Logo
Benutzer: Gast  Login
Autoren:
Liu, Guozhang; Peng, Baochai; Liu, Ting; Zhang, Pan; Yuan, Mengke; Lu, Chaoran; Cao, Ningning; Zhang, Sen; Huang, Simin; Wang, Tao; Lu, Xiaoqiang; Jiao, Licheng; Liu, Qiong; Li, Lingling; Liu, Fang; Liu, Xu; Yang, Yuting; Chen, Kaiqiang; Yan, Zhiyuan; Tang, Deke; Huang, Hai; Schmitt, Michael; Sun, Xian; Vivone, Gemine; Persello, Claudio; Hänsch, Ronny 
Dokumenttyp:
Zeitschriftenartikel / Journal Article 
Titel:
Large-scale fine-grained building classification and height estimation for semantic urban reconstruction 
Untertitel:
Outcome of the 2023 IEEE GRSS Data Fusion Contest 
Zeitschrift:
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 
Jahrgang:
17 
Jahr:
2024 
Seiten von - bis:
11194-11207 
Sprache:
Englisch 
Stichwörter:
Convolutional neural networks ; data fusion ; deep learning ; fine-grain building classification ; transformers ; monocular height estimation (MHE) 
Abstract:
This article presents the scientific outcomes of the 2023 Data Fusion Contest (DFC23) organized by the Image Analysis and Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society. The contest consists of two tracks investigating the fusion of optical and synthetic aperture radar data for: 1) fine-grained roof type classification and 2) height estimation. During the development phase, 1000 people registered for the contest, while at the end 55 and 35 teams competed during...    »
 
Fakultät:
Fakultät für Luft- und Raumfahrttechnik 
Institut:
LRT 9 - Institut für Raumfahrttechnik und Weltraumnutzung 
Professur:
Schmitt, Michael 
Open Access ja oder nein?:
Ja / Yes 
Art der OA-Lizenz:
CC BY-NC-ND 4.0