time step, respectively

Piη
n+1
i ,m = Piη

n
i ,m −Θ∆t

Ei

∑
e=1

si ,eλj(i ,e) m

∑
l=1

Nnj

∑
k=1

∆znj(i ,e),k,lu
n+1
j(i ,e),k,l


− (1−Θ)∆t

Ei

∑
e=1

si ,eλj(i ,e) m

∑
l=1

Nnj

∑
k=1

∆znj(i ,e),k,lu
n
j(i ,e),k,l

 . (A.2.12)

The second and third terms of the free surface equation denote the volume fluxes over

the polygon edges j (i , e), where E gives the maximum number of edges of element i

and for all active layers from bottom to surface of the m-th layer. If a layer is non-active

the flux will be zero because the thickness ∆znj ,k,m is zero. The index j (i , e) indicates

the side e of polygon i . The sign function si ,e is given by

si ,e =
i [j (i , e) , 2]− 2i + i [j (i , e) , 1]

i [j (i , e) , 2]− i [j (i , e) , 1]
. (A.2.13)

The neighboring element of i is defined as a function of the velocity at side j (i , e). The

neighboring element results in i [j (i , e) , 1] for outflow and in i [j (i , e) , 2] for inflow.

Consequently, the result of the sign-function is given by

si ,e =

 1 if i = i [j (i , e) , 1] outflow

−1 if i = i [j (i , e) , 2] inflow
(A.2.14)

which is indicated in Figure 76.

Finally, a linear system of [(M +Nz − 1)×Ns +M ×Np] equations is obtained with

the unknowns ηn+1i ,m and un+1j ,k,m. The system of equations can be reduced by decreasing

the dimension of the model. Three cases can be considered:
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• a pure isopycnal model by setting Nz = 1:

– a vertically layer-averaged, three-dimensional model in isopycnal coordinates

according to Casulli [1997] and Section 4.1

– the depth difference ∆znj ,kn0,j ,m
= ∆ηnj ,m = ηnj ,m − ηnj ,mnb,j

represents the isopy-

cnal layer thickness

– the linear system of equations has the size [M × (Ns +Np)]

– the vertical movement is only described by the movement of the interfaces

• a classical three-dimensional model considering only one isopycnal layer with

M = 1:

– three-dimensional z-layer-based model for unstructured grids, as described

in Casulli and Walters [2000]

– with the z-layer thickness ∆znj ,k,mn0,j
= ∆znj ,k,Mn

j

– the linear system of equations has the size [Nz ×Ns +Np]

• a two-dimensional numerical model is obtained by defining Nz = 1 and M = 1:

– a depth-averaged model

– the total water depth is represented by ∆etanj ,Mn
j

– the linear system of equations has the size [Ns +Np]

The linear system of equations has to be solved for the velocity and the surface elevation

for each new time step n + 1. The way to a solvable system is described in the next

section with the aim of reducing the computational effort.

A.3 Solution Algorithm

In the previous section, the differential isopycnal Reynolds-averaged Navier-Stokes equa-

tions were applied to a semi-implicit discretization scheme. The two concepts for the

unstructured, three-dimensional, z-layer-based approach [Casulli and Walters, 2000]

and the isopycnal approach for structured grids [Casulli, 1997] are also combined for

the solution algorithm.

A.3.1 Momentum Equation in Matrix Notation

The discretized formulation of the momentum Equation (A.2.3) needs to be manipu-

lated by multiplying it by the layer thickness ∆znj ,k,m, changing the order of the pressure
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term and moving the viscous term to the left side

∆znj ,k,mu
n+1
j ,k,m − ∆t

[
νv ,nj ,k+1/2,m

un+1j ,k+1,m − u
n+1
j ,k,m

∆znj ,k+1/2,m
− νv ,nj ,k−1/2,m

un+1j ,k,m − u
n+1
j ,k−1,m

∆znj ,k−1/2,m

]

= ∆znj ,k,mF
(
unj ,k,m

)
−

∆znj ,k,mg∆t
δj%r ,j

(1−Θ)

Mn
j

∑
l=m

[(
%l − %lnt,j

)
ηnj ,l

]
−

∆znj ,k,mg∆t
δj%r ,j

Θ
Mn
j

∑
l=m

[(
%l − %lnt,j

)
ηn+1j ,l

]
(A.3.1)

where the elevation ηj ,m = 1
2

(
ηi(j ,1),m + ηi(j ,2),m

)
is the average between two neigh-

boring elements. Some reorganization of the left side(
∆znj ,k,m +

∆tνv ,nj ,k+1/2,m
∆znj ,k+1/2,m

+
∆tνv ,nj ,k−1/2,m
∆znj ,k−1/2,m

)
un+1j ,k,m

−
∆tνv ,nj ,k+1/2,m
∆znj ,k+1/2,m

un+1j ,k+1,m −
∆tνv ,nj ,k−1/2,m
∆znj ,k−1/2,m

un+1j ,k−1,m = . . . (A.3.2)

permits a matrix notation for the normal velocity un+1j ,k,m and the vertical viscosity com-

ponents anj ,m,k,k and anj ,m,k,k±1. The matrix notation is introduced to show the entire

system of equations and their characteristics. The matrix formulation for the set of Mn
j

momentum equations results in

Anj ·Un+1
j = Gnj −

Θg∆t
δj %r ,j

∆Znj

(
Dj · Sn+1j

)
(A.3.3)

for the j-th side. The newly-established matrices are described in the following. For

simplicity, the adjacent isopycnal layers above or below the m-th layer are defined as

m± 1 which indicates

• the next active layer if the matrix considers only active isopycnals (mn0,j , . . . ,Mn
j )

or

• the next layer, regardless of whether it is active or non-active, if all defined isopy-

cnals (1, . . . ,M) are considered.

The layer thickness is set up by a block matrix

∆Znj =



∆Ẑnj ,Mn
j

· · · 0

∆Ẑnj ,Mn
j −1

∆Ẑnj ,Mn
j −1

...

...
. . .

∆Ẑnj ,mn0,j+1
· · · ∆Ẑnj ,mn0,j+1

∆Ẑnj ,mn0,j
· · · ∆Ẑnj ,mn0,j


(A.3.4)
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with Mn
j ×M inner matrices. The number of rows of this matrix results from the

number of active layers at the time step n, whereas the number of columns is static and

equal to the total number of isopycnal layers. Their inner matrices contain the z-layer

thicknesses of the m-th layer

∆Ẑnj ,m =



∆znj ,knt,j ,m,m

∆znj ,knt,j ,m−1,m
...

∆znj ,k,m
...

∆znj ,knb,j ,m,m


(A.3.5)

and they are vectors of the size
(
knb,j ,m, . . . , knt,j ,m

)
. Altogether, the matrix size of ∆Znj

is
(
Mn
j +Nnj ,Mn

j

)
×M. The isopycnal elevation matrix is an one-dimensional vector

Sn+1i =



ηn+1i ,M

ηn+1i ,M−1
...

ηn+1i ,m
...

ηn+1i ,1


and Sn+1j =



ηn+1
i(j ,2),M

− ηn+1
i(j ,1),M

ηn+1
i(j ,2),M−1 − η

n+1
i(j ,1),M−1

...

ηn+1
i(j ,2),m

− ηn+1
i(j ,1),m

...

ηn+1
i(j ,2),1

− ηn+1
i(j ,1),1


(A.3.6)

which is defined either element-wise Sn+1i or side-wise Sn+1j . The vector has the size

M. The matrix for the unknown velocities normal to side j is specified by

Un+1
j =



Ûn+1
j ,Mn

j
...

Ûn+1
j ,m
...

Ûn+1
j ,mn0,j+1

Ûn+1
j ,mn0,j


with Ûn+1

j ,m =



un+1j ,knt,j ,m,m

...

un+1j ,k,m
...

un+1j ,knb,j ,m+1,m

un+1j ,knb,j ,m,m


. (A.3.7)

This block vector has the size Mn
j +Nnj ,Mn

j
. The density matrix is given by

Dj =



%j ,Mn−1 − %j ,M · · · 0
. . .

... %j ,m−1 − %j ,m
...

. . .

0 · · · %j ,0 − %j ,1


(A.3.8)
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which is a diagonal matrix of M ×M elements. The explicit terms are all combined in

the block vector Gnj which has the following form

Gnj =



Ĝnj ,Mn
j

...

Ĝnj ,m
...

Ĝnj ,mn0,j+1

Ĝnj ,mn0,j


with

Ĝnj ,m =



∆znj ,knt,j ,m,m

[
F
(
unj ,knt,j ,m,m

)
− g ∆t

δj
(1−Θ)∑

Mn
j

l=m

(
%j ,l−%j ,ln

t,j

%r ,j
ηnj ,l

)]
...

∆znj ,k,m

[
F
(
unj ,k,m

)
− g ∆t

δj
(1−Θ)∑

Mn
j

l=m

(
%j ,l−%j ,ln

t,j

%r ,j
ηnj ,l

)]
...

∆znj ,knb,j ,m,m

[
F
(
unj ,knb,j ,m,m

)
− g ∆t

δj
(1−Θ)∑

Mn
j

l=m

(
%j ,l−%j ,ln

t,j

%r ,j
ηnj ,l

)]


.

(A.3.9)

The block matrix has the same size as the velocity matrix Un+1
j . The wind friction is

taken into account for the free surface layer Mn
j which results in

Ĝnj ,Mn
j
=



∆znj ,Nnj ,Mn
j

[
F
(
unj ,Nnj ,M

n
j

)
− g ∆t

δj
(1−Θ)

(
∆%j ,Mn

j
· ηnj ,Mn

j

)]
+ ∆t · γn+1a,j · u

n+1
a,j ,Nnj ,M

n
j +1

...

∆znj ,k,Mn
j

[
F
(
unj ,k,Mn

j

)
− g ∆t

δj
(1−Θ)

(
∆%j ,Mn

j
· ηnj ,Mn

j

)]
...

∆znj ,kn
b,j ,Mn

j
,Mn

j

[
F

(
unj ,kn

b,j ,Mn
j
,Mn

j

)
− g ∆t

δj
(1−Θ)

(
∆%j ,Mn

j
· ηnj ,Mn

j

)]


(A.3.10)

with the normalized density gradient ∆%j ,Mn
j
=

%j ,Mn
j

%r ,0
.
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The vertical viscosity term leads to a tridiagonal block matrix of Mn
j ×Mn

j inner matrices

Anj =

Ânj ,Mn
j ,M

n
j

Ânj ,Mn
j ,M

n
j −1

· · · 0

Ânj ,Mn
j −1,M

n
j

Ânj ,Mn
j −1,M

n
j −1

Ânj ,Mn
j −1,M

n
j −2

...

. . .

Ânj ,m,m+1 Ânj ,m,m Ânj ,m,m−1
. . .

... Ânj ,mn0,j+1,m
n
0,j+2

Ânj ,mn0,j+1,m
n
0,j+1

Ânj ,mn0,j+1,m
n
0,j

0 · · · Ânj ,mn0,j ,m
n
0,j+1

Ânj ,mn0,j ,m
n
0,j


.

(A.3.11)

A scheme of the matrix Anj is shown in Figure 78. Each row of the matrix repre-

sents a specific isopycnal layer m. The diagonal inner matrices contain the compo-

nents from inside the layer m. The matrices of the secondary diagonals represent

the lower and upper interfaces of the current isopycnal layer. They describe the shear

between two adjacent isopycnals which act such as coupling between the adjacent isopy-

cnals. The diagonal components Ânj ,m,m are diagonal, symmetric, square matrices with(
knb,j ,m, . . . , knt,j ,m

)
×
(
knb,j ,m, . . . , knt,j ,m

)
elements

Ânj ,m,m =

aj ,m,kt,j ,m,kt,j ,m aj ,m,kt,j ,m,kt,j ,m−1 · · · 0

aj ,m,kt,j ,m−1,kt,j ,m aj ,m,kt,j ,m−1,kt,j ,m−1 aj ,m,kt,j ,m−1,kt,j ,m−2
...

. . .

...
. . .

0 · · · aj ,m,knb,j ,m,k
n
b,j ,m+1

aj ,m,knb,j ,m,k
n
b,j ,m


.

(A.3.12)

Their components for an intermediate layer m are given by

aj ,m,k,k = ∆znj ,k,m +
∆tνv ,nj ,k+1/2,m

∆zn
j ,k+ 1

2 ,m

+
∆tνv ,n

j ,k− 1
2 ,m

∆zn
j ,k− 1

2 ,m

and (A.3.13a)

aj ,m,k,k±1 = −
∆tνv ,n

j ,k± 1
2 ,m

∆zn
j ,k± 1

2 ,m

, (A.3.13b)

for the surface boundary by

aj ,Mn
j ,N

n
j ,N

n
j
= ∆znj ,Nnj ,Mn

j
+ γn+1a,j ∆t +

∆tνv ,n
j ,Nnj −

1
2 ,M

n
j

∆zn
j ,Nnj −

1
2 ,M

n
j

(A.3.14)
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Figure 78: Scheme of the tridiagonal block matrix Anj for the j-th side at time step n which

represents the vertical viscosity terms.

Each row of the block matrix represents a specific isopycnal layer m. The diagonal inner matrices

contain the components from inside the layer m (indicated by blue lines). The matrices of the secondary

diagonals represent the lower and upper interfaces of the current isopycnal layer. They describe the shear

between two adjacent isopycnals due to the only component indicated with a blue cross. The size of

the block matrix and the inner matrices can vary with time and space. (The coloring corresponds to

Equation (A.3.11).)

and for the bottom boundary by

aj ,mn0,j ,k
n
0,j ,k

n
0,j

= ∆znj ,kn0,j ,m
n
0,j
+

∆tνv ,n
j ,kn0,j+

1
2 ,m

n
0,j

∆zn
j ,kn0,j+

1
2 ,m

n
0,j

+ γn+1b,j ∆t. (A.3.15)

The eigenvalues of the matrix Ânj ,m,m correspond to the values of the diagonal which

are non-negative values. Therefore, the matrix is positive definite.

The matrices Ânj ,m,m−1 and Ânj ,m,m+1 of the secondary diagonals of matrix Anj are

rectangular matrices of the size
(
knb,j ,m, . . . , knt,j ,m

)
×
(
knb,j ,m−1, . . . , knt,j ,m−1

)
and(

knb,j ,m, . . . , knt,j ,m

)
×
(
knb,j ,m+1, . . . , knt,j ,m+1

)
. They are related due to Ânj ,m+1,m =
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(
Ânj ,m,m+1

)T
and are described by

Ânj ,m,m−1 =


0 · · · 0
...

...

−anj ,m,knb,j ,m,k
n
t,j ,m−1

· · · 0

 and

Ânj ,m,m+1 =


0 · · · −anj ,m,knt,j ,m,knb,j ,m+1
...

...

0 · · · 0

 (A.3.16)

with only one non-zero and negative element. In this case, the adjacent isopycnal layers

m± 1 are the next active layers.

All block components of matrix Anj are non-negative values. Therefore, the eigenval-

ues of the tridiagonal symmetric matrix are also non-negative, and the matrix can be

classified as positive definite.

A.3.2 Free Surface Equation in Matrix Notation

The composition of M free surface equations (A.2.12) can be transformed into the

matrix notation

PiS
n+1
i = PiS

n
i −Θ∆t

Ei

∑
e=1

(
si ,eλj(i ,e)

[
∆Znj(i ,e)

]T
Un+1
j(i ,e)

)
− (1−Θ)∆t

Ei

∑
e=1

(
si ,eλj(i ,e)

[
∆Znj(i ,e)

]T
Un
j(i ,e)

)
. (A.3.17)

Volumetric discretization is applied to the equation and is defined element-wise. If the

block matrix ∆Znj (A.3.4) is transposed, its inner matrix ∆Ẑnj ,m must also be transposed.

A.3.3 Substitution

After developing the matrix notation for the isopycnal linear system, the system of

equations is solved by substitution of the horizontal velocity of Equation (A.3.3)

Un+1
j =

(
Anj
)−1

Gnj −
Θg∆t
δj%r ,j

(
Anj
)−1 ∆Znj

(
DjS

n+1
j

)
(A.3.18)

162 3D Unstructured Isopycnal Model with Combined Vertical Discretization of z- and %-layers



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

into the free surface Equation (A.3.17). This results in the discrete wave equation for

isopycnal surface elevations for the new time step n+ 1

PiS
n+1
i −

Θ2g∆t2

δj%r ,j

Ei

∑
e=1

(
si ,eλj(i ,e)

([
∆Znj(i ,e)

]T [
Anj(i ,e)

]−1
∆Znj(i ,e)

)(
Dj(i ,e)S

n+1
j(i ,e)

))
= PiS

n
i −Θ∆t

Ei

∑
e=1

(
si ,eλj(i ,e)

[
∆Znj(i ,e)

]T [
Anj(i ,e)

]−1
Gnj(i ,e)

)
− (1−Θ)∆t

Ei

∑
e=1

(
si ,eλj(i ,e)

[
∆Znj(i ,e)

]T
Un
j(i ,e)

)
. (A.3.19)

The matrix product DjS
n+1
j = Šn+1j is redefined in order to obtain a symmetric expres-

sion. Now the reformulated balance results in

PiD
−1
i Šn+1i −

Θ2g∆t2

δj%r ,j

Ei

∑
e=1

(
si ,eλj(i ,e)

([
∆Znj(i ,e)

]T [
Anj(i ,e)

]−1
∆Znj(i ,e)

)
Šn+1
j(i ,e)

)
= PiS

n
i −Θ∆t

Ei

∑
e=1

(
si ,eλj(i ,e)

[
∆Znj(i ,e)

]T [
Anj(i ,e)

]−1
Gnj(i ,e)

)
− (1−Θ)∆t

Ei

∑
e=1

(
si ,eλj(i ,e)

[
∆Znj(i ,e)

]T
Un
j(i ,e)

)
. (A.3.20)

The terms on the left contain the isopycnal elevations for the new time step, while

the explicit terms are on the right. The expression

([
∆Znj

]T
·
[
Anj

]−1
· ∆Znj

)
is a non-

negative vector of the size Mn
j because of the positive definiteness of matrix Anj . A linear

system of Np block-wise equations now has to be solved for Šn+1i of the parameter ηn+1i ,m .

That is done by a conjugate gradient method. The new velocities are subsequently

determined by the linear, block tridiagonal system of Ns equations (A.3.18). Both

equation systems are symmetric and positive definite.

The wave equation (A.3.20) contains no volume fluxes between isopycnal layers, which

will be inevitable for modeling processes such as deposition and mixing of mud suspen-

sions. Section 4.3 deals with this problem and an explicit approach for mass and volume

fluxes between isopycnal layers is developed.

A.3.4 Vertical Velocity

The last unknown parameter for the new time step is the vertical velocity which is

determined by finite volume discretization of the continuity equation (A.1.4). The

vertical velocity is defined element-wise at the top of every z-layer wi ,k+1/2. The

calculation is done by adding up all out- and in-going volume fluxes through the prisms
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below the upper face
(
i , k + 1

2

)
, see Figure 79. The vertical velocity balance results in

wn+1
i ,k+ 1

2

=
1

Pi

Ei

∑
e=1

[
si ,eλj(i ,e)

k

∑
l=1

M

∑
m=1

(
∆znj(i ,e),l ,mu

n+1
j(i ,e),l ,m

)]
or (A.3.21a)

wn+1
i ,k+ 1

2

= wn+1
i ,k− 1

2

−
1

Pi

Ei

∑
e=1

[
si ,eλj(i ,e)

M

∑
m=1

(
∆znj(i ,e),k,mu

n+1
j(i ,e),k,m

)]
. (A.3.21b)

The fluxes are summed up over all isopycnal layers and z-layers. The thickness ∆znj ,k,m
of non-active layers is zero, therefore their fluxes are zero. An implicit solution is

possible by solving the system from the bottom to the top of a water column because

the vertical velocity wn+1i ,−1/2 is zero at the bottom boundary.
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Figure 79: Calculation of the vertical velocity by considering the horizontal fluxes from bottom

to top.

The vertical velocity wn+1

i ,k+ 1
2

at the surface of the k-th layer is determined by summation of the in- and

out-going fluxes of the water column i below. In this case, this includes the horizontal fluxes from layer

mn0,i of the k-th layer to layer Mn
i of the k-th layer and the vertical velocity wn+1

i ,k− 1
2

at the bottom of the

k-th layer.

A.3.5 Time Step Limitation

The time step limitation for the isopycnal model results from the explicitly solved terms

of the solution system

∆t ≤
1

2νh
(
1

∆x2 +
1

∆y2

) . (A.3.22)

It will lead to very small time steps if high viscosities are considered or simulation takes

place on a very fine horizontal grid resolution. If the viscosity represents the rheological
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viscosity of fluid mud, it could rapidly increase during periods of low shear rates or at

high solid concentrations 3.4. Simulation of fluid mud characteristics could therefore

lead to a reduction in the time step.

A.4 Properties of the Numerical Method

The basic properties of the three-dimensional, unstructured isopycnal model approach

with a vertical z-layer and %-layer discretization are:

• calculation on an unstructured grid

• uniform density for each isopycnal layer

• momentum exchange between isopycnal layers

• vertical mass exchange between isopycnal layers

• density stratification has always to be stable

• drying and wetting

• vertical discretization in %- and z-coordinates

• a two-dimensional depth-averaged model results if only one isopycnal layer and

one z-layer are defined

• a three-dimensional model results if only one isopycnal layer or one z-layer is

defined

• shear dependent viscosity, which is calculated by a parameterized rheological ap-

proach

• interaction of the isopycnal layers due to interfacial shear

The numerical model approach presented in this thesis includes flooding and drying of

the isopycnal layers. Layers, representing a suspension of a specific concentration such

as fluid mud, are not necessarily active over the entire model domain.

The low-concentration isopycnal layers in particular may reach a thickness of several

meters in estuaries. There, the z-layers can support the vertical isopycnal discretization

for a better three-dimensional resolution. This will be worth considering in further

investigations but, in the present thesis, the z-layers are negligible for high-concentration

fluid dynamics. In this case, the layer thicknesses of the highly concentrated suspensions

are in the range of centimeters to decimeters where the isopycnal discretization is more

effective.
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The mass exchange between isopycnal layers is applied to the isopycnal system by

assuming Nz = 1 and M ≥ 3 (Appendix B). Therefore, the model applications of

the Sections 5 and 6 are also applied to this three-dimensional numerical approach in

x , y , %-coordinates.
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B General Solution for Diapycnal Mass Transfer

A solution for mass transfer in a three-layer system is derived in Section 4.3. In this

section, the approach will be extended to the following system:

• the number of isopycnal layers is defined as M ≥ 3,

• the water column is discretized in the three-dimensions x , y and %,

• stable stratification applies with %m > %m+1 > 0

• both the surface ηni ,M and the bottom ηni ,0 of the water column are static,

• no flux is allowed to pass through the bottom or surface,

• the surface layer M is defined as clear water in which there is no suspended matter

to be transferred.

A primary mass flux of arbitrary direction originates in layer m and flows into the next

adjacent layer m± 1. If layer m is active with a definite thickness, the mass flux also has

a definite value. Otherwise, for a non-active layer, the primary flux is zero. Therefore,

the primary fluxes are defined as follows:

active layer: ∆ηni ,m > 0 ⇒ Φn
i ,m,m±1 ≥ 0

non-active layer: ∆ηni ,m = 0 ⇒ Φn
i ,m,m±1 = 0.

(B.0.1)

The thickness of the adjacent layer (m± 1) then increases by ∆tΦn
i ,m,m±1 due to the

primary flux.

In a system of more than three isopycnal layers, the adjacent interface for the mass

balance has to be predefined. The definition of the adjusted interfaces is illustrated in

Figure 80. The next adjacent interface above is adjusted for both a primary downward

and a primary upward flux.

Two cases of compensatory fluxes are considered according to their origin. The first

case: a compensatory flux resulting from a downward primary flux originates in the

same layer as the flux that causes it (see panel first of Figure 80). Hence, as both

fluxes originate in the same layer, either the layer is non-active and both fluxes become

zero or the layer is active and both fluxes become greater than zero. The second

case is a compensatory flux resulting from an upward primary flux (see panel second of

Figure 80). In this case, both fluxes originate in different layers and terminate in the

same layer m. Therefore, the origin of the compensatory flux is defined as the next

active layer above the m-th layer. This is not necessarily the (m+ 1)-th layer but may

be the
(
mnt,i

)
-th layer. Thus, the index for the next active layer above the m-th layer

will be specified as tni ,m to simplify the notation in the following.
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The third panel of Figure 80 shows an exception for the interface (M,M − 1) below

the free surface. Primary fluxes are not applied at this interface as the layer M consists

of clear water by definition.

A general formulation of the layer thickness is derived from Equation (4.3.8) by assuming

a system with internal vertical fluxes but without horizontal fluxes. The layer thickness

Hn+1i ,m for the m-th layer and the i-th polygon at the time step n+ 1 is given by

Hn+1i ,m = Hni ,m

+∆t

(
−Φn

i ,m,m−1 + Φn
i ,m−1,m + Φn

i ,m−1,m−2Rm−1 −Φn
i ,m−2,m−1

%m−1 − %m−2
%tni ,m−1

− %m−1

)
︸ ︷︷ ︸

fluxes through the bottom of the m-th layer

+∆t

(
Φn
i ,m+1,m −Φn

i ,m,m+1 −Φn
i ,m,m−1Rm + Φn

i ,m−1,m
%m − %m−1
%tni ,m − %m

)
︸ ︷︷ ︸

fluxes through the top of the m-th layer

(B.0.2)

with the density factor Rm = (%m − %m−1) / (%m+1 − %m). The layer thickness of the

surface layer M is given by

Hn+1i ,M = Hni ,M + ∆t

(
Φn
i ,M−1,M−2RM−1 −Φn

i ,M−2,M−1
%M−1 − %M−2
%tni ,M−1

− %M−1

)
(B.0.3)

MMM ρΦ ⋅− −1,
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Mmt
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m

m-1

Figure 80: Definition of the neighboring interface for the mass balance.

First panel: The correspondent compensatory flux of a downward primary flux (from layer m to layer

m− 1) is applied to the upper interface of layer m. The compensatory flux transfers mass from layer m

to the next layer above, regardless if the layer is active or non-active. Second panel: The correspondent

compensatory flux of an upward primary flux (from layer m − 1 to layer m) is located at the upper

interface of layer m. The compensatory flux transfers mass from the next active layer above to layer m.

Third panel: Primary fluxes cannot be applied at the top most isopycnal interface (M,M − 1) by taking

into account the surface layer M as clear water.

(red and green: primary fluxes, orange and blue: compensatory fluxes; coloring correspondent to the

equations of this section)
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and for the bottom layer (m = 1) by

Hn+1i ,1 = Hni ,1 + ∆t
(
Φn
i ,2,1 −Φn

i ,1,2

)
. (B.0.4)

The volume balances for layers M and M− 1 are exceptions because only compensatory

fluxes are allowed at the top most interface. This results in the following volume balance

formulation for layer M − 1

Hn+1i ,M−1 = Hni ,M−1 + ∆t
(
−Φn

i ,M−1,M−2 + Φn
i ,M−2,M−1

)︸ ︷︷ ︸
fluxes through the bottom of the (M-1)-th layer

+ ∆t

(
Φn
i ,M−2,M−3RM−2 −Φn

i ,M−3,M−2
%M−2 − %M−3
%tni ,M−2

− %M−2

)
︸ ︷︷ ︸

fluxes through the bottom of the (M-1)-th layer

+ ∆t

(
−Φn

i ,M−1,M−2RM−1 + Φn
i ,M−2,M−1

%M−1 − %M−2
%tni ,M−1

− %M−1

)
︸ ︷︷ ︸

fluxes through the top of the (M-1)-th layer

. (B.0.5)

These formulations are now adapted to the three-dimensional unstructured numerical

approach described in Section 4.1. The vertical z-layer-based discretization is neglected

by defining Nz = 1. The free surface equation, corresponding to Equation (A.2.12),

takes the following form by considering diapycnal volume transfer

Pi η
n+1
i ,m = Pi η

n
i ,m −Θ ∆t

Ei

∑
e=1

[
si ,e λj(i ,e)

m

∑
l=1

∆ηnj(i ,e),l u
n+1
j(i ,e),l

]

− (1−Θ)∆t
Ei

∑
e=1

[
si ,e λj(i ,e)

m

∑
l=1

∆ηnj(i ,e),l u
n
j(i ,e),l

]

+ Pi∆t

[
Φn
i ,m+1,m −Φn

i ,m,m+1 −Φn
i ,m,m−1Rm + Φn

i ,m−1,m
%m − %m−1
%tni ,m − %m

]
.

(B.0.6)

with the isopycnals thickness ∆ηn
j(i ,e),m = ηn

j(i ,e),m − η
n
j(i ,e),mnb,i

. The volume balance is

valid for m = mnj , . . . ,Mn
j with mnj > 1 and Mn

j ≤ M − 1. The isopycnal elevation ηn+1i ,m

is affected by the fluxes through the prism sides of column i and by the volume fluxes

at the interface (m,m+ 1), but not by the fluxes at the lower interface (m,m− 1).

Boundary conditions have to be taken into account for the bottom interface (1, 0) and

for the surface (M,M + 1) through which no fluxes are allowed to pass. This results in

the mass balance of the first layer

Pi η
n+1
i ,1 = Pi η

n
i ,1 −Θ ∆t

Ei

∑
e=1

[
si ,e λj(i ,e)∆η

n
j(i ,e),1 u

n+1
j(i ,e),1

]
− (1−Θ)∆t

Ei

∑
e=1

[
si ,e λj(i ,e)∆η

n
j(i ,e),1 u

n
j(i ,e),1

]
+ Pi∆t

[
+Φn

i ,2,1 −Φn
i ,1,2

]
(B.0.7)
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and the (M − 1)-th layer

Pi η
n+1
i ,M−1 = Pi η

n
i ,M−1 −Θ ∆t

Ei

∑
e=1

[
si ,e λj(i ,e)

M−1

∑
l=1

∆ηnj(i ,e),l u
n+1
j(i ,e),l

]

− (1−Θ)∆t
Ei

∑
e=1

[
si ,e λj(i ,e)

M−1

∑
l=1

∆ηnj(i ,e),l u
n
j(i ,e),l

]

+ Pi∆t

[
−Φn

i ,M−1,M−2RM−1 + Φn
i ,M−2,M−1

%M−1 − %M−2
%tni ,M−1

− %M−1

]
.

(B.0.8)

As negative volume may be produced by taking more volume out of a layer than is

possible, two correction factors are introduced. The correction factor for the downward

fluxes ζi ,m is determined by

ζi ,m =
Φn,in
i ,m +

∆ηni ,m
∆t

Φn,out
i ,m

(B.0.9)

and for the upward fluxes by

ψi ,m =
Φn,in
i ,m +

∆ηni ,m
∆t

Φn,out
i ,m

(B.0.10)

where the total inflow flux of the m-th layer and the i-th polygon is Φn,in
i ,m and the total

outflow flux is Φn,out
i ,m . The range of the factors is 0 < ζi ,m ≤ 1 and 0 < ψi ,m ≤ 1.

These factors are smaller than 1.0 if the outgoing flux of a volume element is greater

than the present volume (incoming flux in addition to the prism volume). Physically, the

downward mass fluxes represent deposition and settling. The upward fluxes represent

processes such as erosion, entrainment and resuspension. The two types of vertical

transport process do not occur at the same time at the same interface. Therefore, the

correction factors for the different kinds of flux are independent of each other.

The solution algorithm presented in Section A.3 only modifies the isopycnal surface

elevation matrix Sni of Equation (A.3.6). In the case of three predefined isopycnal

layers with M = 3 the matrix Sni takes the following form

Sni =


ηni ,3

ηni ,2 + ∆t
[
−ζi ,2Φn

i ,2,1R2 +ψi ,1ψi ,3Φn
i ,1,2

%2−%1
%tn
i ,2
−%2

]
ηni ,1 + ∆t

[
ζi ,2Φn

i ,2,1 −ψi ,1ψi ,3Φn
1,2

]
 . (B.0.11)
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Finally, the matrix of the isopycnal surface elevation for an arbitrary number of layers

M ≥ 3 results in

Sni =



ηni ,M

ηni ,M−1 + ∆t
[
−ζi ,M−1Φn

i ,M−1,M−2RM−1
]

+∆t
[
ψi ,Mψi ,M−2Φn

i ,M−2,M−1
%M−1−%M−2
%tn
i ,M−1

−%M−1

]
...

ηni ,m + ∆t
[
ζi ,m+1Φn

i ,m+1,m − ζi ,mΦn
i ,m,m−1Rm

]
+∆t

[
−ψi ,mψi ,m+2Φn

i ,m,m+1 +ψi ,m−1ψi ,m+1Φn
i ,m−1,m

%m−%m−1
%tn
i ,m
−%m

]
...

ηni ,2 + ∆t
[
ζi ,3Φn

i ,3,2 − ζi ,2Φn
i ,2,1R2

]
+∆t

[
−ψi ,2ψi ,4Φn

i ,2,3 +ψi ,1ψi ,3Φn
i ,1,2

%2−%1
%tn
i ,2
−%2

]

ηni ,1 + ∆t
[
ζi ,2Φn

i ,2,1 −ψi ,1ψi ,3Φn
i ,1,2

]



.

(B.0.12)

The present vertical mass transfer approach is applied and verified in a study of a

sedimentation tank and by entrainment induced by flow over a ground sill. This is

presented in Section 5.
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Nomenclature

List of Abbreviations

Abbreviation Full Name

ADCP Acoustic Doppler Current Profiler

BAW The Federal Waterways Engineering and Research Institute / Bun-

desanstalt für Wasserbau

CPU central processing unit

KFKI German Coastal Engineering Research Council / Kuratorium für

Forschung im Küsteningenieurwesen

1D one-dimensional; one-dimension

1DV one-dimensional and vertically resolved

1D% one-dimensional and vertically resolved by isopycnals

2D two-dimensional; two-dimension

2DV two-dimensional and laterally averaged

3D three-dimensional; three-dimension

List of Variables

Name Unit Description

a – empirical parameter

aj ,m,k,k m diagonal component of matrix Âj ,m,m

aj ,k,m± 1
2

m components of the secondary diagonals of matrix

Ânj ,m±1,m

b – empirical parameter

bi j – component of the symmetric, 2nd-order tensor B

c m/s wave celerity

caggr – empirical parameter for build-up of aggregates

cbreak – empirical parameter for break-up of aggregates

cmud kg/m3 concentration of fluid mud suspension

cs kg/m3 solid (mass) concentration

cstruc – empirical parameter of the Worral-Tuliani model

cw kg/m3 concentration of water suspension
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List of Variables (continued)

Name Unit Description

cwm kg/m3 concentration at the interface of fluid mud and water sus-

pension

cλ – structural parameter for the degree of aggregation

C – empirical constant

Cf – empirical parameter for entrainment

Cz m1/2/s Chezy coeffiecient

E – entrainment coefficient

Ei – maximum number of edges of the i-th element

fa – wind friction coefficient at the free surface

fb – bottom friction coefficient

fc 1/s Coriolis parameter

fs – sidewall friction coefficient

fx , fy , fz m/s2 force components in Cartesian coordinates, normalized

with density

fwm – friction coefficient at the water-fluid mud interface

g m/s2 gravitational acceleration

G 1/s dissipation parameter

Hm m depth of m-th isopycnal layer

Hmud m depth of the fluid mud layer

Hw m depth of the water layer

H m characteristic vertical length

IB, IIB, IIIB – first,second and third invariant of tensor B

L m characteristic horizontal length

K – empirical parameter for the flow consistency index

ni – i-th component of the normal vector

p m2/s2 total pressure

pa m2/s2 atmospheric pressure normalized by a reference density %r

ph m2/s2 hydrostatic pressure

Pi m2 area of the i-th polygon

Rm – density factor Rm = (%m − %m−1) / (%m+1 − %m)

Ri – gradient Richardson number
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List of Variables (continued)

Name Unit Description

Ri∗ – bulk Richardson number

si N/m2 i-th component of force per surface

si ,e – sign function ± 1 for i-th polygon and e-th side

S m2 specific surface

t s time

∆t s numerical time step

u m/s velocity in x-direction

û – dimensionless velocity in x-direction

ū m/s depth-averaged velocity

ua m/s wind velocity in x-direction

ub m/s velocity in x-direction at the bottom

ūp m/s depth-averaged prescribed velocity

us m/s velocity in x-direction at the surface

uj ,k,m m/s normal velocity component for j-th side, k-th z-layer and

m-th isopycnal layer

u∗j ,k,m m/s normal velocity component uj ,k,m at the end of the La-

grangian trajectory

u∗ m/s shear velocity of the main flow

u∗,wm m/s shear velocity at the interface of water and fluid mud

U m/s characteristic horizontal velocity

v m/s velocity in y -direction

vb m/s velocity in y-direction at the bottom

v s m/s velocity in y-direction at the surface

vj ,k,m m/s velocity component orthogonal to uj ,k,m

v∗j ,k,m m/s velocity component vj ,k,m at the end of the Lagrangian

trajectory

va m/s wind velocity in y -direction

v̂ - dimensionless velocity in y -direction

V m3 specific mass Volume

w m/s vertical velocity in z-direction

ws m/s settling velocity of particles

NOMENCLATURE 175



An Isopycnal Numerical Model for the Simulation of Fluid Mud Dynamics

List of Variables (continued)

Name Unit Description

wi ,k± 1
2 ,m

m/s w for i-th polygon at top/bottom of k-th z-layer and for

m-th isopycnal layer

ŵ – dimensionless velocity in z-direction

W m; m/s flume width; or characteristic vertical velocity

x , y , z m Cartesian coordinates

x̂ , ŷ , ẑ - dimensionless Cartesian coordinates

zi ,k,m m z-coordinate of the i-th polygon, the k-th z-layer and the

m-th isopycnal layer

zj ,k,m m z-coordinate of the j-th side, the k-th z-layer and the

m-th isopycnal layer

∆zi ,k,m m thickness of k-th vertical layer for i-th polygon and m-th

isopycnal layer ∆zi ,k,m = zi ,k,m − zi ,k−1,m
δj m distance between adjacent polygon centers for the j-th

side

γj ,k,m m/s friction factor for the j-th side, k-th z-layer and m-th

isopycnal layer

γa m/s wind friction factor

γb m/s bottom friction factor

γ̇ 1/s one-dimensional shear rate

γ̇i ,j 1/s component of the shear rate tensor

ζi ,m – correction factor for incoming fluxes

ε m2/s3 turbulent dissipation rate

ηi ,m m surface elevation for the i-th polygon and m-th isopycnal

layer

∆ηi ,m m isopycnal layer thickness for the i-th polygon and m-th

layer ∆ηi ,m = ηi ,m − ηi ,m−1
ηm m surface elevation of m-th isopycnal layer

η0 m bathymetric depth / rigid bottom

Θ – implicitness factor

λj m polygons edge length for the j-th side

µ kg/(ms) dynamic viscosity

µr kg/(ms) rheological dynamic viscosity
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List of Variables (continued)

Name Unit Description

µB kg/(ms) Bingham dynamic viscosity

µt kg/(ms) turbulent dynamic viscosity

∆µ kg/(ms) difference of dynamic viscosity dependent on flocculation

µ0 kg/(ms) dynamic viscosity of clear water

µ∞ kg/(ms) dynamic viscosity at fully broken structure

ν m2/s kinetic viscosity ν = µ/%

νr ,wm m2/s rheological viscosity at the water fluid mud interface

νh m2/s horizontal kinetic viscosity

νhi ,k,m m2/s νh for i-th polygon, k-th z-layer and m-th isopycnal layer

ν∗hi ,k,m m2/s νh at the end of the Lagrangian trajectory

νh
j ,k± 1

2 ,m
m2/s νh for j-th side at top/bottom of k-th z-layer and m-th

isopycnal layer

νv m2/s vertical kinetic viscosity

νvi ,k,m m2/s νv for i-th polygon, k-th z-layer and m-th isopycnal layer

ν∗vi ,k,m m2/s νv at the end of the Lagrangian trajectory

νv
j ,k± 1

2 ,m
m2/s νv for j-th side at top/bottom of k-th z-layer and m-th

isopycnal layer

% kg/m3 density of a suspension, bulk density

%m kg/m3 % for the m-th isopycnal layer

%r kg/m3 reference density

τa N/m2 surface / wind shear stress

τb N/m2 bottom shear stress

τi ,j N/m2 component of the shear stress tensor

τy N/m2 yield stress

τy ,B N/m2 Bingham yield stress

φs – solid volume concentration / solid particle content

Φm,m±1 m/s transport rate from layer m to layer m± 1

Φin
i ,m m/s transport rate into layer m

Φout
i ,m m/s transport rate outgoing of layer m

ψi ,m – correction factor for outgoing fluxes
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List of Vectors and Matrices

Name Unit Description

Aj m tri-diagonal block matrix for the vertical viscosity terms

for j-th side; size: Mn
j ×Mn

j

Âj ,m,m m inner matrix of the diagonal of Aj for the j-th side; size:(
knb,j ,m, . . . , knt,j ,m

)
×
(
knb,j ,m, . . . , knt,j ,m

)
Ânj ,m,m±1 m inner matrix of the secondary diagonals of Aj ; size(

knb,j ,m, . . . , knt,j ,m

)
×
(
knb,j ,m±1, . . . , knt,j ,m±1

)
b N/kg body force per mass

B – symmetric, 2nd-order tensor

D 1/s deformation rate or shear rate tensor

Dj kg/m3 matrix of isopycnal densities at the j-th side; size: M ×M

E – unit matrix

f m/s2 external forces normalized with density

Gj m2/s block vector containing the explicit terms for the j-th side;

size: Mn
j

Ĝj ,m m2/s inner vector of Gj of the j-th side and m-th isopycnal layer;

size: knb,j ,m, . . . , knt,j ,m

P m/s vector of inflow and outflow transport rates per isopycnal

layer; size: M

s N/m2 external force per surface

Si m vector of isopycnal elevations ηni ,m of the i-th polygon;

size: M

u m/s velocity vector

Uj m/s block vector of horizontal velocities for j-th side; size: Mn
j

Ûj ,m m/s vector of horizontal velocities uj ,k,m for the j-th side, the

k-th layer and m-th layer; size: knb,j ,m, . . . , knt,j ,m

x m vector of the Cartesian coordinates

∆Zj m block matrix of z-layer thicknesses for the j-th side; size:

Mn
j ×M

∆Ẑj ,m m vector of z-layer thicknesses ∆zj ,k,m for the j-th side; size:

knb,j ,m, . . . , knt,j ,m

σ N/m2 total stress tensor

τ N/m2 shear stress tensor
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List of Indices

Name Description

a index for wind

aggr abbreviation for aggregation

b index for bottom or empirical exponent

break abbreviation for break-up of aggregates

B abbreviation for Bingham

e index for the sides of the i-th polygon

Ei index for the maximum number of sides of the i-th polygon

i index for the i-th polygon of a grid

i(j , 1) index for left polygon of the j-th side

i(j , 2) index for right polygon of the j-th side

j index for the j-th side of the computational grid

j(i , e) side index for e-th side of the i-th polygon

k index for the k-th z-layer of a grid

k0,i ,m index for first active z-layer above the rigid bottom of the i-th poly-

gon and the m-th isopycnal layer

kb,i ,m index for the bottom of the m-th isopycnal layer of the i-th polygon

kt,i ,m index for the top z-layer of the m-th isopycnal layer of the i-th

polygon

m index for the m-th isopycnal layer

m0 index for the first active isopycnal layer above the rigid bottom

mb,i index for the next active layer below the m-th isopycnal layer of i-th

polygon

mt,i index for the next active layer above the m-th isopycnal layer of i-th

polygon

mol abbreviation for molecular, index for viscosity

mud abbreviation for fluid mud, index for different variables

M index for the maximum number of isopycnal layer

Mj index for the maximum number of layers of the j-th side

n index for the n-th time step

Nj ,m index for the top most active z-layer of the j-th side and the m-th

isopycnal layer

Ns index for the maximum number of sides
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List of Indices (continued)

Name Description

Np index for the maximum number of polygons

Nz index for the maximum number of z-layer

r abbreviation for rheological or reference, index for the viscosity or

density respectively

s index for surface or settling

t abbreviation for turbulence, index for viscosity

ti ,m index for the next active layer above the m-th isopycnal layer of i-th

polygon

y index for yield

w index for water

wm index for the interface of fluid mud and water

List of Operators

Name Description

∂ partial differential operator

∆ difference

F
(
unj ,k,m

)
explicit finite difference operator

F (IID) continuous function of the second shear rate tensor’s invariant

∇ Nabla operator
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Electricité de France (2000). TELEMAC-2D validation document version 5.0. Note
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