Logo
User: Guest  Login
Authors:
Liu, Guozhang; Peng, Baochai; Liu, Ting; Zhang, Pan; Yuan, Mengke; Lu, Chaoran; Cao, Ningning; Zhang, Sen; Huang, Simin; Wang, Tao; Lu, Xiaoqiang; Jiao, Licheng; Liu, Qiong; Li, Lingling; Liu, Fang; Liu, Xu; Yang, Yuting; Chen, Kaiqiang; Yan, Zhiyuan; Tang, Deke; Huang, Hai; Schmitt, Michael; Sun, Xian; Vivone, Gemine; Persello, Claudio; Hänsch, Ronny 
Document type:
Zeitschriftenartikel / Journal Article 
Title:
Large-scale fine-grained building classification and height estimation for semantic urban reconstruction 
Subtitle:
Outcome of the 2023 IEEE GRSS Data Fusion Contest 
Journal:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 
Volume:
17 
Year:
2024 
Pages from - to:
11194-11207 
Language:
Englisch 
Keywords:
Convolutional neural networks ; data fusion ; deep learning ; fine-grain building classification ; transformers ; monocular height estimation (MHE) 
Abstract:
This article presents the scientific outcomes of the 2023 Data Fusion Contest (DFC23) organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The contest consists of two tracks investigating the fusion of optical and synthetic aperture radar data for: 1) fine-grained roof type classification and 2) height estimation. During the development phase, 1000 people registered for the contest, while at the end 55 and 35 teams competed during...    »
 
Department:
Fakultät für Luft- und Raumfahrttechnik 
Institute:
LRT 9 - Institut für Raumfahrttechnik und Weltraumnutzung 
Chair:
Schmitt, Michael 
Open Access yes or no?:
Ja / Yes 
Type of OA license:
CC BY-NC-ND 4.0